DOE Bioenergy Technologies Office (BETO)
2017 Project Peer Review

Synthetic Design Microorganisms for Lignin Fuels and Chemicals

3/9/2017
Synthetic Biology
Biochemical Conversion

Joshua S. Yuan
Associate Professor and Director
Synthetic and Systems Biology Innovation Hub
Texas A&M University
Project Goal: Design of Microorganisms for Lignin Fuel

• Address one of the most challenging issues in biofuel production: the utilization of lignin for fungible fuels.
• Create a process to convert real biorefinery lignin streams into lipids to enable biorefinery economics.
• Synthetic biology methods will be used to modify organisms, and process-relevant fractionation methods will be explored to produce lipids at comparable cost to biodiesel.

• BETO Missions:
 – Additional feedstock for biodiesel
 – Reduce carbon emission by complete biomass usage
 – Improve biorefinery economics and sustainability
Project Goal: From Lignin to Fuels and Chemicals

Lignin Conversion
- Fractionation
- Fermentation
 - Lipid for Fuel

Carbohydrate Conversion
- Pretreatment
 - Hydrolysis
 - Fermentation

Fuel finishing and blending

Cellulosic Biomass

Lignin Derivatives

Quad Chart Overview

Timeline
- Project start date: 07/01/2013
- Project end date: 06/30/2017
- NCTE has been requested to: 06/30/2017
- Percent complete: 90%

Barriers
- Barriers addressed
 - Ct-A. Feedstock Variability
 - Ct-G. Efficient Intermediate Cleanup
 - Ct-J. Process Integration
 - Ct-L. Aqueous Phase Utilization

Budget

<table>
<thead>
<tr>
<th></th>
<th>FY 14-16 Costs</th>
<th>Total Planned Funding (FY 17-Project End Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Funded</td>
<td>$1,798,044</td>
<td>$601,933</td>
</tr>
<tr>
<td>Project Cost Share (Comp.)*</td>
<td>$550,252</td>
<td>$0</td>
</tr>
</tbody>
</table>

Partners
- Partners
 - University of Tennessee, Knoxville/Oak Ridge National Lab
 - Washington State University
 - University of British Columbia
- Other collaborators and Industrial Partners:
 - ADM provided the biorefinery slurry
 - ICM Inc.
Project Overview

Project Title: Synthetic Design of Microorganisms for Lignin Fuel

Objectives:

(1) Synthetic design of secretion systems and functional modules in *Rhodococcus* to enable effective lignin depolymerization;

(2) Modification and integration of functional modules to improve carbon flux from aromatic compound catabolism to lipid production;

(3) Optimize the fractionation and fermentation of lignin to increase lipid yield using synthetic and wild type strains.

Technical Approach

Lignin depolymerization

Heterologous secretion expression

Aromatic compound utilization capacity

Systems biology-Guided Design

Lipid accumulation capacity

Lipid for Biodiesel

Critical Factors for Success:
(1) Titer: >10g/L Lipid
(2) Reaction Time: <96 hour
(3) Feedstock Load: >30g/L

Major Challenges:
(1) Lignin Depolymerization
(2) Carbon Flux Optimization for Higher Targeted Products
(3) Fermentation Optimization

Lin, et al., Green Chemistry 18 (20), 5536-5547
Management Approach

• Defined and measurable milestones were laid out for technology development and commercialization.
• Go/No-Go milestones were set at the end of the year.
• Monthly group teleconferences and semi-annual group meetings were implemented to evaluate the progresses against milestones. Regular teleconferences between the PI and the program management were implemented to evaluate progresses, mitigate risks, and address management issues.
• Engaging industrial partners for deliverables relevant to EERE MYPP. Meetings to engage industry.
• Timely publications to ensure data sharing with community.
• Technoeconomic evaluation are being carried out and industrial partners are engaged to promote commercialization.
Technical Accomplishments
– All Major Milestones Met

<table>
<thead>
<tr>
<th>Milestone Criteria</th>
<th>Actual Accomplishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secretion system (including peptide, promoter, rbs) that enables the production of secreted proteins at more than 2% of total secreted proteins.</td>
<td>Secretion system enables >90% of total secreted protein to be laccase, and laccase yield at 13.6g/L, record of bacterial heterologous secretion protein production.</td>
</tr>
<tr>
<td>More than one synthetic modules designed to have cell growth on aromatic compound or lignin 3 times more than the control.</td>
<td>Several functional modules enable >1000 times increase of cell growth on lignin substrate.</td>
</tr>
<tr>
<td>96 hour fermentation will reach 40-100g/L cell density, 20-40% lipid content (total lipid titer 10g/L).</td>
<td>11.2g/L of lipid titer was achieved after 96 hour of fermentation.</td>
</tr>
</tbody>
</table>
Technical Accomplishments In Details

• Discovering and characterizing the enzyme-cell synergy for lignin degradation.
• Biological and chemical design to engineer efficient lignin depolymerization and lipid production functional modules.
• Development of multiple chemical and biological fractionation methods to enhance lipid production.
• Fermentation optimization to enhance lipid titer.
Technical Accomplishment
-- Laccase as an Effective Enzyme to Synergize with Cell for Depolymerization

Zhao, et al., Green Chemistry 18 (5), 1306-1312
Laccase and Cell Synergy

- Laccase-cell co-treatment can promote the cell growth and lipid yield on Kraft lignin significantly.

- Between laccase and Fenton reaction treatments, laccase is much more effective, which may be due to the availability of radicals.

- The synergy leads to 17 times of lipid productivity increase.

Zhao, et al., Green Chemistry 18 (5), 1306-1312
Chemical Validation of Lignin Degradation

<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Integration region (ppm)</th>
<th>Examples</th>
<th>hydroxyl contents/(mmol/g lignin)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I<sup>a</sup> II<sup>b</sup> III<sup>c</sup> IV<sup>d</sup> V<sup>e</sup></td>
</tr>
<tr>
<td>Aliphatic OH</td>
<td>150.0-145.2</td>
<td></td>
<td>2.38 2.32</td>
</tr>
<tr>
<td></td>
<td>β-5</td>
<td></td>
<td>0.15 0.02</td>
</tr>
<tr>
<td>C<sub>5</sub> substituted condensed Phenolic OH</td>
<td>142.9-141.6</td>
<td></td>
<td>0.01 0.02</td>
</tr>
<tr>
<td></td>
<td>5-5</td>
<td></td>
<td>0.00 0.05</td>
</tr>
<tr>
<td>Guaiacyl phenolic OH</td>
<td>140.1-138.8</td>
<td></td>
<td>1.32 1.40</td>
</tr>
<tr>
<td>Catechol type OH</td>
<td>138.8-138.2</td>
<td></td>
<td>0.04 0.02</td>
</tr>
<tr>
<td>p-hydroxy-phenyl-OH</td>
<td>138.2-137.3</td>
<td></td>
<td>0.08 0.06</td>
</tr>
<tr>
<td>Carboxylic acid OH</td>
<td>136.6-133.6</td>
<td></td>
<td>0.50 0.15</td>
</tr>
</tbody>
</table>

Hydroxyl content of lignin determined by quantitative 31P NMR after derivatization with TMDPD
Technical Accomplishments – Development of Fractionation Methods to Improve Lignin Conversion

Le, et al., ACS Advances, 2017 (in press)
Viability of \textit{Rhodococcus} on ALK and ALK-AHP Fractionated Effluents

- \textit{Rhodococci} strains are able to proliferate on ALK and ALK-AHP effluents
 1) Alkaline Pre-treatment (ALK)
 80 °C, 1 h, solids 10% (w/v) and 8% NaOH/g dry biomass
 2) Alkaline Pre-treatment + Alkaline Hydrogen Peroxide Pre-treatment (ALK-AHP)
 60 °C, 0.5 h, 25 mg peroxide per g biomass

- ALK-AHP is the more ideal substrate for viability and oil production
 - ~1.5 g/L FAMEs were produced by the strains grown on ALK-AHP effluent
 - ~10 mg/L FAMEs produced on ALK
 - Aggressive catabolysis of low MW aromatics 100 – 300 g/mol
 - Preferred H-type lignin, followed by G and S-type
 - PD 630 and \textit{R. jostii} exhibited oleaginous yields, 42.1% and 23.3%, respectively

Le et al. RSC Advances In press (DOI: 10.1039/c6ra28033a)
Lignin Depolymerization and Solubilization by Laccase-Mediator system

Laccase-mediator system has enhanced redox transfer in lignin depolymerization, released >35% of lignin, and enabled >1g/L titer in conversion.

Lignin Depolymerization and Solubilization by Laccase-Mediator system

<table>
<thead>
<tr>
<th>Chemical shift range (ppm)</th>
<th>Assignment</th>
<th>Structure sample</th>
<th>Consistency (mmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Untreated lignin</td>
</tr>
<tr>
<td>150.0 – 145.5</td>
<td>Aliphatic OH</td>
<td></td>
<td>2.57</td>
</tr>
<tr>
<td>144.70 – 142.92</td>
<td>β-5</td>
<td></td>
<td>0.53</td>
</tr>
<tr>
<td>142.92 – 141.70</td>
<td>4-O-5</td>
<td></td>
<td>0.37</td>
</tr>
<tr>
<td>141.70 – 140.20</td>
<td>5-5</td>
<td></td>
<td>0.59</td>
</tr>
<tr>
<td>140.20 – 138.81</td>
<td>Guaiacyl</td>
<td></td>
<td>1.90</td>
</tr>
<tr>
<td>138.18 – 137.30</td>
<td>p-hydroxyphenyl</td>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td>136.60 – 133.60</td>
<td>Carboxylic acid</td>
<td></td>
<td>0.46</td>
</tr>
<tr>
<td>144.7 – 140.0</td>
<td>C5 substituted “condensed”</td>
<td></td>
<td>1.56</td>
</tr>
</tbody>
</table>

Technical Accomplishments – Fermentation Optimization
The nitrogen concentration optimization and cell density optimization has led to lipid yield >10g/L for biorefinery waste conversion. The combination of strain engineering, lignin fractionation, and fermentation optimization allows us to accomplish our technical targets.
Technical Accomplishments

• All major technical milestones were met. We are working on achieving final project target yield in a 2 Liter bioreactor.

• 13.6g/L laccase yield in secretion expression system represents the world record on heterologous secretion protein expression in bacteria.

• >10g/L lipid titer on lignin represents more than 1000 times increase of previous published state-of-the-art on EOL lignin.

• Cell growth increased about 1000 times on Kraft lignin, which is also a significant improvement over the previous reports.

• Biorefinery waste solid load can be between 1 to 5%.

• 15 publications published and more underway.

• Two comprehensive provisional patent profilios filed. The commercialization partners have been identified.
Publication List

8. Shangxian Xie, Xing Qin, Yanbing Cheng, Weichuan Qiao, Su Sun, Scott Sattler, Zhanguo Xin, Susie Y. Dai, Katy Gao, Bin Yang, Xiaoyu Zhang, and Joshua S. Yuan*, Simultaneous conversion of all cell wall components with oleaginous fungi without chemical pretreatment, Green Chemistry, 2015, 17, 1657-1667.
Relevance

• The research provided an effective approach to convert lignin to lipid as biofuel precursor, which well aligns with the MYPP goal to improve biorefinery efficiency and cost effectiveness. In particular, the biorefinery waste stream will improve biorefinery sustainability and reduce the cost of fuel toward $3/GGE, which addresses the need of BETO, the MYPP goals, and the challenges in biofuel industry.

• The technology paved the path for multistream integrated biorefinery to produce multiple products for biomanufacturing.

• The research significantly advanced the current state-of-the-art. The advanced scientific design can be translated for commercialization. The technologies can be integrated with different platforms to produce valuable compounds from lignin.

• The technology has been licensed and will be scaled up for commercialization as solutions for biorefinery.
Future Work

• We are scaling up the lipid production in 2 liter reactors.

• We are finishing the technoeconomic analysis to evaluate the value adding to the biorefinery.

• We are working on the project final validation and report.
Acknowledgement

Project Management:
Jay Fitzgerald Joshua Messner

CoPIs:
Dr. Art Ragauskas Dr. Bin Yang
Dr. Lindsay Eltis Dr. Susie Y. Dai
Aspen Plus model of Lignin to Lipids

Feed Preparation
- Water
- Lignin
- N-source

Seed Production
- Seed
- Purge gas 1

Fermentation
- F102
- SOLVER

Lipid Separation
- Hexane
- Liquid
- Solid
- TAG
- TAG BACK
- Lipid

Aspen Plus model of Lignin to Lipids