ENERGY Energy Efficiency & Renewable Energy

EXECUTIVE SUMMITON HYDROPOWER RESEARCHND DEVELOPMENT

Brennan Smith

ORNL

Hydropower Technology R&D at DOE's National Laboratories

May 4, 2017

Panel 4 – Hydropower Technology

Outline

- 1. Hydropower Fleet Intelligence
- 2. Systems and Components for Standard Modular Hydropower
- 3. Enabling Technologies
 - Manufacturing and Materials
 - High Performance Computing
 - Big Data Analytics

Hydropower Fleet Intelligence

Improving and Valuing Flow Measurement

- Short converging intakes represent 10% of domestic capacity
- No code-accepted methods guaranteeing accuracy of flow measurement.
- Flow measurement uses
 - o verifying performance guarantees
 - detecting efficiency degradation
 - o assuring water delivery
 - o assuring multi-unit efficiency

Annual Energy and Revenue Benefits of Increased Accuracy Deployment to Implement Accuracy Improvement

- Data-driven decisions on flow measurement upgrades
- Installed cost targets for new flow measurement technology
 U.S. DEPARTMENT OF Energy Efficiency

Scheduling Analysis and Optimization

Renewable Energy

Water Quality Scheduling and Optimization

Columbia Technical Approach: develop a simplified physics-based mass-transfer model for total dissolved gas uptake and transport, to be implemented in Decision Support Systems (DSS) and forecasting applications

Methods:

- Partition river system into uptake and transport regimes (see figure on top right)
- For uptake region, develop site neutral TDG representative equations based on the main physical processes of TDG production and mixing:
 - Air entrainment during the plunging of spill water in the tailrace
 - Entrainment of powerhouse water into the spillway region (see figure on bottom right)
- For transport region, analyze time lag of TDG plume between reservoirs

Approach Uniqueness:

- The representation of complex river system processes through a simplified mathematical approach enables a straight forward implementation in DSS applications, reducing computational overhead without a decrease in predictive accuracy
- Contrary to conventional TDG management techniques, a hydropower scheduler can now quickly and accurately simulate multiple operational scenarios and optimize realtime and future schedules to minimize TDG levels while still meeting hydropower objectives

Water Quality Scheduling

Uniqueness: Development of the first multiple reservoirs system high fidelity model reduction that can be used in operational scheduling, planning, and decision making by hydropower operators

Decision makers can quickly model various scenarios, obtain accurate outputs, and optimize operations.

Framework

Powertrain Failure Risk Modeling - ORNL

Expert opinion elicitation, failure event data, and operating history are combined to discern reliability and risk for a specific component and unit.

Visualization of Operating Pattern and History

Estimated Risk as Function of Operating Hours and Starts

 Target Product Phasing:
 Estimated Risk as Function of Operation

 Component Failure Model – FY17

 Powertrain Failure Model – FY17-18

 Unit Outage Model – FY18?

 Fleet-Wide Risk Minimization Model - ??

Predictive Maintenance Optimization - PNNL

- Challenge
 - Nationally, 75% of installed hydropower capacity is located at facilities that are 50 years or older
- Solution
 - Predictive Maintenance
 - improve correlation of operations and situational data to current and future states of hydroelectric turbines
 - extend hydropower unit life and increase unit reliability.
- Impact
 - Integrated decision support tool for asset lifetime management that:
 - Utilizes real-time data for monitoring condition of critical FCRPS assets and enables calculation of remaining service life estimates (along with confidence bounds) for monitored assets;
 - Performs integrated risk analyses to predict changes in operational risk based on the monitored condition of assets and enables costbenefit assessment for predictive maintenance scheduling;
 - Provides potential inputs into operational decision making for plant control, by enabling what-if assessments that incorporate real-time component condition and predictive failure probabilities

Figure 1. Generic aging model for equipment, showcasing the differences between reactive and predictive maintenance, and proactive O&M philosophies.

and decision support framework.

Condition Monitoring Technology - ORNL

Patented Electrical Signature Analysis (ESA) developed by ORNL's Measurement Science and Systems Engineering Division

Frequency analysis of helicopter tach generator signals identifies **gear train component** signatures and anomalies

- electric motors and generators act as transducers—no new sensors!
- · current and voltage data collected at a safe, convenient location in field apps
- · device-specific development accelerated by comparative vibration testing
- · Can work with other condition and performance monitoring technology.

Utilize the vast Laboratory resources to address challenges of limited system visibility, managing data proliferation and turning data into actionable information

Sensing and monitoring

Develop low-cost devices that can provide increased visibility to the energy system

Data Management

Ensure data accuracy, integrity, and trustworthiness at appropriate sampling rates based on efficient architecture for rapid authorization, integration, and retrieval

Modeling and Simulation

Developed advanced models (dynamic models) used in understanding implications on the energy delivery system

Data Analytics & Visualization

VERDE system: Providing analysis based on advanced models, data analytics, and high performance computing

Sensor development & big data analysis and visualization

- Developing low cost sensors for the electric system.
 - Near-term: Increase accuracy of synchrophasor technology
 - Longer-term effort: develop low-cost systems for asset monitoring
 - Partnering with industry: National Instruments, Eaton, SmartSense
- Data analytics & visualization: EAGLE-I
 - Near-term: Predictive analytics for forecasting infrastructure and population at risk during extreme weather events
 - Data management & data repository
 - Users are from DOE, DHS, NGA, DOD, and others

A Vision for Hydropower Fleet Intelligence ORNL

Systems and Component Solutions for Standard Modular Hydropower

Energy Efficiency & Renewable Energy

Standard Modular Hydropower (SMH)

hydropower.ornl.gov/smh

ORNL Power Electronics & Electric Machinery Expertise

- 35 staff researchers, 700 sq meters of laboratories
- Designated as a National User Facility, encouraging • collaborative efforts between the PEEMRC, industry, and academia (including proprietary work)
- World-wide reputation is supported by awards, patents, publications, and recognition by professional societies, academia, industry and DOE.
- 100 HP and 400 HP test dynamometers •
- Power quality and utility interconnection research •
- Advanced electric machine technologies ٠
 - Permanent magnet (axial and radial gap)
 - Switched reluctance
 - Induction (novel designs and rotor bar technology)
 - DC machines
 - Superconducting generators
 - Variable speed drives

- Evolving grid needs evolving hydropower systems that can adjust smartly
- Several novel components that include advanced power converters, governor and exciters need to be tested under real world grid and flow conditions
 - Real-time Hardware-In-the-Loop based testing is next best to actual field testing
- Complimentary testing protocols between controls and power hardware is necessary to ensure interoperability and interconnection
- Iterative enhancement leading to modularity of design, operation, and maintenance
 - Truly 'plug-and-play' similar to other renewable technologies
- Frequency, voltage, ride thru settings, market interface of hydropower generators and power converters that are difficult to model and test in field can be assessed

ORNL Sustainable Electricity Testing Capabilities

Conductors	Cables	Distribution	High Voltage
Advanced conductor testing: accelerated aging, remaining life, coatings and auxiliary equipment High-current (5,000A), low- voltage (400V) dc induces thermal testing (300 C) 2400 feet conductors	Cables: up to 50 m Test capabilities up to 80kA; three phase to 4kA DC currents to 25 kA; Tested Inherent HTS fault current limiter: 60kA fault current limited to 32kA in one cycle.	DECC facility provides Smart inverters, distributed systems, microgrid AMI Interoperability test-bed Protection schemes for renewable integration Intelligent buildings EV, PHEV and energy storage	Electrical insulation High voltage: 500-kV impulse generator Partial discharge analysis Ultra-high-speed streak/framing camera Gas chromatography mass spectrometers
	NVA pulse transformers for fault-current limit testing		Copper sphere gaps Pulse shaping resistors

is fed directly to two 5.1 MVA transformers for fault

current testing of electrical arid devices

800 kV voltag

ORNL Grid Testing Capabilities

Ground-Level Integrated Diverse Energy Storage (GLIDES) System

An ORNL innovative technology solution for the Urban EWN

Objective: Develop a unique, low-cost, high round trip efficiency storage technology for a) small scale building applications b) large scale modular pump hydro storage.

Key advantages			
Simple, low cost (expected to be at lower cost than batteries)	Dispatchable		
Accepts heat and electricity as inputs	Scalable		
Round-trip efficiency>70%	Quick or slow charge/discharge time		
ORNL INVENTION: Ayyoub. M. Momen, O. Abdelaziz, K. R. Gluese Hydro Electricity Storage," Invention Disclosure 201303175, DOE S-	nkamp, and E. A. Vineyard, "High-Efficiency Ground-Level Pumped- 124,766. ORNL POC: Ayyoub Momen y Efficiency		

wable Energy

Supporting Technologies and Science

Advanced Materials Applications - PNNL

- Challenge
 - There are high direct costs associated with repair and replacement of cavitation damaged turbine blades.
- Solution
 - Cold Spray
 - A method that works by shooting metal particles at very high speeds into the damaged area.
 - The impact energy created by these high speeds produces a solidstate weld between the particle and the turbine surface.
 - Melting and material degradation common in current welding repair techniques does not occur and hydropower turbine blades are left in their original shape.
 - Cold spray repair is capable of depositing materials with hardness and wear resistance that match or exceed that of the turbine base metal—meaning cold spray repairs should produce superior performance in repaired turbines.
 - Friction Stir Processing
 - Similar to Cold Spray, these are other low energy processes that can be used to join, repair or improve the performance of hydropower components by avoiding the melt phase and creating refined microstructures.
 - Creates novel compounds that can be stronger and longer-lasting than the base metal giving components new life or making new components cheaper by only requiring high performance materials at stress and wear points.
- Impact
 - Materials science applications such as Cold Spray, may reduce the cost of deploying new hydropower or extend the lifespan of existing hydropower projects.

Francis turbine: cavitation damage and old repairs with stainless steel welding.

Superhydrophobic Coatings Technology - ORNL

SEM image of cones (looking at ~45 degrees)

- Nano-textured amorphous silica (sand)
- Very high contact angle (160° to 175°)

Uncoated Reference Sample (with Barnacles)

Modified SH Coating

Anti-biofouling

Coated Cables

Anti-icing coatings on power lines, and insulators

http://www.ornl.gov/adm/partnerships/tech/superhyd rophobic/docs/ABCs_of_Superhydrophobic.pdf

Science to Application

Carbon Fiber Technology Facility

Focused on demonstrating the scalability of low-cost carbon fiber

- 42,000 ft² facility, equipped using \$34.7M in DOE funding
 - November 2011: Facility occupancy
 - October 2012: Installation complete
 - Q4 2012: Start-up testing/commissioning
 - Q1 2013: First fibers off the line (using "standard" PAN precursor material)
- Production capacity: 25 tons/year of fiber from multiple precursors in various forms
- Leverages and promotes industry partnerships
- Links bioscience to engineering science

DOE Manufacturing Demonstration Facility at ORNL

Big Area Additive Manufacturing (BAAM) An Example of ORNL Ca

- Large build volume
- Currently 8 x 8 x 8 ft
- Expanding to 20 x 10 x 10 ft
- Pellet to part manufacturing
- 10-20 lbs per hour throughput
- Amorphous & semi-crystalline materials

- The Shelby was printed at the DOE-Manufacturing Demonstration Facility at ORNL using a 20% carbon fiber reinforced ABS material and has a Class A Surface finish.
- The design allows integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions

