U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer Review

Algae Production CO₂ Absorber with Immobilized Carbonic Anhydrase

March 8, 2017

David Hazlebeck Global Algae Innovations

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goal Statement

The goals are to demonstrate

80% CO₂ capture efficiency can be attained in a high efficiency absorber 90% carbon utilization efficiency in an outdoor raceway Integrated operation of the absorber with an algae raceway

Relevance to bioenergy industry

- Low-cost CO₂ supply is necessary to achieve algal biofuel cost metrics
- High CO₂ capture and utilization efficiency are necessary to achieve biofuel cost, life-cycle, and production potential metrics
- This project will improve the efficiency of a proven system for utilizing power plant flue gas to supply CO₂ for large-scale open raceway cultivation

Quad Chart Overview

Timeline

7/2016 – 7/2019 21% Complete (on track to complete 12/17)

Budget

_					
	FY16 (\$000)	Total Planned FY 17 + (\$000)			
DOE Funded	256	743			
Cost Share TSD	64 17	185 31			

Barriers

- Aft-B. Sustainable Algae Production
- Aft-H. Overall Integration and Scale-Up
- Aft-J. Resource Recapture and Recycle

MYPP milestones addressed:

- By 2017, model the sustainable supply of 1 million metric ton cultivated algal biomass
- By 2022, model the sustainable supply of 20 million metric ton cultivated algal biomass.

Partners

• TSD Management Associates

1 - Project Overview History

Kauai Algae facility operated solely on CO₂ from power plant flue gas since June 2014

Power plant

Algae Raceways

Harvest

50' CO₂ Absorber

Recycled Media Pond

Carbonated Media Pond

Flue Gas Supply

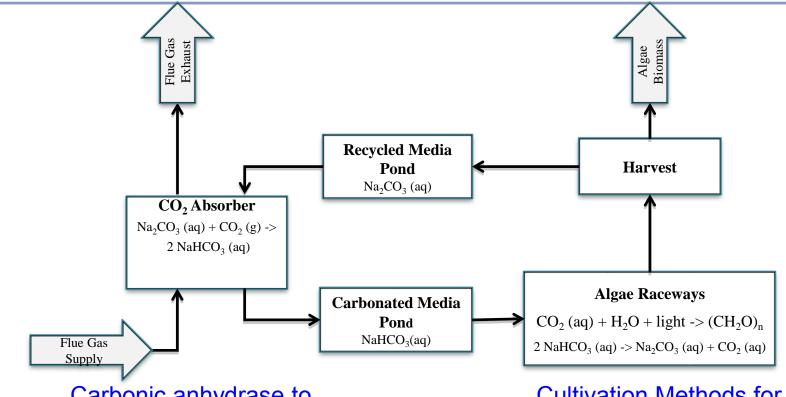
Power Plant Flue Gas CO₂ Supply

- All CO₂ for growth from power plant flue gas
- 24 hour per day CO₂ recovery
- Power plant off-gas returned to stack after CO₂ recovery

1 - Project Overview Goals

Objective	Start of Project	Current Status	Project Goal
Single pass carbon capture efficiency	10%	10%	80%
Carbon Utilization Efficiency	60%	84%	90%
Integrated operation	Yes ^a	Yes ^a	Yes ^b
Cost of CO_2 capture & delivery (\$/mt CO_2 in algae biomass)	\$47	\$33	\$21

^a With baseline absorber^b With high efficiency absorber


2 – Approach (Management)

- Small team, weekly project meetings
- Milestone driven, ahead of schedule

Area	Target	Month	Status (Month 7)
Utilization Efficiency	70%	9	Complete
	80%	13	Complete
	90%	16	Achieved with high growth rate
Absorber test system	Design	4	Complete
	Fab & Shakedown	10	Complete
	Operate w/catalyst	13	Catalyst on-order
Capture Efficiency	80% neat solutions	16	
	70% integrated	19	
	80% integrated	22	
	80%, 10 cycles	30	
Management	Risk Plan	3	Complete
	Commercialization	36	

2 – Approach (Technical)

Carbonic anhydrase to increase absorber efficiency

GLOBAL ALGAE

INNOVATIONS

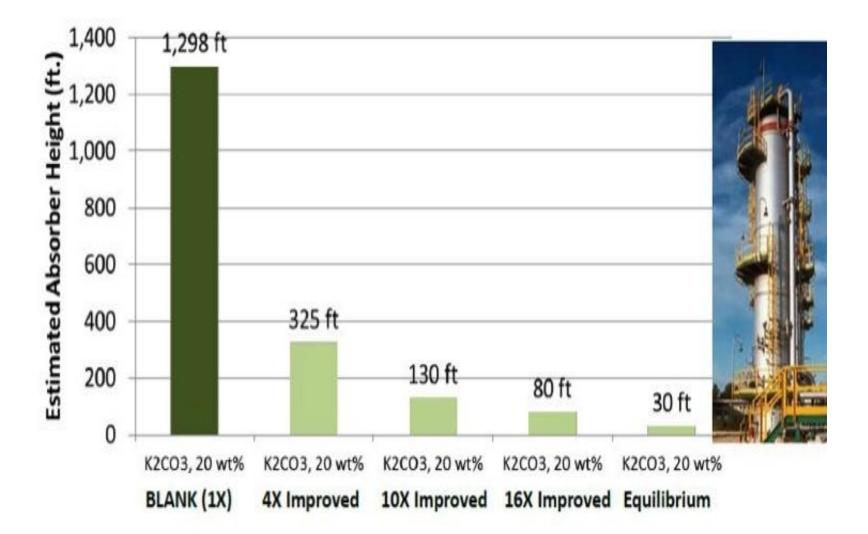
Cultivation Methods for high utilization efficiency

Top Challenges

- Complexity of abiotic and biotic variation
- Carbonic anhydrase efficacy and lifetime in integrated operation with open raceways

Key Attributes of CO₂ Supply Options

System Attribute	Global Algae Innovations	Bubble Flue Gas	Carbon Capture
Avoid ground level release	Yes	No	Yes
Simple distribution/controls	Yes	No	No
Low pressure drop	Yes	No	Νο
24 hour capture	Yes	No	Yes
Low cost capture	Yes	No	No



Key Reactions Hydration is the Limiting Step

- 1) $CO_2(g) \leftrightarrow CO_2(aq)$
- 2) $CO_2(aq) + H_2O \leftrightarrow H_2CO_3$ (Limiting)
- 3) $CO_2(aq) + OH^- \leftrightarrow HCO_3^-$ (Limiting)
- 4) $H_2CO_3 \leftrightarrow H^+ + HCO_3^-$
- 5) $H^+ + CO_3^{2-} \leftrightarrow HCO_3^{-1}$

Utilize carbonic anhydrase to accelerate rate of hydration

3 - Technical Progress

Carbonate/bicarbonate system characterization

 Data and empirical correlation for carbonate/bicarbonate ratio as function temperature, pH, and conductivity measurements

Carbon Utilization Efficiency

- 84% average utilization efficiency in outdoor raceways
- 99% average utilization efficiency for days when growth rate was 15-25 g/m²d

Carbon Capture Efficiency

- Completed design, fabrication, and shakedown testing of test absorber system
- Measured the mass transfer coefficients in the test absorber system over a wide range of conditions without catalyst

Absorber test system variables

Independent Variables

- Carbonate solution strength
- Salt concentration
- •Inlet liquid pH (9 to 10.5)
- •Inlet CO₂ concentration (4-14 vol %)
- •Operating temperature (25-45°C)
- •Liquid flow (4-20 L/min)
- •Gas Flow Rate 200-400 L/min
- Packing Height 1-2 m
- Catalyst form and concentration

Dependent Variables

- Exhaust gas % CO2
- Outlet liquid pH
- Catalyst lifetime
- Packing pressure drop
- Liquid hold-up

5 – Future Work

Increase carbon utilization to 90%

Refine control scheme for carbonated media addition during lower
growth periods such as during rain or heavy cloud cover

Achieve CO₂ absorption rate for 80% capture efficiency in single pass absorber

• Optimize performance of the absorber through parametric testing

Demonstrate integrated operation the test absorber with open raceway cultivation

 Operate through at least 10 cultivation/harvest/carbonation cycles in integrated operation with open raceway cultivation

Summary

- **1. Overview:** Improves efficiency of proven CO2 capture technology
- **2. Approach**: Milestone driven
- **3.** Technical Accomplishments/Progress are ahead of schedule:
 - Increased CO₂ utilization efficiency from 60% to 84%
 - Absorber test system completed and characterized
- 4. Relevance
 - Improves efficiency of only proven flue gas CO₂ supply for open systems

5. Future Work

- Increase CO₂ utilization efficiency to 90%
- Increase CO₂ capture efficiency to 80% for a single pass absorber
- Demonstrate integrated operation with high efficiency absorber

Additional Slides

