

10 Years On the Road to Awesome!

2017 LanzaTech. All rights reserved.

Tech

LanzaTech LanzaT

U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer Review

Bioenergy Technologies Incubator 2: Development of a Sustainable Green Chemistry Platform for Production of Acetone and downstream drop-in fuel and commodity products directly from Biomass Syngas via a Novel Energy Conserving Route in Engineered Acetogenic Bacteria

> March 9, 2017 Biochemical Conversion

> > Dr. Sean Simpson LanzaTech, Inc.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

2017 LanzaTech. All rights reserved.

Goal Statement

Project Goal:

To develop and scale up a novel technology platform for direct conversion of biomass syngas to acetone, which can be converted into a range of fuels and commodities via existing downstream technologies

Key Project Outcomes:

- Demonstration of novel process for acetone production from biomass syngas at commercially relevant rates in a continuous process and scalable pilot reactor
- Optimization of natural and synthetic pathway for acetone production
- Validation of commercial potential through TEA and LCA

Relevance to Bioenergy Industry/Impact:

- Offers a new stand-alone route to advanced hydrocarbon fuels and bioproducts from biomass residues
- Provides environmentally friendly alternative to current petrochemical acetone production
- Produces a platform chemical that can be readily converted into a range of drop-in fuels (isooctane and jet fuel) or important chemical building blocks (isobutylene, propylene, bisphenol A and PMMA)
- Increases yields over ABE fermentation through a novel pathway that is acetate independent and energy generating

Quad Chart Overview

Timeline

- Project start date: Oct 1, 2016
- Project end date: Sep 30, 2018
- Percent complete: ~16% (month 4 of 24 as of end of Jan 2017)

Budget

	FY16 Costs (Oct-Dec 2016)	FY17 Project End Date (Jan 2017- Sep 2018)	Total Project
Total Project Costs	\$977,523	\$913,557	\$1,891,080
DOE Funded	\$752,523	\$688,557	\$1,441,080
Project Cost Share	\$225,000 (23%)	\$225,000 (25%)	\$450,000 (24%)

Barriers

- Ct-A: Feedstock Variability
- Ct-H: Efficient catalytic Upgrading of gaseous intermediates to fuels and chemicals
- Ft-I: Overall integration and Scale-Up
- Im-E: Cost of production
- St-E: Best practices and systems for sustainable bioenergy production

Partners

Split in total project funding

- 51% to LanzaTech
- 49% to Oak Ridge National Lab

Sequencing input from JGI (Funded separately)

4

1 – Project Overview

The LanzaTech Process

- Direct process from biomass syngas to acetone
 - Reduce GHG emission
 - Does not compete with food resources, land and water
 - Sustainable
- Current industrial acetone production is the by-product of petrochemical phenol production
 - Promote GHG emission
 - Produce chemical wastes (one mole waste produced per mole of product) and environment pollutants

Acetone as the platform molecule for hydrocarbon fuels and bio-products

Product	Use	Market (\$US Billion)
Jet-fuel	Drop-in jet fuel for aviation industry	228
Isobutylene	Fuel additives, synthetic rubber	25-29
Isooctane	Drop-in fuel for standard gasoline cars	0.6 (only US market)
Isopropanol	Solvent	2.5-3.5
Propylene	Polymer and solvent	125
Bisphenol A (BPA)	Polymer or epoxy resins	10
Polymethyl methacrylate (PMMA)	Polymer (Plexiglas)	7

Acetone as the by-product of the petrochemical phenol production process

 $\begin{array}{c} C_6H_6+C_3H_6+O_2\rightarrow C_3H_6O+C_6H_6O\\ \textbf{Acetone Phenol} \end{array}$

Acetone demand expected to increase Production cost of acetone is increasing due to

- Expected decline of phenol demand
- No commercially viable solution for acetone production

LanzaTech process for acetone production is providing an environmentally sustainable solution to current process.

The LanzaTech Approach

Optimizing native pathway by mining for improved enzymes

Very limited variety of acetone pathway enzymes in public databases

- Only very few native acetone producing species (**<5**) are known
- These are mainly ABE fermenting Clostridia, where acetone is a byproduct
- The few sequenced strains (**<10**) only produce very little acetone and offer little diversity of acetone pathway genes

Expanding the space by mining the world's largest collection of ABE fermentation strains

- LanzaTech owns the largest collection of industrial ABE fermentation strains - The David Jones collection
- Collection comprises of >400 strains spanning over 4 decades of industrial production, including some strains that make substantial higher amounts of acetone
- Collection is currently sequenced by JGI and will be mined as part of this project to identify better variants of acetone pathway enzymes (thiolases, CoA transferases, acetoacetate decarboxylases, Ptb-Buk). This will also include phenotypegenotype modelling
- This analysis will also provide important insight about what genes/enzymes were critical for process optimization over time

Strains from collection were used in 12 x 90,000 liter production facility in South Africa

Strains spanning >4 decades of development and date back to the 1940s have been purified from soil and spore stocks and are currently sequenced at JGI

2 – Approach (Management)

Team Management

Meeting	Frequency	Location				
LanzaTech internal	Weekly	LanzaTech				
Full project team (phone)	Semi-monthly	Respective offices				
Task Leads (in-person)	Semi-annually*	Alternating locations				
Individual team members (phone)	As needed	Respective offices				
*November 2016: Project kick-off meeting held at LanzaTech						

- LanzaTech and ORNL have been working in collaboration since 2011. They have developed successful mechanisms for technical coordination, data sharing and integration.
- LanzaTech will be responsible to DOE for all technical and financial reporting and securing and filing of IP

Project Team

3 – Approach (Technical)

Approach

Approach

LanzaTech's Genome Scale Model

Model is based on our internal Clostridium autoethanogenum metabolic knowledgebase

- List of metabolic reactions, enzymes and associated genes in *C. auto*
- Curated with enzyme data (cofactor specificities), etc
- Consists of >1000 reactions and metabolites
- Links *C. autoethanogenum* genotype to phenotype. Very predictive of gas fermentation across the full spectrum of gas mixes.
 - Validated against >250 fermentation runs and >100 KO strains

Work complete

Modelling used to identify optimal combination of gene knockouts to maximize flux to acetone through novel pathway

Experimental data

Genome Editing Tools

On-going work

Modelling output used to guide genome editing effort to produce an optimized microbial chassis for acetone production

<u>999</u>

Elimination of Competing pathways

Milestone

A Microbial chassis with three competing pathways deleted by the end of March 2017

Pathway optimization-Combinatorial Analysis

Future work

In-house combinatorial gene assembly capability are used to identify optimal synthetic parts combination for novel acetone pathway.

Optimal microbial chassis combined with acetone pathway configuration output.

State-of-the-art gas fermentation facilities

- Total gas composition flexibility
- Online analytics and control for all reactors (gas, biomass, metabolites)
- Multiple reactor configurations

Over 40 dedicated gas fermentation reactors

Future work

Stability, selectivity, and productivity of optimized microbial chassis containing novel acetone production pathway characterized in multiple, parallel gas fermentation operations using start-of-art facilities.

Identification of bottlenecks through omic studies

Triple Quadropole LC/MS/MS

4 fermenters in parallel

Metabolites

Biomass

RNAseq

Metabolomics

Proteomics

- Biological triplicates and a backup
- Continuous CSTR fermentation

Measurements

Samples

National Laboratory

Detailed multi-omic studies used to precisely identify bottlenecks to carbon flux in syngas to acetone pathway. This will create a prioritized work flow of chassis engineering activity.

Future work

22

3 – Technical Accomplishments / Progress / Results / Milestones

Milestones

- M1.1: Prioritized list of KO targets that are predicted to increase acetone yield provided
- M1.2: Chassis strain with at least 3 KOs predicted by GEM constructed
- Go/No-Go: Acetone production at 50% commercial rate and 35% commercial titer for 7 days stable production in continuous lab-scale fermentation
- M2.0: ABE genes from >300 strains sequenced by JGI identified and sequence aligned
- M3.2: Ptb-Buk pair with 50% greater selectivity compared to current acetoacetyl-CoA vs. acetyl-CoA
- M3.3: Acetone production data from >50 combinatorial strains using genes identified in the David Jones collection
- M4.1a: Omics profiles for the three best performing strains from Task 3
- M4.1b: Stable acetone production at commercial viable rate and titer for 7 days in fermentation
- M4.2: Stable acetone production at commercial viable rate and titer for 4 days stable production in scalable reactor

Genome scale model prediction

- About 30 million unique strain variants were modeled using an algorithm.
- Modeling confirmed that the synthetic pathway will produce higher acetone yield at a better growth rate.

Early Results: Knock-out secondary alcohol dehydrogenase leads to acetone production

Early Results: Primary:secondary alcohol dehydrogenase identified

Identified a novel NADPH dependent primary:secondary alcohol dehydrogenase in
Clostridium autoethanogenum

		K _{cat} [sec ⁻¹]	K _M [mM]	K _{cat} /K _M [sec⁻¹ mM⁻¹]
Primary Adh	0			
Acetaldehyde to Ethanol	\rightarrow \rightarrow \rightarrow \rightarrow	93 ± 6	5.5 ± 1.4	1.7 x 10 ⁴
Secondary Adh	он Д			
Acetone to Isopropanol	\rightarrow $_{OH}$	51.4 ± 0.8	0.60 ± 0.02	8.6 x 10 ⁴
Acetoin to 2,3-Butanediol	$\downarrow \rightarrow \checkmark$	41.8 ± 0.7	5.7 ± 1.4	7.4 x 10 ³
	о́н ОН	Köpke et al., Appl Environ Microbiol 80: 3394-403 (2014)		

到到到

4 – Relevance

Project Goal:

Develop and scale up a sustainable alternative to current acetone production routes, with an improved safety and environmental footprint, enabling cost-competitive production of acetone as a fuel intermediate or co-product.

Relevance to BETO Mission:

- The process contributes to the Conversion R&D goal of commercially viable technology to convert biomass to finished liquid transportation fuels via a biological route
- Coproduction of acetone and hydrocarbon fuels will enable production of biofuels at or below BETO's target of \$3/gge target.with > 50% GHG reductions

Industry Relevance:

- The acetone market value is heavily dependent on crude oil prices (~\$3B in 2015, ~\$6B in 2014). Production of acetone from biomass and residues will reduce price volatility.
- This project offers a sustainable, cost-effective alternative to meet the needs of end users in the chemical and consumer products industries seeking to "green" their supply chains.

5 – Future Work

• Highlighted in Slides 18-20:

- In-house combinatorial gene assembly capability are used to identify optimal synthetic parts combination for novel acetone pathway.
- Optimal microbial chassis combined with acetone pathway configuration output.
- Stability, selectivity, and productivity of optimized microbial chassis containing novel acetone production pathway characterized in multiple, parallel gas fermentation operations using start-of-art facilities.
- Detailed multi-omic studies used to precisely identify bottlenecks to carbon flux in syngas to acetone pathway. This will create a prioritized work flow of chassis engineering activity.
- By month 12: Demonstration of fermentation stability for acetone production for 7 days at 50% commercial rate, 35% of commercial titer.
- By month 15: Combinatorial library strains constructed with at least 50 variant genes identified in the David Jones collection.

Summary

- <u>Overview</u>: Project to develop a novel microbial process for the production of acetone directly from biomass syngas at high yields and efficiencies.
- <u>Approach</u>: Introduce a novel, biosynthetic pathway for acetone production into a proven gas fermentation microbial chassis and eliminate side product formation. Use Model and system biology-guided fermentation process optimization. Demonstrate production of acetone at commercially relevant rates and yields from biomass syngas in a scalable system.
- <u>Technical Accomplishments/Progress/Results</u>: Modelling complete and initial gene knock out targets defined. Initial knock out strain successfully generated.
- <u>Relevance</u>: Acetone is a high value chemical with a growing market demand, the developed process would provide a cost competitive route to the production of this product from sustainable resources and will enable low-cost biofuels at or below DOE's \$3/gge target.
- Future work:
 - By month 12: Demonstration of fermentation stability for acetone production for 7 days at 50% commercial rate, 35% of commercial titer.
 - By month 15: Combinatorial library strains constructed with at least 50 variant genes identified in the David Jones collection.

