WBS 2.3.1.200 - Biomass conversion to Acrylonitrile monomer-precursor for the production of carbon fibers

March 8, 2017
Biochemical conversion

PI: Amit Goyal
Southern Research

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Goal Statement

- **Goal**: Develop a novel, commercially viable, cost effective thermochemical process that enables utilization of an alternative feedstock - non-food sugars for the production of acrylonitrile (ACN) – an essential precursor for high performance carbon fiber.

- Laboratory (phase I, ongoing) and bench (phase II, future) scale demonstration.

- Supports DOE BETO’s strategic goals aimed for conversion R&D and BETO’s modeled $1/lb cost goals for Bio-ACN production to reduce carbon fiber manufacturing cost to $5/lb by 2020.

ACN production from different routes

Graph

- **Cost ($/lb ACN)**
- **GHG (kg/lb ACN)**

- Options:
 - **C₃H₆/C₃H₅** (Commercial)
 - Purified Glycerol
 - Biodiesel
 - Sugars (proposed)
Quad Chart Overview

- **Timeline**
 - Project start date: Feb 1\(^{st}\) 2015
 - Project end date: March 30\(^{th}\) 2017
 - Percent complete: 95%

- **Partners**
 - Southern Research (70%), Cytec-Solvay (25%), NJIT (5%)
 - Arbiom, Renmatix and NCSU – Sugar suppliers

- **Barriers**
 - Ct-A. Feedstock Variability
 - Ct-H. Efficient Catalytic Upgrading of sugars/aromatics, Gaseous and Bio-Oil Intermediates to Fuels and Chemicals

Budget

<table>
<thead>
<tr>
<th></th>
<th>Total Costs FY 12-14</th>
<th>FY 15 Costs</th>
<th>FY 16 Costs</th>
<th>Total Planned Funding (FY17 – Project End Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Funded</td>
<td>$333,333</td>
<td>$862,130</td>
<td></td>
<td>$593,108</td>
</tr>
<tr>
<td>Project total cost share</td>
<td>$94,593</td>
<td>$173,806</td>
<td></td>
<td>$233,731</td>
</tr>
<tr>
<td>Southern Research</td>
<td>$93,238</td>
<td>$149,849</td>
<td></td>
<td>$186,523</td>
</tr>
<tr>
<td>Cytec-Solvay</td>
<td>$0</td>
<td>$23,512</td>
<td></td>
<td>$34,806</td>
</tr>
<tr>
<td>NJIT</td>
<td>$1,355</td>
<td>$445</td>
<td></td>
<td>$12,402</td>
</tr>
</tbody>
</table>
Context

- Carbon fiber – *strength of steel, weight of plastic*.

- Widespread use of carbon fiber restricted due to high cost of production.

- Production of carbon fiber precursor chemicals e.g., ACN is a potentially viable area to reduce the cost of making carbon fibers.

- DOE estimates carbon fiber production cost needs to be at $5/lb equivalent to $1/lb cost of the precursor.

- ACN production from non-petroleum feedstock is limited to purified glycerol available at high cost\(^1\).

- Petroleum based processes are affected by volatile propylene price and shortage most recently due to preference for low cost ethane.

Project Overview (contd)

Project goals/objective:

- Multistep catalytic (R1-R3) ACN production at <$1/lb.
- Development of 2 novel (R1 & R2) and 1 known (R3) catalysts to meet target.
- Process intensification via novel one step sugar to Glycerol and PG conversion.
- Use of known technologies to separate undesirables, main and co-products.

Schematic of the proposed sugar to ACN process

R1 = Hydrocracking, R2 = Dehydration, R3 = Ammoxidation
S-1 to S-3 = Separation trains, PG = Propylene glycol
Activity (Phase I-Ends March 30, 2017)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Task owner</th>
<th>Task</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: Micro Reactor set up</td>
<td>SR</td>
<td>10, 20</td>
<td>Setup completed</td>
</tr>
<tr>
<td>Task 2: Catalyst development and testing</td>
<td>SR</td>
<td>10</td>
<td>At least 2 novel candidates for each of R1 and R2. R3 lit. catalyst.</td>
</tr>
<tr>
<td>Task 2.1 Develop R1 catalyst</td>
<td>SR</td>
<td>10</td>
<td>R1: S(glycerol+PG) >65%, >50g/l/hr</td>
</tr>
<tr>
<td>Task 2.2 Parametric study for R1</td>
<td>SR</td>
<td>10</td>
<td>R2: S(acrolein) > 70%, >375g/l/hr,</td>
</tr>
<tr>
<td>Task 2.3 Develop R2 catalyst</td>
<td>SR</td>
<td>10</td>
<td>R3: S(ACN) > 70%, >75 g/l/hr</td>
</tr>
<tr>
<td>Task 2.4 Parametric study for R2</td>
<td>SR</td>
<td>10</td>
<td>Catalyst life >40h for each catalyst</td>
</tr>
<tr>
<td>Task 2.5 Optimize ACN production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.6 Measure catalyst stability and regeneration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3: Catalyst characterization</td>
<td>NJIT, SR</td>
<td>10</td>
<td>Completed (fresh and used catalyst)</td>
</tr>
<tr>
<td>Task 4: Bio-ACN validation</td>
<td>Cytec-Solvay</td>
<td>10</td>
<td>Model impure ACN validated. 3 product samples tested.</td>
</tr>
<tr>
<td>Task 5: TEA/LCA</td>
<td>SR</td>
<td>10</td>
<td>Preliminary TEA completed with lab scale data. Cost <$1/lb</td>
</tr>
<tr>
<td>Task 6: Project Management and Reporting</td>
<td>SR</td>
<td>10</td>
<td>Deliverables to DOE-EERE</td>
</tr>
</tbody>
</table>

Data transfer
Material transfer
<table>
<thead>
<tr>
<th>Activity (Phase II- Future)</th>
<th>Task owner</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 7: Bench scale unit</td>
<td>SR</td>
<td></td>
<td></td>
<td></td>
<td>Complete design specs and transfer to EPC. Commission units and complete preliminary readiness test</td>
</tr>
<tr>
<td>Task 7.1 Optimal safety and storage conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 7.2 Separation methods design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 7.3 Commissioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 8: Continuous operation</td>
<td>SR</td>
<td></td>
<td></td>
<td></td>
<td>500hrs of operation. 500kgs of ACN.</td>
</tr>
<tr>
<td>Task 9: Periodic ACN validation</td>
<td>NJIT,SR</td>
<td></td>
<td></td>
<td></td>
<td>ACN validation every 40hr.</td>
</tr>
<tr>
<td>Task 10: Characterization</td>
<td>Cytec-Solvay</td>
<td></td>
<td></td>
<td></td>
<td>To determine regeneration, if required.</td>
</tr>
<tr>
<td>Task 11: TEA/LCA</td>
<td>SR</td>
<td></td>
<td></td>
<td></td>
<td><$1/lb cost, <35% GHG emission</td>
</tr>
<tr>
<td>Task 12: Project Management and Reporting</td>
<td>SR</td>
<td></td>
<td></td>
<td></td>
<td>Deliverables to DOE-EERE</td>
</tr>
</tbody>
</table>

Dr. Amit Goyal (PI)
Dr. Santosh Gangwal (Co-PI)
Dr. Jadid Samad (Engineer)
Lindsey Chatterton (Chemist)
Zora Govedarica (Chemist)

Dr. Zafar Iqbal
Dr. El Mostafa Benchafia

Dr. Longgui Tang
Mr. Billy Harmon
2 - Approach (Technical)

R1: Hydrocracking (Task 2,3)
- Catalyst design/synthesis
- Characterization (NJIT)
- Reaction evaluation
 - Model C₅/C₆ sugar
 - Sugar with impurities
- Catalyst screening
 - Performance metrics
- Parametric study
 - T, P, impurity
- TEA

R2: Dehydration (Task 2,3)
- Catalyst design/synthesis
- Characterization (NJIT)
- Reaction evaluation
 - Glycerol, PG
- Catalyst screening
 - Performance metrics
- Parametric study
 - O₂
 - TEA

R3: Ammoxidation (Task 2,3)
- Literature catalyst
- Characterization (NJIT)
- Reaction evaluation
 - Acrolein (AC)
- Catalyst screening
 - Performance metrics
- Parametric study
 - O₂, NH₃, AC conc. %
- 50g ACN
- TEA

ACN validation (Task 4)
- ACN baseline with impurity (Cytec)
- Product ACN (Cytec)

Phase II: Bench scale (Future)
- 500 kg ACN
- Continuous operation
- Final TEA/LCA

Reactor setup (Task 1)
- gm scale
- Meaningful scale-up
- Analytical procedure
Progress/target metrics:

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Productivity (g/l/hr)</th>
<th>Desired product</th>
<th>Yield (%)</th>
<th>Catalyst life (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>>50</td>
<td>Glycerol + PG</td>
<td>>65</td>
<td>>40</td>
</tr>
<tr>
<td>R2</td>
<td>>375</td>
<td>Acrolein</td>
<td>>70</td>
<td>>40</td>
</tr>
<tr>
<td>R3</td>
<td>>75</td>
<td>ACN</td>
<td>>70</td>
<td>>40</td>
</tr>
</tbody>
</table>

Challenges:
- Final product specification at different sugar impurity levels.
- Catalyst deactivation.
- Extent of separation required prior to each reaction step.

Critical success factors (Go/No Go decision points):
- Cost of production <$1/lb.
- 1kg of recoverable product per 3.34 kg non-food sugar (~30% mass recovery).
- Validity of purified Bio-ACN as a carbon fiber ready monomer.
3- Technical accomplishments/progress/results

- **Task 2: Catalyst development & testing**
 - **Catalyst development:** At least two novel catalysts for each of R1 and R2 developed that fully meet performance target for sugar to polyols and Glycerol to acrolein.
 - **Catalyst testing:**
 - Single step with mild operating conditions (T,P) used. (R1)
 - Model and commercial (with impurities) sugar feeds from two different vendors tested. (R1)
 - Product specification tested with varying degrees of feed impurities. (R1)
 - Glycerol and PG to acrolein conversion tested on same catalysts. (R2)
 - Alternative pathway proposed using PG as co-product. (R2)
 - Catalyst lifetime verified and regeneration method established with long term testing. (R1-R3)

- **Task 4: ACN validation**
 - Optimized performance and product validation completed.

- **Task 5: TEA/ LCA**
 - Preliminary cost analysis and separation simulation conducted.
 - Cost distribution and sensitivity analysis with respect to raw material price reveals extent of risk
3 - Technical Accomplishments/Progress/Results

R1: Hydrocracking

H₂, -xH₂O
P = 600-750 PSIG
170-240°C
(novel transition mixed metal catalyst)

sugar → Glycerol + Propylene Glycol (PG) + Ethylene Glycol (EG)
Products: Glycerol+PG (~1:1) and EG(<5%).

High selectivity at different feed types and C5/C6 ratios.

Sugar type

<table>
<thead>
<tr>
<th>Sugar type</th>
<th>Conv. (%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model feed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose (G)</td>
<td>100</td>
<td>81</td>
</tr>
<tr>
<td>Xylose (X)</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>G 25%-X 75%</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>G 50%-X 50%</td>
<td>100</td>
<td>83</td>
</tr>
<tr>
<td>G 75%-X 25%</td>
<td>100</td>
<td>81</td>
</tr>
<tr>
<td>Impure feed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrolyzate</td>
<td>100</td>
<td>76</td>
</tr>
<tr>
<td>Bagasse</td>
<td>100</td>
<td>76</td>
</tr>
<tr>
<td>Pure Hydrolyzate</td>
<td>100</td>
<td>79</td>
</tr>
</tbody>
</table>

Catalyst stable at high temperature in aqueous phase

Catalyst life: > 100hr

Low H₂ requirement (~0.04-0.05kg H₂/kg sugar); Productivity – 50 g/l/hr
Effect of sugar impurities:

- Catalytic runs using sugars from commercial vendors.
- Different levels of metallic as well as organic impurities.
- High levels of impurity negatively affected catalyst activity and more importantly, final product specification (Purification necessary).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Method 1</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrolysis method</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar type</td>
<td>Oligomer</td>
<td>Oligomer</td>
<td>Monomer</td>
<td>Monomer</td>
</tr>
<tr>
<td>Metal/ion impurities [mg/kg]</td>
<td>4532</td>
<td>84</td>
<td>2270</td>
<td>129</td>
</tr>
<tr>
<td>Organic impurities [g/kg]</td>
<td>23</td>
<td>28</td>
<td>10</td>
<td>82</td>
</tr>
<tr>
<td>pH</td>
<td>3.3</td>
<td>2.9</td>
<td>higher</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Hydrocracking Results: Hydrolyzate conversion to polyols

<table>
<thead>
<tr>
<th></th>
<th>Hydrolyzate Conv. [%]</th>
<th>Overall selectivity [%]</th>
<th>Performance stability</th>
<th>Meets product specs?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>47</td>
<td>79</td>
<td>44 hrs</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>85</td>
<td>> 48 hrs</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>70</td>
<td>> 32 hrs</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>81</td>
<td>> 120 hrs</td>
<td>Yes</td>
</tr>
</tbody>
</table>
3 – Technical Accomplishments/Progress/Results

R2: Dehydration

Glycerol (B.P. 290°C)

Propylene glycol (PG) (B.P. 188.2°C)

Acrolein (B.P. 52.6°C)

Mixed metal oxide

-S2H2O

-H2O, -H2
Feed: Glycerol

- Conversion = 100%.
- Catalyst life up to 51 hrs.
- Selectivity improves with B/L ratio.
- Productivity > 350 g/l/hr.
- Performance meets target.
- Acetol (hydroxyacetone) main by-product.

Feed: Propylene Glycol (PG)

- Conversion = 100%, decreases with time (short catalyst life)
- Performance does not meet target.
- Propanal main by-product.
Moving forward with PG: Alternative Approach

- Poor acrolein yield from PG (42% max).
- Higher selectivity (>50%) to propionaldehyde – complex separation from acrolein due to similar boiling points (49°C vs. 52.6°C for acrolein).
- An alternative approach could be to separate PG from Glycerol prior to dehydration reaction and use it (PG) as a high value co-product.
3 – Technical Accomplishments/Progress/Results

R3: Ammoxidation

Acrolein $\xleftarrow{400-450^\circ\text{C}, \text{NH}_3, 0.5 \text{ O}_2}$ Bi-Mo/Silica \rightarrow Acrylonitrile
- BiMo/silica catalyst. Acrolein (AC) evaporated from 90% pure feed.
- High selectivity (>90%) to Acrylonitrile (ACN).
- Other by-products are acetonitrile (AN) and propionitrile (PN).

Catalyst optimization (Parametric study)

Long term run at optimized conditions:
NH$_3$/AC = 1.0, O$_2$/AC=10 for
① GHSV=9675h$^{-1}$ and ② GHSV = 7661h$^{-1}$
ACN validation

<table>
<thead>
<tr>
<th>Bio-mass ACN sample</th>
<th>Sample-1</th>
<th>Sample-2</th>
<th>Sample-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Clear</td>
<td>Slightly pink</td>
<td>Clear</td>
</tr>
<tr>
<td>Product composition (wt%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basis</td>
<td>Wet</td>
<td>Dry</td>
<td>Wet</td>
</tr>
<tr>
<td>Actual ACN /wt%</td>
<td>1.69</td>
<td>15.9</td>
<td>4.31</td>
</tr>
<tr>
<td>Water/wt%</td>
<td>~89</td>
<td>-</td>
<td>~95</td>
</tr>
<tr>
<td>Impurities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone /wt%</td>
<td>0.01</td>
<td>0.01</td>
<td>/</td>
</tr>
<tr>
<td>Acrolein /wt%</td>
<td>7.84</td>
<td>73.75</td>
<td>/</td>
</tr>
<tr>
<td>Acetonitrile /wt%</td>
<td>0.13</td>
<td>1.25</td>
<td>0.74</td>
</tr>
<tr>
<td>Propionitrile/ wt%</td>
<td>0.96</td>
<td>9.02</td>
<td>/</td>
</tr>
</tbody>
</table>

- Very low impurity level. Excess water due to use of acetic acid solution to neutralize excess NH₃.
3 – Technical Accomplishments/Progress/Results

TEA/LCA
Preliminary TEA

Comparison between originally proposed and alternative process.

<table>
<thead>
<tr>
<th>Category</th>
<th>Proposed</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation of Glycerol/PG</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>ACN yield, wt%</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Recoverable product yield, wt%</td>
<td>~34</td>
<td>~40</td>
</tr>
<tr>
<td>Co-product</td>
<td>Acetol</td>
<td>PG, Acetol</td>
</tr>
<tr>
<td>Co-product, lb/lb ACN</td>
<td>0.25 (Acetol)</td>
<td>1.6 (PG); 0.25 (Acetol)</td>
</tr>
<tr>
<td>Overall carbon efficiency, %</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>ACN production cost ($/lb ACN)</td>
<td>0.78</td>
<td>0.73</td>
</tr>
</tbody>
</table>

- Higher ACN yield from proposed route as both Glycerol and PG used for ACN production.
- Separating PG (alternative process) improves carbon efficiency.
- ACN production cost calculated based on 5,000 MT/year production capacity.
- More efficient co-product recovery makes the alternative process more economic.
Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts.

Maximum cost contribution from raw materials, in particularly, sugar.

Overall low H₂ and NH₃ requirement as raw materials.

Sensitivity analysis of ACN production cost with respect to raw materials price essential.
ACN production cost shows high sensitivity to sugar price. <$1/lb within $300-$450/ton sugar price.

ACN production cost nearly insensitive to H₂ and NH₃ price change.
Preliminary LCA

<table>
<thead>
<tr>
<th>Petroleum based ACN</th>
<th>kg GHG/ kg ACN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude to Propylene</td>
<td>0.16</td>
</tr>
<tr>
<td>Propylene to ACN</td>
<td>2.86</td>
</tr>
<tr>
<td>Total</td>
<td>3.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biomass to ACN</th>
<th>kg GHG/ kg ACN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugars to polyols (R1,S1)</td>
<td>0.91</td>
</tr>
<tr>
<td>Polyols to Acrolein (R2,S2)</td>
<td>0.42</td>
</tr>
<tr>
<td>Acrolein to ACN (R3,S3)</td>
<td>0.56</td>
</tr>
<tr>
<td>Total</td>
<td>1.92</td>
</tr>
</tbody>
</table>

~37% reduction in greenhouse gas emissions compared to conventional petroleum based processes.
Technical progress summary

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Milestone</th>
<th>Achievements</th>
<th>Meet target?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1-2.2 (R1)</td>
<td>≥ 2 novel candidates Selecr.(di-,triols) >65%, Productivity >50g/l/hr</td>
<td>3 novel candidates Selecr.(di-,triols) >75%, Productivity >50g/l/hr</td>
<td>✓</td>
</tr>
<tr>
<td>2.3-2.4 (R2)</td>
<td>≥ 2 novel candidates Selecr.(acrolein)> 70%, Productivity >375g/l/hr,</td>
<td>2 novel candidates Selecr.(acrolein) 72-80% (Glycerol feed) and <50% (PG feed), Productivity >375g/l/hr</td>
<td>✓ Glycerol ❌ PG</td>
</tr>
<tr>
<td>2.5 (R3)</td>
<td>Selecr. (ACN) > 70%, Productivity >75 g/l/hr</td>
<td>Selecr. (ACN) 90-98% Productivity>75 g/l/hr</td>
<td>✓</td>
</tr>
<tr>
<td>2.6</td>
<td>Catalyst life > 40h</td>
<td>>120h (R1), ~51h (R2), >40h (R3)</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>ACN validation</td>
<td>Product ACN validated</td>
<td>Ongoing</td>
</tr>
<tr>
<td>5</td>
<td><$1/lb</td>
<td>$0.73-0.78/lb</td>
<td>Ongoing</td>
</tr>
<tr>
<td>6</td>
<td>Project reporting</td>
<td>Reports delivered regularly to DOE</td>
<td>Ongoing</td>
</tr>
</tbody>
</table>
4 - Relevance

- Supports BETO’s strategic goal of thermochemical conversion R&D: “Develop commercially viable technologies for converting biomass into energy dense, fungible, finished liquid fuels, such as renewable gasoline, jet, and diesel, as well as biochemicals and biopower.”

- Contributes to overcoming the technical challenges and barriers in this area by:
 - Design and discovery of new low-cost catalysts for biomass conversion.
 - Process intensification via single step sugar conversion.

Relevance to industry and market place:
- **Alternative low cost feedstock:** Price and supply of propylene volatile. Biomass is abundant and the price of derived sugar is more stable.
- **H₂ requirement and C efficiency:** Less H₂ use but high C efficiency (80%).
- **Heat management:** Lower heat capacity of acrolein than glycerol. Requires less energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol).
- **Process integration:** Integrable to commercial ACN production processes.
- **Low cost production:** Production of ACN at <$1/lb paves way for reducing cost of carbon fiber production.
- **Co-production of PG/acetol:** Alternative, low cost pathway for the production of high value chemicals and their use as co-products.
- **Plant scale:** Relatively small scale (5000 MT/Year) ACN plants needed to feed Carbon fiber lines (2 lines or 1000 MT/year).
4 - Relevance

Technology Transfer - Initiatives

<table>
<thead>
<tr>
<th>Acrylonitrile Manufacturers</th>
<th>Catalyst Manufacturers</th>
<th>Investor Groups</th>
<th>Sugar Suppliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three companies interested – USA, Japan and India and partner Cytec-Solvay</td>
<td>Working with a major catalyst manufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II</td>
<td>Working with a group of investor with experience in development of early stage chemicals technology – for joint development and to accelerate phase II research with further interest in funding first commercial plant</td>
<td>Working with two commercial vendors – Arbiom and Renmatix – for sugar supplies for Phase I and Phase II</td>
</tr>
</tbody>
</table>
For ongoing Phase I (ending on March 2017)

- Produce 50 grams of ACN
- ACN product validation
- Update TEA/LCA
- Phase I final report and deliverables

Stage Gate Review – Phase I – After March 30th 2017

Phase II – Validating prototype system

- Continuous bench scale unit design for kgs/hr production
- Integrated and slip stream separations to achieve product/by-product purities
- Continuous 1000 hr operation for the production of up to 500kg ACN.
- Product stabilization and safe operations for hazardous products
- Finalize TEA/LCA
- Continue discussion with potential partners.
- Complete final project report
Summary

- **Overview:** Novel thermocatalytic and economically viable process for the conversion of biomass derived non-food sugars to acrylonitrile.

- **Approach:** Novel, inexpensive, stable catalyst development, mild operating conditions, separation of co-products and undesirables, scalability, TEA/LCA and sensitivity analysis.

- **Technical progress:** Process flexible to sugar types. High performance catalysts meet target for sugar to oxygenates, glycerol to acrolein and acrolein to ACN conversion. Requires less H₂ and NH₃ as raw materials. Production of high value PG and acetol as co-products. Economics favorable (<$1/lb) at wide range of sugar price.

- **Challenges:** PG conversion to acrolein, meeting product specifications at different sugar impurity levels.

- **Relevance:** Supports BETO’s conversion R&D strategic goal.

- **Future work:** Scale up to bench scale. Detail TEA/LCA. Product validation.
Acknowledgements

US Department of Energy

Partners

Southern Research
Amit Goyal (PI)
Santosh Gangwal (Co-PI)
Jadid Samad
Lindsey Chatterton
Govedarica Zora

Cytec Solvay
Longgui Tang (Lead)
Billy Harmon

NJIT
Zafar Iqbal (Lead)
El Mostafa Benchafia

Sugar Suppliers

ARBIOM
Lisette Tenlep
Bill McDonald

Renmatix
Dan Beacom
Jeremy Austin
Additional Slides
H₂ recovery

20% sugar

17.4% PG (recovery 95%)
2.5% EG
79.6% H₂O

99.8% glycerol (recovery 99.9%)
88% Acrolein (recovery 99.7%)
0.18% Acetol
0.07% Propanal

21% Acetol (recovery 99.2%)
78.8% Water

80% glycerol + H₂O

M-101
S-118
S-119
S-120
S-122
S-123
S-124
R-102
F-104
D-102

S-116
S-117
ACN+AN recycle

H₂O (l)

ACN (recovery 99.4%)

H₂O (l)

Steam

AN+H₂O

Steam

AN+H₂O
Publications/Presentations:

• Amit Goyal and Santosh Gangwal, *Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers*, Poster Presentation at Bio Pacific Rim Summit, Dec 6 to 9, 2015 San Diego, CA.

• Project Fact Sheet for BioEnergy Summit, June 23rd – June 24th, 2015 Washington DC.

• Amit Goyal and Santosh Gangwal, *Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers*, Oral Presentation at Bio World Congress July19th - 22nd, Montreal, Canada. Invited talk in Breakout Panel Session: Clustered Research and Development of Ag-Based BioProducts.

• DOE Site Visit – 15th September 2015. Results for overall progress presented to Program manager and coordinator at Durham, NC.

• Amit Goyal, *Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers*, October 5th 2015, Invited Talk at Department of Materials Science at University of Alabama, Birmingham.

• Amit Goyal, Jiajia Meng, Jonathan P. Carroll, and Santosh K. Gangwal, *Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers*, Oral Presentation at AICHE Fall 2015 meeting (579b).

• Jadid E Samad, Lindsey Chatterton, Zora Govedarica, Amit Goyal, *Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers*. Oral presentation at TCS 2016, Chapel Hill, NC.

• Amit Goyal, Longgui Tang and Billy Harmon, Renewable Acrylonitrile for Carbon Fiber Production, Oral Presentation at Carbon Fiber 2016, Scottsdale, AZ.

Patents:

• US Application # 20160368861: Compositions and methods related to the production of acrylonitrile

• US Application # 15/245,835: Compositions and methods related to the production of acrylonitrile