The Greenhouse: A Comprehensive Knowledge Base of Algal Feedstocks

U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer Review

Advanced Algal Systems

Shawn Starkenburg March 7, 2017

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LA-UR-17-21228

Overview-History and Motivation

 Born out of sequencing and functional genomics studies in NAABB (8 genomes, 150+ transcriptomes) and desire to genetically modify algae to improve productivity

Limitations/Challenges in Algal Biology and Genomics

Limited metabolic models

- Few Genomes, poor annotations
- older genomes are highly fragmented, alleles not assembled
- Impairs accurate GMO construction and rational target selection
- Many (Most?) 'axenic' cultures are not clonal
 - See both distinct strains & distinct genera of algae, and lots of bacteria

No APPS or workflows for algae

- heavily biased towards bacteria and euk model systems
- Lack of tools to handle of multi-omics experimentation, time course analysis
- Comparative analysis difficult b/c genomes are scattered

Goals and Outcomes

 Create a multifunctional web portal to organize and integrate metadata with -omics profiles to accelerate strain improvement

OUTCOMES

- Enables rational genetic engineering for productivity improvements
- Tools for accurate species tracking in open production systems and maintenance cultures
- High molecular weight DNA extraction methods = HQ genome assembly from long read sequencing technologies
- Centralized Data Storage, Dissemination, Standardization
- Improved Baseline Annotation and Physiological Potential of New Production Strains

Algae Characterization & Improvement "Org Chart"

GOAL: Deliver deeply characterized and improved strains, with accompanying data and tools, to stakeholders including industry, academics, and other BETO projects (e.g. BioFoundry)

Overview

Timeline

- Project start: October 2015
- Project end : September 2018
- Percent complete: 50%

Budget

	Total Costs FY 12 – FY 15	FY 16 Costs	FY 17 Costs	Total Planned Funding (FY 18-Project End Date)
DOE Funded	\$450K	\$350K	\$350K	\$1100K
Project Cost Share	\$0	\$0	\$0	\$0

Barriers

- Lack of Biomass Genetics and Physiological Knowledge of Production Strains (AftC) and Production Ecosystems
- Supports unit-scale algae yield of 5,000 gallons biofuel/acre/ year and \$3/GGE

Partners/ Collaborations

- Michael Guarnieri, NREL (0%)
- John Magnuson, PNNL (0%)
- Juergen Polle, CUNY (0%)
- Sapphire Energy (0%)

Accomplishments – Web Interface (FY16)

Los Alamos National Laboratory

HOSTING 38 ALGAL GENOMES (FY16-17)

Largest eukaryotic algal genome collection available online

- -Species information
- -Genome stats
- -Downloads

-other meta-data based on availability

Bigelowiella natans is an amoeboflagellate algae that obtained its chloroplast by engulfing a photosynthetic eukaryote and retaining its chloroplast, a process called secondary endosymbiosis. The host cell also contains the nucleus, called nucleomorph, and the cytoplasm of the engulfed alga, though in reduced form. It belongs to family Chlorarachniophyceae. Members of this family are mixotrophic marine flagellates and amoeboflagellates with green plastids surrounded by four membranes.

Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Curtis BA, et al. Nature 2012 Dec 6. [LINK]

The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Rogers MB, et al. Mol Biol Evol 2007 Jan. [LINK]

Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus. Gilson PR, et al. Proc Natl Acad Sci U S A 2006 Jun 20. [LINK]

Image source http://www.ncbi.nlm.nih.gov/genome/?term=Bigelowiella%20natans

Aureococcus anophagenerens

Bigelowiella natans

CCAP K-050

We are always looking to add more genomes!

Los Alamos National Laboratory

Deployed a Genome Centric Browser/Viewer

browsing and annotation visualization via Jbrowse

JBrowse	File View	Help						
0	200,000	400	0,000	600,000	800,000	1,000,000	1,200,000	1,
	ϵ		2 Q Q (NSC_scaffo	Id_contig599 🗸 NSC_	_scaffold_contig599:556755	5567514 (10.76 Kb)	Go 🔊
557,5	00		560,000		562,500		565,000	
🚇 Picochloru	ım sp. DOE101 in	to see sequence		Zoom in to see se	quence	Zoom in to see seque	nce	Zoom in to se
ease Gene ike ch	loroplastic-like			← ubiquitin ca	rboxyl-terminal hydrola	ase 2-like	acetyl- carbox	ylase biotin-cor
translocator p	rotein					hypothetica	l protein CHLNCDRAFT	[_136965 [Chlor
	dead-box	atp-dependent ri	na helicase 13					photos
as Transcript	aloroplastic-like			← ubiquitin ca	rboxyl-terminal hydrola	ase 2-like	acetyl- carbox	ylase biotin-cor
translocator p	rotein					hypothetica	l protein CHLNCDRAFT	[_136965 [Chlor
	dead-box	atp-dependent ri	na helicase 13			+		* photos
d@: 1 GD\$ 8)253-R1:cds:1348	7	• NSC_00254-	R1:cds:13562	NSC_00255-	R1:cds:13546	NSC_00256-R1:c
523	NS	C_00253-R1:cds:1	13488			NSC	_00255-R1:cds:13547	[►] NSC_
₹1:cds:13499		NSC_0025					NSC_00255-R1:cds:	:13548
_00252-R1:cds:	:13563		NSC_00253-R1:c	ds:13490			◆NSC_00256-R1	:cds:13569

Enabled BLAST Search Functionality (FY16)

BLAST and Genome Browsers for all algal species in the database

BLAST							
Choose program to use and database to search:			· · · · ·				
Program blastn 📀 Database All genomes - Nucleotide	0	50	100	150	200	250	300
Enter sequence below in FASTA format							
Or load it from disk Browse No file selected.					=		
Set subsequence: From To		_	= =				
Clear sequence Search		-					
The query sequence is filtered for low complexity regions by default.	=			=	= =		
Filter 🔽 Low complexity 🗌 Mask for lookup table only	=	=		_			
Expect 10 Matrix BLOSUM62 Perform ungapped alignment	Seque	ences producing	significan	t alignments:		Scor (bit	re E s) Value
Database Genetic Codes (tblast[nx] only) Standard (1)	C_sor C_sor Chlor	cokiniana-UTEX_ cokiniana-UTEX_ cella_sp1412_	1230_Contig 1230_Contig CSJ.fasta.s	1054 846 creen.Contig33	36		658 0.0 54 1e-05 54 1e-05
Database Genetic Codes (tblast[nx] only) Standard (1)	C_tor C rei	Inhardtii-CC-50	X01001142.1 3 chromosom	Chrysochromul e 3	ina sp. CCMP2	291 CAF	$\frac{40}{40}$ 0.16
Frame shift penalty for blastx No OOF	S_ob] S_ob]	iquus-DOE0152Z iquus-DOE0152Z	_unitig_945 _unitig_227	8			38 0.61 38 0.61
Other advanced options:	S_ob] S_ob]	iquus-DOE01522. iquus-DOE01522	_unitig_321 _unitig_330	2 0			38 0.61 38 0.61

ANNUAL MILESTONE: USER MANAGEMENT SYSTEM (FY16)

allows groups of users to access private data sets:

User Management System	Login	Private User
	Required to access restricted data	Groups:
Update Account	Email	NRFI
Logout	Password	CUNY
Admin Tools	Login Reset	LANL
Manage Users		PNNL
Manage Groups	No account yet? Register	PACE
Manage Projects		DISCOVR
		SAPPHIRE

Stretch Goal: Create Ability to Host additional Metadata

published or unpublished species specific production data

Metadata

Data courtesy of M. Huesemann, T. Dale

Additional Metadata

PLASMID MAPS

ePBR SIMULATIONS

MICROBIAL PROFILES

Home	Organieme	Toole	Browear	Omics Bathway Viewer	Blact	OIIME	Contact Us	Basources	L
nome	Organishis	10015	DIOWSEI	Offics Failway viewei	DidSt	GIIME	Contact US	nesources	LC
Toc	ol(s)								
○ E	xample Group	51							
Examp	l e user group: (c	description)							
Examp	le user aroup fil	es:							
Mamm	alian Zasain assa		Mommolion av	nvession vestory Encodes a 7	a ala va alat		ta Mara informati		
Marnina	alian Zeocin cass	elle vector:	wammalian ex	pression vector: Encodes a Zo	eocin resista	ance casset	le. More mormal	ion al: AddGene	
	pBRrevBam_prim M13_pLIC_fwd_prim	er							
	lacZ Ndel (546	a 7)							
	pGEX_3_prim	er		psi_plus_pack					

a. Download

Download	Link
Zeocin vector - Plasmid Map	[JPEG]

Genome Projects delivered in FY16

	NNA	4C12	14F2
Quality	Draft	Draft	Draft
Size (Mbp)	14.4	40.7	69.5
Contigs*	31	278	424
N50	1.1 Mb	617 kb	781 kb
Max	1.5 Mb	2.7 Mb	3.3 Mb

* >5kbp cutoff

Joint milestone with M. Guarnieri, NREL (Algal Biotechnology Partnership)

Los Alamos National Laboratory

Chlorella sorokiniana genome improvements (FY15-16)

Strain	1230	1230 V2	1228	1412	1412 V2
Quality	Draft	Improved Draft	Improved Draft	HQ Draft	Improved Draft
Platforms	Illumina	Illumina + Pacbio	Opgen + Pacbio	Illumina	PacBio + Illumina
Size	56.2 Mb	59.7 Mb	61Mb	59.3	57.8
Scaffolds/ Chromosomes	N.D.	N.D.	13/12	N.D.	N.D
Contigs	10042	22	64	5949	65
N50	10.8 kb	3818 kb	2395 kb	19.5 kb	2025 kb
Мах	75 kb	5.1 Mb	4.56 Mb	122 kb	5.4 Mb

Future Work: Time Course Pathway Viewer (Q3 FY17)

Future Work: Metagenomics Cultivation Diagnostics Tool Deployment (Q4 FY17)

RELEVANCE

TOOLS AND KNOWLEDGE FOR INDUSTRY, ACADEMIA, GOV'T

- Building Fundamental Knowledge of Algal Biology to enable genetic manipulation of production strains to improve biomass yields
- accurate species and contaminant tracking in production systems and polycultures to enable the development of low-cost, scalable cultivation systems
- Combines -omics information with metadata from multiple resources to centralize and standardize data storage, dissemination to accurately benchmark strain improvement

Acknowledgements

Collaborators:

- o Michael Guarnieri, NREL
- o John Magnuson, PNNL
- o Juergen Polle, CUNY
- o Richard Sayre, LANL
- o Taraka Dale, LANL
- o A. Corcoran, Sapphire

Greenhouse Crew:

- o Blake Hovde
- Patrick Chain
- o Chienchi Lo
- o Paul Li

Sequencing Technologies Team:

- Yuliya Kunde
- Hajni Daligault
- Cheryl Gleasner
- Karen Davenport
- Kim McMurry

BLANK

REQUIRED ADDITIONAL SLIDES FOLLOW

Milestones Progress Summary

MEASURE	DESCRIPTION	DATE	STATUS
			COMPLETE
ML.1 QPM	Sequencing and assembly of two novel halo-tolerant algae strains.	31-Dec-15	
	Complete annotation for S. obliquus 152Z and disseminate/share via		COMPLETE
ML.2 QPM	the Greenhouse website	31-Mar-16	
			COMPLETE
ML.3 QPM	Design of the User Management System	30-Jun-16	
			COMPLETE
ML.4 Annual	Deploy User Management System on Greenhouse	30-Sep-16	
	Manuscript Submitted for Publication Comparing the Genomes of 3		IN
ML.5 QPM	Chlorella strains	31-Dec-16	PROGRESS
	Database containing Unique Genome Regions for all Publicly		
ML.6 QPM	Available Algae and Algal Predators/Prey	31-Mar-17	COMPLETE
	Software that enables integrated analysis and co-display of		IN
ML.7 QPM	metabolomics, transcriptomics, and proteomics data	30-Jun-17	PROGRESS
	Diagnostics pipeline to monitor algae and predator/prey populations		IN
ML.8 Annual	in production systems from shotgun metagenomic datasets	30-Sep-17	PROGRESS
ML.9 QPM	User Initiated and Web-based Genome Annotation Service	31-Dec-17	
	Sequence and Assemble 3 Predator/Pathogen Genomes from		
ML.10 QPM	Partnering Companies/Labs	31-Mar-18	
	Link Biocyc Metabolic Models and Annotation Curation Tool to		
ML.11 QPM	Greenhouse	30-Jun-18	
GN1	Functional User Management System	30-Sep-16	PASS

Publications, Patents, Presentations, Awards, and Commercialization

Publications:

B.T. Hovde, Y. Kunde, K. Davenport, J. Msanne, and S.R. Starkenburg. A Comparative Genomic Analysis of Three Biofuel-Relevant Strains of *Chlorella sorokiniana* Reveals High in Species Genetic Diversity. *Algal Research.* In prep.

K.R. Fixen*, **S.R. Starkenburg***, **B.T. Hovde**, S.L. Johnson, C.R. Deodato, C. S. Harwood, and R.A. Cattolico. 2016. Genome sequences of 8 bacterial species found in co-culture with the haptophyte *Chrysochromulina tobin. Genome Announcements.* 2016 Nov 3;4(6). pii: e01162-16. doi: 10.1128/genome A.01162-16. PubMed PMID: 27811091;

Presentations:

'Greenhouse: an omics resource for algal feedstocks'. Algal Biomass, Biofuels and Bioproducts. San Diego, CA, June 27th, 2016

'Greenhouse: an omics resource for algal feedstocks'. Algal Biomass Summit, Glendale AZ, Oct 25th, 2016

"Algal Omics Databases and Resources", Sharpening Our Tools: Algal Biology Toolbox Workshop, DOE-Bioenergy Technology Office, May 2016, San Diego, CA

"Advances in Algal Genomics", Lecturer, Spring ATP3 Workshop; Principles and Processes: Algae Culture Maintenance, Production and Downstream Processing, April 2016, Los Alamos, NM

Responses to Previous Reviewers' Comments

- This AOP was a new start in FY16 and was not apart of the 2015 Peer Review
- The 2016 GO/NO GO was completed successfully and on time