U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer Review Fermentative Production of Tricarboxylic Acid Cycle-Derived Chemicals Using Cellulosic Glucose

> March 9th, 2017 Biochemical Conversion

Principal Investigator: Jeffrey Dietrich Lygos, Inc.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Introduction to Lygos

Engineering yeast to convert sugar into high-value chemicals

- Founded 2010
- 25 Employees

- Bioenergy Technologies Incubator I: malonic acid (scaling in 2017)
- Bioenergy Technologies Incubator II: new organic acid product

Lygos produces bio-advantaged chemicals

Goal Statement

Anticipated Outcomes

- Demonstration of an integrated process from cellulosic glucose to a purified organic acid product*
- Proceeding along a path toward cost-advantaged economics based on improved fermentation yield, titer, and productivity

Relevance to Department of Energy and BETO goals

- Reduce dependence on foreign oil and manufacturing
 - New technology to existing chemicals that can be costcompetitively produced in the U.S. from domestic biomass
- Develop biochemical processes that support and improve integrated biorefinery economics
 - Target products where biochemistry can outcompete incumbent petrochemical producers on price and quality
 - TCA cycle enables access to chemicals where is CO₂ sequestered, providing a boost to process economics

*Confidential prior to patent publication

Quad Chart

Timeline

Timeline					Barriers
 Start Date: October 1st, 2016 End Date: September 30th, 2018 % Completion: 17% 					 Demonstration of novel, high-yielding metabolic pathway (Ct-H) Improving fermentation performance (e.g., yield, titer, productivity; Ct-H) Integrated process development, sugar through purified chemical (Ct-J)
<u>Budget</u>					Partners
	Total Costs FY 12 – FY 14	FY 15 Costs	FY 16 Costs	Total Planned Funding (FY 17-Project End Date)	 Commercial cellulosic sugar provider (confidential; no cost-share)
DOE Funded	\$0	\$0	\$52,800	\$1,314,800	
Project	\$0	\$0	\$13,200	\$328,700	

Project Overview: Integrated Biorefinery Vision

Biochemicals can improve integrated biorefinery economics

Conversion of C6 sugars to higher-value chemicals (incorporate C5 longer-term) Use of CO₂ waste stream as additional carbon source (long-term goal)

Project Overview: Targeting TCA Cycle-Derived Chemicals

Project Overview: Targeting TCA Cycle-Derived Chemicals

Project Overview: Strain choice

Engineering crabtree-negative yeast, Pichia kudriavzevii

- Wild type host is acid, temperature, salt, and solvent tolerant
- Wild type host is resistant to common cellulosic hydrolysate inhibitors
- Strain engineering tools and fermentation methods developed at Lygos
- Lygos strain evolved for a higher glucose consumption rate

Management Approach

- Management approach and structure
 - PI manages over-arching project direction and reporting
 - Guides Directors on process integration, technical hurdles, and technoeconomics
 - Monthly, scheduled technical updates provided to DOE management
 - Quarterly technical and financial reports submitted to DOE
 - Directors manage Departmental specific aims
 - Manage day-to-day completion of technical work in the laboratory
 - Participate in contingency planning as unanticipated technical challenges are encountered
- Quantitative milestones driven by techno-economic analysis and address prioritized technical risks
- All strain and fermentation performance data is managed in LIMS database

Technical Approach: Year 1 Task Structure

- Decrease native byproduct formation (based on fermentation conditions)
- Demonstrate non-native enzyme activities
- Proof-of-concept pathway demonstration

Note: metabolic pathways are outlined to be illustrative only

Technical Accomplishments/Progress/Results

- Identification of genes associated with *P. kudriavzevii* overflow metabolism under planned commercial fermentation conditions
 - Sequence homology used to identify candidate genes in *P. kudriavzevii* genome (e.g., pyruvate decarboxylase, dehydrogenase)
 - Demonstrated absence of byproduct formation following gene knockout
- Identification of native transcription factors responsive to planned commercial fermentation conditions
 - RT-qPCR to assay specific genes and their cognate promoters
 - RNAseq to identify additional, unpredicted promoters
- Demonstration of novel pathway enzyme activity
 - Development of complementation assay for enzyme screening
 - Screened enzyme library, demonstrating desired enzyme activity in multiple hits

By the completion of this BETO project, demonstration of process commercial viability is anticipated

Relevance to BETO

- Demonstration of process from cellulosic glucose to higher-value chemicals, improving integrated biorefinery economics
- TCA cycle-derived chemicals sequester CO₂, providing a route to valorize waste CO₂ streams

Integrated process development

- Target products where biochemistry can outcompete incumbent petrochemical producers on price and quality
- TCA cycle enables access to chemicals where is CO₂ sequestered during production

Future Work: Year 1 Tasks and Objectives

- Objective #1: Regulatory network/genome engineering to reduce byproduct formation under envisioned, industrial fermentation conditions
- Objective #2: Demonstration of non-native pathway enzymes
- Objective #3: Product transporter screening and characterization

Future Work: Year 1 Go/No-Go Decision

Year 1 Go/No-Go Decision: demonstration of prototype strain performance using cellulosic glucose as fermentation feedstock

All enzymes critical for energy efficient biosynthesis will be incorporated

Fermentation metrics (e.g., yield and rate) to inform Year 2 optimization

Future Work: Year 2

Year 2: Process optimization, integration, and scaleup

- Cellulosic glucose (one supplier) used throughout the Year 2 workplan
- Progressive fermentation milestones on yield, titer, productivity; goals are driven by techno-economic model
- Purification milestones (yield) using integrated process materials (i.e., cellulosic glucose through purified chemical)
- Final validation based on integrated process scaleup (10X scaleup)

0.5 Liter Reactors

2-15 Liter Reactors

10x

0.5 mL

Future Work: End of Project Goals

- Strain and metabolic pathway that are de-risked
 - No "discoveries" remaining
 - Anticipate incremental optimization/improvements will still be required
- Fermentation process with metrics (yield, titer, and productivity) that warrant start of pilot plant scaleup (<u>tech transfer ready</u>)
- Purification process with metrics (e.g., yield and purity) where all unit operations have been technically de-risked

0.5 Liter Reactors

2-15 Liter Reactors

10x

0.5 mL

Summary

- Overview: Engineering acid-tolerant yeast to consume cellulosic glucose and produce a TCA cycle-derived organic acid. Developing an integrated process from feedstock to purified chemical.
- Approach: Prototype strain demonstration in Year 1, transitioning to process optimization and integration in Year 2. Final validation based on process scaleup.

Technical Accomplishments:

- Identified necessary byproduct genes and necessary regulatory components
- Demonstrated new enzyme activity needed for product biosynthesis

Relevance

- Ct-H: efficient catalytic upgrading of sugars to chemicals
- Ct-J: process integration

Future Work

- Construction of prototype, engineered strain
- Milestones driven by estimated, scaled cost of goods sold (COGS)

Additional Slides

Not applicable – new project

Publications, Patents, Presentations, Awards, and Commercialization

 Patents: International patent application PCT/US16/6158 was filed during the project performance period and contains work performed under this award.

