

U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer Review

White Dog Labs Incubator II

Second-Generation Mixotrophy for Highest Yield and Least Expensive Biochemical Production

Yielding synthetic biology's promise

Thursday, March 9, 2017 Biochemical Conversion

> Shawn Jones White Dog Labs

This presentation does not contain any proprietary, confidential, or otherwise restricted information

## **Goal Statement**



- The goal for this project is to develop and demonstrate a fermentation process to produce acetone from a cellulosic feedstock at a <u>mass yield at least 130%</u> <u>the previous theoretical maximum</u>.
- The primary outcome will be a continuous acetone fermentation process achieving industrially-relevant metrics at the 3 L-scale.
- This is a **platform technology** that can be adapted to almost any biochemical or biofuel of interest.
- <u>Improving carbon yields</u> from expensive cellulosic sugars can help lower the operating costs of cellulosic-based processes and lead to greater adoption of the technology.

## **Quad Chart Overview**

### Timeline

- September 1, 2016
- September 30, 2018
- 15% complete

### **Budget**

|                                   | Total<br>Costs<br>FY 12 –<br>FY 14 | FY 15<br>Costs | FY 16<br>Costs | Total Planned<br>Funding<br>(FY 17-Project<br>End) |
|-----------------------------------|------------------------------------|----------------|----------------|----------------------------------------------------|
| DOE<br>Funded                     | -                                  | -              | -              | \$1,539,826                                        |
| Project<br>Cost<br>Share<br>(WDL) | -                                  | -              | -              | \$390,000                                          |

### **Barriers**

- Improving carbon yields of biochemicals and biofuels
- Adapting microorganisms and fermentation system to use hydrolysate feedstocks
- Achieving stable, continuous production metrics

#### Partners

- White Dog Labs (WDL) is responsible for all activities
- We are interacting with several cellulosic feedstock providers to use real cellulosic hydrolysates

#### Property of White Dog Labs, Inc

**MixoFerm™** combines conventional fermentation and gas fermentation. Microbes are able to fix CO<sub>2</sub> produced during catabolism of sugar to produce more product and increase Carbon Yields.

## Project Overview



## **Project Overview**



Need to adapt strain and process to use cellulosic hydrolysate

Property of White Dog Labs, Inc

5

## Approach (Management)

- All project activities take place at WDL facilities by WDL employees
- Work locations:
  - Microbiology laboratory activities overseen by PI
  - Fermentation facility activities overseen by CEO
- Short update meetings very Mon, Wed, and Fri with all participating scientists to coordinate tasks and discuss results
- Project review meetings take place once a month (led by PI) to update on progress and discuss any critical issues

# Approach (Technical)

#### Strain Development



#### **Major Challenges**

- Adapting fermentation system to use hydrolysate feedstocks which contain higher solids content.
  Solids could clog cell-retention system → Modify Cleaning In Place (CIP) procedures or perform more frequently
- Adapting strain to grow on hydrolysates. Hydrolysates can contain inhibitory molecules → Adaptively evolve strain to overcome inhibition

### Project outcome: Scale-up ready fermentation process

Fermentation Development

## **Technical Accomplishments**

#### Generate glucose-utilizing strain



### Permanently integrated the best PTS gene into the chromosome

## **Technical Accomplishments**





### Next step is to introduce the acetone pathway into this strain

## **Technical Accomplishments**

#### Adapt fermentation system to use a hydrolysate feedstock



#### Testing different:

- Cell retention membranes
- Cleaning procedures

Working to achieve continuous operation with hydrolysates

### Relevance



### Lower operating costs of cellulosic-based processes by **improving carbon yields** of biochemicals and biofuels

• Addresses a critical issue identified by BETO:

"Develop strategies for **conserving carbon** and hydrogen in conversion and upgrading processes"

- Improving carbon yields can directly lower operating costs and thus costs of final fuels by producing more unit product per unit feedstock.
- This is a *platform technology* to produce a wide array of biofuels and biochemicals using a <u>common</u> <u>chassis microorganism and process</u>. Success will demonstrate a proof-of-concept process to be replicated and adapted to other specific fuel molecules.
- Goal is to demonstrate industrially-relevant production metrics (3 g/L/hr productivity and 40 g/L titer) at the 3 L fermentation-scale.

### Increase efficiency of fermentation processes

### Future Work



Strain Development **Currently underway** Tasks Construct optimized expression cassette for acetone production Generate glucose-utilizing strain ✓ Completed Integrate expression cassette into the chromosome Confirm acetone KPI yield (≥43wt%) on glucose/xylose mix 3. Impart acetone pathway Achieve Yield KPI Go/No-Go on C6/C5 mix **Currently underway** Tasks Adapt to hydrolysate feedstock Test growth on different hydrolysates and determine inhibitory effects Adapt acetone-producing C6/C5 strain to hydrolysates Strain goes to fermentation

### Strain development tasks are on track to be completed on time

### **Future Work**





Demonstrate KPIs in continuous 3L process

Project goal is 6 weeks of continuous acetone production at target KPIs (yield, titer & productivity)





- This project is targeting acetone production from a cellulosic feedstock with a <u>mass yield at least 130%</u> the previous theoretical maximum as a proof-of-concept **platform technology**.
- The goal is to help lower operating costs of cellulosic-based fermentations by improving the carbon yield of products.
- Strain and fermentation development tasks are on-going:
  - Have successfully engineered a glucose-utilizing strain
  - Tasks so far are on schedule (project completion Sept. 2018)



### **Additional Slides**

### Responses to Previous Reviewers' Comments



This is the first time this project is being reviewed, and no Go/No-Go Review meetings have taken place yet.

### Publications, Patents, Presentations, Awards, and Commercialization



No publications, patents, presentations, or awards have resulted from this work yet.

Currently, there are no commercialization efforts for this work.