## U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer Review

## Bio-syngas to Fatty Alcohols (C6-14) as a Pathway to Fuels

### 3/9/17 Biochemical Conversion

### Principal Investigator: Devon C. Rosenfeld The Dow Chemical Company

This presentation does not contain any proprietary, confidential, or otherwise restricted information

# **Project Goal**

Develop a new bio-syngas fermentation process using engineered bacteria for production of intermediate (C6-C14) fatty alcohols leveraging robust chemical markets enabling scaling to biofuels production at < \$3/gge.



Aligned with Conversion R&D strategic goal of developing commercially viable technologies for converting biomass feedstocks via biological and chemical routes into energy dense, fungible, finished liquid transportation fuels and well as chemical intermediates.

# **Quad Chart Overview**

## Timeline

- Project start: 10/1/2016
- Project end: 12/31/2018
- 10% complete (Validation)

|                                         | FY 16<br>Costs | Total Planned Funding<br>(FY 17-Project End<br>Date) |
|-----------------------------------------|----------------|------------------------------------------------------|
| DOE Funded                              | \$0            | \$1,988,639                                          |
| Project Cost Share<br>(Dow)             | \$0            | \$883,929                                            |
| Project Cost Share<br>(LanzaTech)       | \$0            | \$329,688                                            |
| Project Cost Share<br>(Northwestern U.) | \$0            | \$34,233                                             |

Budget

\*If there are multiple cost-share partners, separate rows should be used.

Dow LanzaTech

### Partners

- The Dow Chemical Company
  - Analytical
  - Process separations
- LanzaTech, Inc.
  - Strain optimization
  - Fermentation optimization
- Northwestern University
  - Computational modeling
- Project led by Dow with collaboration across partners key to success

# **Quad Chart Overview-Con't**

### **Conversion R&D Technical Barriers Addressed**

- Ct-H: Efficient catalytic upgrading of gaseous intermediates to fuels
  and chemicals
- Ct-A: Feedstock Variability
- St-E: Best practices and systems for sustainable bioenergy production

## Aligned with MYPP Technical Targets

- By 2020, provide enabling capabilities in synthetic biology for industrially relevant, optimized chassis microorganisms and Design-Built-Test-Learn cycles for fuel and chemical production that reduces time-to scale-up by at least 50% compared to the current average of ~10 years.
- By 2021, complete R&D necessary to set the stage for a 2022 verification that produces both fuels and high-value chemicals to enable a biorefinery to achieve a positive return on investment.

# **Project Overview**

 Dow and LanzaTech previously validated syngas conversion to fatty alcohols via the +1 pathway in *Clostridium*



### Project Goals

- Resolve challenges discovered during validation research that limited yield
- Optimize the strain and the syngas fermentation to deliver titer and productivity targets
- Characterize and quantify the fermentation products
- Develop a conceptual flowsheet for separating and purifying products

# **Management Approach**

- Dow is the project lead, coordinating participant activities.
- Teleconference every two weeks and semiannual in person team meetings to monitor work progress ensure timely milestone completion, and address any issues that may arise.
- Project teams organized according to alignment of core expertise and capabilities to delivery for specific project task.

| Project Lead | Tasks    | Description                                                                                                 |
|--------------|----------|-------------------------------------------------------------------------------------------------------------|
| Dow          | 4, 6, 10 | product characterization, design conceptual flow sheet for separations and purification, project management |
| LanzaTech    | 1-3, 7-9 | BETO validation, strain and fermentation optimization                                                       |
| Northwestern | 5        | Computational modeling for pathway development                                                              |

- Successful task delivery through cross partner collaboration
- Go/No-go milestones with fatty alcohol titer target at the end of each budget period to assess progress and update techno-economic assessment (TEA)

# **Technical Approach**



## Relevance

Develop a new bio-syngas fermentation process using engineered bacteria for the production of intermediate (C6-C14) fatty alcohols robust chemical markets enabling scaling to biofuels production for sale at < \$3/gge

- Our project is aligned with BETO's vision and mission statements and strategic goals.
- Our technology will impact the industry and deliver BETO goals by:
  - 1. Creating a disruptive bioconversion technology leveraging robust chemical markets to traverse the "valley of death" of biofuels scaling
  - 2. Enabling feedstock versatility and decoupling raw materials from food crops.
  - 3. Displacing petroleum derived fuels and chemicals with domestically produced, cost competitive bio-renewables with improved infrastructure compatibility.

8

- 4. Exceeding advanced biofuels GHG reduction target of >50% versus conventional
- Our technology has the versatility to potentially function as a front end upgrading process within an integrated biorefinery or to bolt in within conventional conversion infrastructure such as an FT refinery.

# **Future Work**

- Project kicked off 1/2017 after successfully passing BETO validation Go/No-Go milestone
- Key research activities and milestones of budget period 2 (1/17-12/17)
  Strain optimization resolving challenges discovered in prior validation
  - Computational predictions of alternative and potentially promiscuous enzymes
  - Build strain library with improved enzymes and validate improvement in vivo

#### Fermentation optimization to drive pathway titer

 Test top performing strains from strain optimization studies in syngas fermentation and optimize conditions for syngas conversion and alcohol titer

#### **Characterize fermentation products**

Go/No-Go milestone at the end of month 15 (12/31/17)
 C6-C14 alcohol from syngas demonstrated at a total titer of 50% and a productivity of 5% of our final milestone metrics in 2-L-CSTR bioreactor, GEM and TEA updated

# **Future Work**

- Key research activities and milestones of budget period 3 (1/18-12/18)
  Characterize fermentation products
  - Identify all fermentation products through analysis of components in all phases
  - Develop methods to quantify fermentation products

### Develop conceptual flow sheet for separation and purification

- Employ process simulations tools to identify potential separation schemes
- Generate conceptual block flow diagram

### Strain optimization

GEM and TEA model.

- Strain construction to balance expression to maximize pathway flux
- Computational predictions for direct intermediate conversion to fuels

#### **Fermentation optimization**

- Test top performing strains from strain optimization studies in syngas fermentation and optimize conditions for syngas conversion and alcohol titer
- Go/No-Go milestone at the end of month 27 (12/31/18)
  C6-C14 alcohols from syngas demonstrated at a total titer, productivity and selectivity meeting TEA metrics to produce biofuels at price of < \$3/gge. Update</li>

# Summary

**Goal:** Develop a new bio-syngas fermentation process using engineered bacteria for production of intermediate (C6-C14) fatty alcohols leveraging robust chemical markets enabling scaling to biofuels production at < \$3/gge.

- Overview: Rooted in prior research by Dow and LanzaTech validating syngas fermentation to fatty alcohols via the +1 pathway with yield limiting challenges
- Approach: Deploy strengths of three partners to resolve challenges, maximize fatty alcohol titer and devise purification scheme
- Relevance: Aligned with BETO's long term vision with potential to deliver at least four goals from the MYPP
- Future Work:
  - BP2 (M4-M15): resolve pathway challenges through strain engineering, fermentation optimization and computational pathway modeling
  - BP3 (M16-M27): maximize fatty alcohol titer through strain and fermentation optimization, full product characterization for designing separation and purification flow-sheet

## Acknowledgements



Andy Arthur Prakash Bhosale Susan Campbell Mamatha Devarapalli Mitch Dibbs Tim Frank Scott Greenwalt Mark Jones Brian Kolthammer John O'Brien Paresh Sanghani Chris Stowers



Tanus Abdalla Wyatt Allen **Robert Conrado** Allan Gao Laurel Harmon Jennifer Holmgren Audrey Harris Michael Köpke Alex Mueller Wayne Mitchell Shilpa Nagaraju Amy Quattlebaum Sean Simpson Archer Smith Loan Tran Sarah Ye



Linda Broadbelt Keith Tyo

# **Additional Slides**

(Not a template slide – for information purposes only)

- The following slides are to be included in your submission for Peer Evaluation purposes, but will **not** be part of your oral presentation –
- You may refer to them during the Q&A period if they are helpful to you in explaining certain points.

## Responses to Previous Reviewers' Comments

- If your project is an on-going project that was reviewed previously, address 1-3 significant questions/criticisms from the previous reviewers' comments (refer to the <u>2015 Peer Review Report</u>, see notes section below)
- Also provide highlights from any Go/No-Go Reviews

Note: This slide is for the use of the Peer Reviewers only – it is not to be presented as part of your oral presentation. These Additional Slides will be included in the copy of your presentation that will be made available to the Reviewers.

# Publications, Patents, Presentations, Awards, and Commercialization

- List any publications, patents, awards, and presentations that have resulted from work on this project
- Use at least 12 point font
- Describe the status of any technology transfer or commercialization efforts

Note: This slide is for the use of the Peer Reviewers only – it is not to be presented as part of your oral presentation. These Additional Slides will be included in the copy of your presentation that will be made available to the Reviewers.