Major Nutrient Recycling for Sustained Algal Production

1.3.2.200

3/06/2017

Algae Technology Area Review

Todd W. Lane

Sandia National Laboratories

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Goal Statement

The grand objective of the proposed work is to develop an integrated system for the culture, harvest, and processing of algal biomass that will enable the reuse of major nutrients thus reducing the operational requirement for external nutrients.

Aft-J. Resource Recapture and Recycle: “Residual materials remaining after preprocessing and/or residual processing may contain valuable nitrogen, phosphorus, other minor nutrients, and carbon that can displace the need for fresh fertilizer inputs in upstream cultivation. The recapture of these resources from harvest and logistics process waste streams may pose separation challenges, and the recovered materials may not be in biologically available chemical forms. In closed-loop systems, the potential for buildup of inhibitory compounds also exists.”

ASAP FOA: Develop and demonstrate a process that “Significantly reduces external nutrient input requirements (eg: Nitrogen and Phosphorus) and has the potential to be scaled economically.

Outcomes: Nutrient recycling technologies, for use in the algal production industry, that will overcome one of the economic barriers to fuel production, and ultimately enhance the energy security of the United States.
Phosphate presents a potential geopolitical risk to energy security

- 82% of mined phosphate rock is used for fertilizer
- Non-renewable, finite, fossil form of phosphate
- Substantial uncertainty over magnitude of phosphate reserves
 - Large changes in the estimated phosphate reserves
 - Potential for movement of phosphate resources into reserves.
- Quality of the reserves (such as % P and presence of impurities) is generally in decline over time.
- Developed countries are net importers of phosphate rock
- Three countries control more than 85% of the known global phosphate rock reserves

- This concentration of power is far greater than for oil, where the dozen members of the Organization of the Petroleum Exporting Countries control 80% of the world’s oil reserves.”
Increased phosphate demand and environmental impact

Dietary changes: increased meat consumption drive increased demand
 Transient price spike ~2007
 Instability in prices after 2010

Decrease in phosphate demand due to realization of consequences of over usage and economic downturn in former Soviet states
 - Fertilizer runoff leads to the generation of dead zones

Biofuels production may lead to increased phosphate demand in developing countries

Cordell & White 2014

Phosphorus (Mt/a P)

Year

Developed countries
Developing countries
Forecast

NOAA 2015

Cities
Farms

Map of phosphorus distribution in the USA and Canada

Sandia National Laboratories
1. Project Overview: A partnership between national lab, university and industry

- Laboratory to pilot/field scale
- Sandia National Labs
 - Project Lead
 - Biochemistry
 - Precipitation Science
- Texas AgriLife (TAMU):
 - biomass production
 - pilot scale field trials
 - Marine species
 - *Nannochloropsis salina*
 - *Phaeodactylum tricornutum*
 - (NAABB strains)
- OpenAlgae
 - TAG extraction
 - DAG extraction
 - Converted phospholipids
Quad Chart Overview

Timeline
- Project start date: 3/15/2013
- Project end date: 9/31/2016
- Percent complete: 100%

Barriers
- Barriers addressed
 - Aft-J. Resource Recapture and Recycle

Budget

<table>
<thead>
<tr>
<th></th>
<th>Total Costs FY 12 –FY 14</th>
<th>FY 15 Costs</th>
<th>FY 16 Costs</th>
<th>Total Planned Funding (FY 17-Project End Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Funded</td>
<td>$827,743</td>
<td>$636,052</td>
<td>$616,495</td>
<td>64,893</td>
</tr>
<tr>
<td>Project Cost Share (Comp.)* AgriLife</td>
<td>$80,059</td>
<td>$45,649</td>
<td>$33,518</td>
<td>0</td>
</tr>
<tr>
<td>Project Cost Share (Comp.)* Open-Algae</td>
<td>$195,724</td>
<td>$30,284</td>
<td>$151,049</td>
<td>0</td>
</tr>
</tbody>
</table>

Partners
- Texas Agrilife (TAMU)
- OpenAlgae LLC
The grand objective of the proposed work is to develop an integrated system for the culture, harvest, and processing of algal biomass that will enable the reuse of major nutrients thus reducing the operational requirement for external nutrients. To meet this overall objective, the team will:

1. Develop a process to liberate nitrogen and phosphorous present in de-oiled algal biomass.
2. Convert phospholipids to DAG, remineralized phosphate, and recover both.
3. Remineralize nitrogen and phosphorus as struvite and demonstrate a simple struvite recovery process.
4. Demonstrate the ability of recycled nutrients to support algal growth.
5. Operate the growth process at a lower overall N:P ratio to favor lipid production and minimize nitrogen cycling.
2 – Approach (Technical)

- Non denaturing method of neutral lipid extraction
- Remineralization of cellular phosphate by mild pH and enzymatic treatment
- Conversion of cellular nitrogen by protein fermentation
- Return of recycled nutrients to pond for subsequent biomass production.
Management structure reflects task structure

Meetings
- Monthly telecon with PI, Co-Pi’s Team leads, and members
- Annual face to face meetings
- Other meetings on Ad hoc basis

Quarterly reports/tracking of milestones
- Data flows through the PI
- PI tracks milestones and generates all reports
- Synthesis of results into publication and solutions tracked and mediated by PI

- Decision making is through consensus of PI, CoPIs, and technical leads
- CoPIs and technical leads are responsible for achieving task milestones
- PI retains ultimate decision-making authority

Principal investigator: Todd Lane
Sandia National Labs

CoPI Anthony Siccardi
Texas Agrilife
Algal growth trials
biomass production

CoPI Hoyt Thomas
OpenAlgae
Neutral lipid extraction
Phospholipid conversion

SNL Technical Lead
Ryan Davis
Nutrient Liberation

SNL Technical Lead
John Hewson
Nutrient Capture
Critical Success factors

Technical
• Quantitative recovery and recycling of nutrients
 – Must return the maximal amount of biologically accessible nutrients to the pond
 – Nutrients must not contain inhibitors.

Market/Business
• Reduction of energy and material costs
• Determine the most cost effective means to the desired result
 – Must develop and evolve methods to require lowest level of inputs and highest level of return
 – Linking fuel generation with nutrient recycle
 – Creating integrated 1-pot methods
• Creation of savings over potential nutrient costs
Potential challenges

• Various algal strains may require substantially different lysis and or incubation conditions for fast and efficient nutrient remineralization.
 – We will target our approach for two distinct algal species, *Nannochloropsis salina* and *Phaeodactylum tricornutum*, that have been identified as preferred by the National Alliance for Advanced Biofuels and Bioproducts (NAABB), and are actively co-cultured in open raceway environments.

• Some phosphate and or nitrogen pools within the cells may appear to be recalcitrant
 – Pre-processing of biomass
 – Biochemical analysis to identify recalcitrant pools
 – Targeted enzymatic digestion if necessary

• Off target complexes may be formed during the capture process
 – Recycle nutrients in aqueous solution
 – Adjust the chemistry of the process
3 – Technical Accomplishments/Progress/Results

• TAG extracted biomass (OA process) retains ~90% of N & P
• Phosphate can be remineralized, in soluble form, from non denatured *N. salina* biomass by enzymatic digest or mild pH treatment
 – 50-70% yield
 – The OA lysis and neutral lipid extraction process has little impact on downstream Pi remineralization processes
• Nitrogen can be remineralized in soluble form from *N. salina* biomass by protein fermentation.
 – 57 % yield
 – The OA lysis and neutral lipid extraction process has little impact on downstream protein fermentation processes
• Soluble, remineralized phosphate can provide 100% of phosphate required for growth of *N. salina* or *P. tricornutum* at laboratory and pilot scale
• Crude struvite can provide 100% of phosphate and large fraction of nitrogen for the growth for the growth of *N. salina* and *P. tricornutum* at laboratory scale and pilot scale.
• Struvite produced from the combination of remineralized phosphate and fermentation liquor can support the growth of *N. salina* at laboratory scale
Optimized reaction releases up to 70% of cellular P

Liberating up to 70% of total cellular phosphate under mild pH incubation conditions

Higher temperature does speed the reaction somewhat.
Regrowth of biomass on remineralized phosphate

- ~50 gm of 20% solids. *N. salina*
- Diluted to 2% solids pH 6.5, 37°, 20hrs
- Liberated phosphate used to replace total phosphate in algal culture
- Growth of *P. tricornutum* and *N. salina* on soluble liberated phosphate
Repeated rounds phosphate remineralization and reuse in *N. salina* culture

After first round, recycled up to 66% of consumed phosphate

No difference in specific growth rates over the course of 8 rounds of recycle (9 culture rounds)

No evidence of accumulation of growth inhibitors through 8 recycles

Response to peer review
Pilot scale phosphate remineralization pathway

550L raceways

Harvested 2603 L

OA Electrolysis

Lysed biomass

OA TAG extraction

~55% of biomass Phosphate

Phosphate remineralization

Reactor vessel

Aquaculture feed

Algae growth 550L raceways

TAGs
Phosphate reuse at pilot scale

P Recycle Trial 1 April 2016
10:1 N:P Ratio (0.49 m Mol/L/N : 0.05 m Mol/L/P)

P Recycle Trial 2 Sept 2016
10:1 N:P Ratio (0.49 m Mol/L/N : 0.05 m Mol/L/P)

C: New phosphate control
R: Recycled phosphate

Maximum Productivity
g/AFDW/m²/day

Cumulative Productivity
g/AFDW/m²/day
Struvite is the likely form of recycled phosphate & nitrogen

- It has been shown that struvite can be formed with purity levels up to 95% when using seawater and brine as the Mg source (Liu et al., 2013)
- Mg is 50mM in seawater
- If algae dewatered to 10% one can expect 5mM Mg to remain.
- Depending on excess NH4/NH3 used in precipitation, estimate 80-99% potential PO4 precipitation.
- Recovers 1:1 N:P
- Precipitates at accessible concentrations
- Trials conducted at anticipated raceway phosphorus levels
 - pH 7.8, 8.2
The expected product, Struvite, can replace “new” nutrients in microalgal culture.

G/N-G Milestone: demonstrate that our expected final product can support algal growth.

- **Nannochloropsis salina CCMP 1776**
 - L1 medium
 - Crude Struvite
 - Crude Struvite +N+V+M
 - Crude Struvite +N-V+M
 - MglH4PO4 +N+V+M

- **Phaeodactylum tricornutum CCMP 632**
 - L1 medium
 - Crude Struvite
 - Crude Struvite +N+V+M
 - Crude Struvite +N-V+M
 - MglH4PO4 +N+V+M

- Multicultivator, sinusoidal 16/8 LD cycle, peak 1000μE, 21 to 24 C
Cultivation with struvite in outdoor raceways

G/N-G Milestone: demonstrate that our expected final product can support algal growth

Daily biomass productivity (g AFDW/m²/day) of *Nannochloropsis salina* (CCMP 1776) cultivated with phosphorus replacement (% of control) using commercial struvite

Graph Details:

- **Y-axis:** Grams Ash Free Dry Weight/m²/day
- **X-axis:** Day of Culture

Legend:
- Control
- 100
- 67
- 33

Regrowth of N. salina on recycled N & P

The N-remineralization yield was 57% (±14%) of theoretical

Remineralized Phosphate combined with
 Reagent NH₄OH
 Fermentation liquor

Loss of phosphate from soluble phase & formation of ppt presumed to be struvite

Replace total phosphate and an equimolar amount of nitrogen

No apparent deleterious compounds carried over by phosphate precipitation with fermentation liquor
Fermentation and nutrient recycle

- Algal biomass
 - Pretreatment 1: Osmotic shock Incubation
 - Pretreatment 2
 - Pronase digestion
 - Carbohydrate fermentation
 - Protein Fermentation
 - Recombine
 - Pellet
 - Supernatant

- Struvite NH_4MgPO_4
 - Soluble Phosphate
 - ammonia
 - Fuel Products

Fermentation liquor
4 – Relevance

This project directly addresses a specific barrier in the BETO MYPP: **Aft-J. Resource Recapture and Recycle**

- We have developed and demonstrated a system for the recapture and recycle of nitrogen and phosphate in algal culture.

Our objectives are aligned with the Bioenergy Technologies Office, MYPP goals, and are relevant to the algal biomass industry.

We met two of the goals of the ASAP FOA:

- Our process significantly reduces external nutrient input requirements (e.g., Nitrogen and Phosphorus) and has the potential to be scaled economically.

The success of this project will advance the state of technology and positively impact the commercial viability of algal biofuels:

- Reduce demand for nonrenewable nutrients (i.e., phosphate)
- Reduce competition with agriculture for fertilizer.
- Potentially reduce the cost of nutrients
Summary

- TAG extracted biomass (OA process) retains ~90% of N & P
- Phosphate can be remineralized, in soluble form, from non denatured *N. salina* biomass by enzymatic digest or mild pH treatment
 - 50-70% yield
 - The OA lysis and neutral lipid extraction process has little impact on downstream Pi remineralization processes
- Nitrogen can be remineralized in soluble form from *N. salina* biomass by protein fermentation.
 - 57% yield
 - The OA lysis and neutral lipid extraction process has little impact on downstream protein fermentation processes
- Soluble, remineralized phosphate can provide 100% of phosphate required for growth of *N. salina* or *P. tricornutum* at laboratory and pilot scale
- Crude struvite can provide 100% of phosphate and large fraction of nitrogen for the growth for the growth of *N. salina* and *P. tricornutum* at laboratory scale and pilot scale.
- Struvite produced from the combination of remineralized phosphate and fermentation liquor can support the growth of *N. salina* at laboratory scale
Summary

- OpenAlgae TAG extraction process retains ~90% of N & P
- Phosphate can be remineralized, in soluble form, from non denatured *N. salina* biomass by mild pH treatment at pilot scale
- This phosphate can can provide 100% of phosphate required support algal growth
- This method is potentially scalable and economic.
- Nitrogen can be remineralized in soluble form from *N. salina* biomass by protein fermentation.
- The fermentation liquor combined with solubilize phosphate will form struvite that can support the growth of *N. salina* at laboratory scale
- Crude struvite can provide 100% of phosphate and large fraction of nitrogen for the growth for the growth of *N. salina* and *P. tricornutum* at laboratory scale and pilot scale.
Acknowledgments

DOE EERE BioEnergy Technology Office

Sandia National Labs
- Ryan Davis
- John Hewson
- Pamela Lane
- Nicholas Wyatt
- Deanna Curtis
- Mary Tran-Gyamfi

Texas Agrilife
- Anthony Siccardi
- Nathan Huysman
- Zachary Fuqua
- Cristina Richardson
- David Stafford
- Juan Landivar, Carlos Fernandez, Joe Fox and Paul Zimba

Open Algae
- Peter Kipp
- Hoyt Thomas
- Stacy Truscott
Publications, Patents, Presentations, Awards, and Commercialization

Presentations

6. “Utilization of Struvite to Replace Traditionally used Nutrients for the Production of Microalgae in Mixed and Mono Cultures.” Algae Biomass Summit, San Diego, CA, 2 October 2014
8. “Nutrient Recycling for Sustained Algal Production” 4th International Conference on Algal Biomass, Biofuels and Bioproducts. Santa Fe, New Mexico 15-18 June 2014

Publications

2. Lane PD, Davis RW, Lane TW “Recycling of phosphate for sustainable *Nannochloropsis salina* culture”. Target journal: *Bioresource Technology*

Patents

“High rate algae culture using recycled struvite as a nutrient source” – Hewson, J., Davis, R., Wyatt, N., and Lane, T. SD13112 – PROVISIONAL APPLICATION FILED ON 06.25.14
Responses to Previous Reviewers’ Comments

Reviewers have pointed out the need to carry out technoeconomic Analysis (TEA) and lifecycle Analysis (LCA) on our processes. TEA and LCA are outside the scope of the funded SOPO, so our ability to carry out such analyses is very limited. If additional resources were made available from BETO we would be able carryout robust and detailed analyses in collaboration with experts at the NREL and ORNL.

A reviewer suggested that we extend our work to include cyanobacteria. We can carry out limited nutrient extraction trials with cyanobacterial biomass as suggested by the reviewer. However, we believe that our ability to carry out additional experiments with cyanobacteria are limited under the scope of the currently funded SOPO. If further funding was made available we would be able to carryout more extensive cultivation and nutrient recycling experiments with cyanobacteria.

A reviewer suggests that long-term issues include optimization for additional algal feedstocks. We agree that this is indeed important. Our nutrient recycling processes are already being developed for a diversity of algal lineages and preliminary results indicate that our methods are likely to be generalizable to a variety of algal feedstocks.

Are reviewer stated that “These technologies are also not, at this point, compatible with a pathway like HTL”. We respectfully disagree on the potential compatibility of our nutrient recycling processes with HTL. There are few limits on biomass treatment prior to HTL—that being one of the strengths of the process. The phosphate remineralization process, that we have developed and demonstrated, would have no impact on the suitability of the residual biomass for HTL. Likewise, nitrogen recycling by protein fermentation can be employed upstream of HTL and, unlike the nitrogen containing raffinate from HTL, is likely to result in a nutrient product that is not contaminated with growth inhibiting compounds.