OPINION AND ORDER GRANTING LONG-TERM, MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE GOLDEN PASS LNG TERMINAL LOCATED IN JEFFERSON COUNTY, TEXAS, TO NON-FREE TRADE AGREEMENT NATIONS

DOE/FE ORDER NO. 3978

APRIL 25, 2017
TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. SUMMARY OF FINDINGS AND CONCLUSIONS .. 10

III. PUBLIC INTEREST STANDARD .. 10

IV. DESCRIPTION OF REQUEST .. 13

 A. Description of Applicant .. 13
 B. The Golden Pass LNG Terminal and GPPL Pipeline ... 14
 C. Proposed GPP Export Project and Pipeline Expansion Project 14
 D. Procedural History ... 16
 E. Business Model .. 16
 F. Source of Natural Gas .. 17

V. APPLICANT’S PUBLIC INTEREST ANALYSIS ... 17

 A. Adequacy of Domestic Supply ... 19
 B. Impact on Domestic Natural Gas Prices ... 21
 C. Public Benefits ... 22
 D. Domestic Energy Security .. 24
 E. International Impacts ... 25

VI. CURRENT PROCEEDING BEFORE DOE/FE .. 25

 A. Overview .. 25
 B. Non-Intervenor Comments Supporting the Application .. 26
 C. Non-Intervenor Comment Opposing the Application ... 27
 D. Sierra Club’s Motion to Intervene, Protest, and Comments .. 28
 1. Alleged Need for Full Environmental Impact Statement 29
 2. Alleged Economic Impacts from the Requested Authorization 30
 3. Alleged Environmental Impacts of the Requested Authorization 33
 E. APGA’s Motion to Intervene and Protest ... 41
 F. GPP’s Consolidated Answer to APGA’s and Sierra Club’s Motions to Intervene,
 Protest, and Comments .. 44
 1. Sierra Club’s Interest in the Proceeding .. 45
 2. APGA’s Interest in the Proceeding ... 45
 3. Applicable Legal Standard .. 45
 4. Protestors’ Challenges to GPP’s Deloitte MarketPoint Study 46
 5. Economic Benefits .. 48
 6. DOE/FE’s NEPA Analysis of Environmental Impacts .. 48
 G. Sierra Club’s Renewed Motion to Reply and Reply ... 50
 H. Answer of GPP to Sierra Club’s Renewed Motion to Reply and Reply 51

VII. DOE/FE’S LNG EXPORT STUDIES .. 52

 A. 2012 LNG Export Study .. 52
B. 2014 EIA LNG Export Study, Effect of Increased Levels of Liquefied Natural Gas Exports on U.S. Energy Markets ... 54
1. Methodology .. 54
2. Scope of EIA Study .. 56
3. Results of the 2014 EIA LNG Export Study ... 57
4. Increased Natural Gas Prices .. 58
5. Increased Natural Gas Production and Supply ... 59
6. Decreased Domestic Natural Gas Consumption .. 59
7. Energy-Related Carbon Dioxide Emissions ... 59
8. Increased End-User Natural Gas and Electricity Delivered Prices 60
9. Increased Gross Domestic Product .. 60

1. Overview of Rice-Oxford’s Findings in the 2015 Study 61
2. Methodology .. 62
3. Natural Gas Market Assumptions across International Demand Scenarios 64
4. The Rice World Gas Trade Model .. 66
5. The Oxford Global Economic Model and Global Industry Model 67
6. Results of the 2015 LNG Export Study ... 68

VIII. COMMENTS ON THE 2014 AND 2015 LNG EXPORT STUDIES AND DOE/FE ANALYSIS ... 71
A. Data Inputs and Estimates of Natural Gas Demand .. 72
1. Comments .. 72
2. DOE/FE Analysis ... 73
B. Distributional Impacts .. 75
1. Gross Domestic Product (GDP) .. 75
2. Sectoral Impacts ... 77
3. Household and Distributional Impacts ... 80
4. Regional Impacts ... 81
C. Estimates of Domestic Natural Gas Supplies .. 82
1. Comments .. 82
2. DOE/FE Analysis ... 83
D. Modeling the LNG Export Business .. 87
1. Comments .. 87
2. DOE/FE Analysis ... 87
E. Cost of Environmental Externalities ... 88
1. Comments .. 88
2. DOE/FE Analysis ... 89
F. Prices and Volatility ... 89
1. Natural Gas Price Volatility ... 89
2. Linking the Domestic Price of Natural Gas to World Prices 91

IX. DOE/FE ADDENDUM TO ENVIRONMENTAL REVIEW DOCUMENTS CONCERNING EXPORTS OF NATURAL GAS FROM THE UNITED STATES 92
A. Water Resources ... 94
1. Water Quantity ... 94
7. Other Considerations .. 160
D. Conclusion.. 162

XIII. TERMS AND CONDITIONS ... 166
A. Term of the Authorization .. 166
B. Commencement of Operations Within Seven Years 167
C. Commissioning Volumes ... 167
D. Make-Up Period ... 167
E. Transfer, Assignment, or Change in Control ... 168
F. Agency Rights .. 169
G. Contract Provisions for the Sale or Transfer of LNG to be Exported 170
H. Export Quantity .. 172
I. Combined FTA and Non-FTA Export Authorization Volumes 172

XIV. FINDINGS ... 172

XV. ORDER ... 173
FREQUENTLY USED ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEO</td>
<td>Annual Energy Outlook</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>Bcf/d</td>
<td>Billion Cubic Feet per Day</td>
</tr>
<tr>
<td>Bcf/yr</td>
<td>Billion Cubic Feet per Year</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>CO₂e</td>
<td>Carbon Dioxide Equivalent</td>
</tr>
<tr>
<td>CPP</td>
<td>Clean Power Plan</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>EIA</td>
<td>U.S. Energy Information Administration</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>ESA</td>
<td>Endangered Species Act</td>
</tr>
<tr>
<td>EUR</td>
<td>Estimated Ultimate Recovery</td>
</tr>
<tr>
<td>FERC</td>
<td>Federal Energy Regulatory Commission</td>
</tr>
<tr>
<td>FTA</td>
<td>Free Trade Agreement</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GEM</td>
<td>Global Economic Model</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gas</td>
</tr>
<tr>
<td>GIM</td>
<td>Global Industry Model</td>
</tr>
<tr>
<td>GPLNG</td>
<td>Golden Pass LNG Terminal LLC</td>
</tr>
<tr>
<td>GPP</td>
<td>Golden Pass Products LLC</td>
</tr>
<tr>
<td>GPPL</td>
<td>Golden Pass Pipeline LLC</td>
</tr>
<tr>
<td>GWP</td>
<td>Global Warming Potential</td>
</tr>
<tr>
<td>IECA</td>
<td>Industrial Energy Consumers of America</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>kWh</td>
<td>Kilowatt-Hour</td>
</tr>
<tr>
<td>LCA</td>
<td>Life Cycle Analysis</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquefied Natural Gas</td>
</tr>
<tr>
<td>Mcf</td>
<td>Thousand Cubic Feet</td>
</tr>
<tr>
<td>MMBtu</td>
<td>Million British Thermal Units</td>
</tr>
<tr>
<td>MMmt</td>
<td>Million Metric Tons</td>
</tr>
<tr>
<td>mtpa</td>
<td>Million Metric Tons per Annum</td>
</tr>
<tr>
<td>MWh</td>
<td>Megawatt-Hour</td>
</tr>
<tr>
<td>NEMS</td>
<td>National Energy Modeling System</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NERA</td>
<td>NERA Economic Consulting</td>
</tr>
<tr>
<td>NETL</td>
<td>National Energy Technology Laboratory</td>
</tr>
<tr>
<td>NGA</td>
<td>Natural Gas Act</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrogen Oxides</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>QP</td>
<td>Qatar Petroleum</td>
</tr>
<tr>
<td>ROD</td>
<td>Record of Decision</td>
</tr>
<tr>
<td>RWGTM</td>
<td>Rice World Gas Trade Model</td>
</tr>
<tr>
<td>Tcf</td>
<td>Trillion Cubic Feet</td>
</tr>
<tr>
<td>TRR</td>
<td>Technically Recoverable Resources</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Compound</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

On October 26, 2012, Golden Pass Products LLC (GPP) filed an application (Application)\(^1\) with the Office of Fossil Energy (FE) of the Department of Energy (DOE) under section 3 of the Natural Gas Act (NGA)\(^2\) for long-term, multi-contract authorization to export domestically produced liquefied natural gas (LNG). GPP seeks authorization to export the LNG by vessel from its proposed export project (GPP Export Project) to be constructed contiguous to and inter connected with the existing Golden Pass LNG Terminal (Terminal), a LNG import terminal owned and operated by Golden Pass LNG Terminal LLC (GPLNG).\(^3\) The Terminal is located near Sabine Pass, in Jefferson County, Texas.\(^4\) GPP intends to construct and operate the GPP Export Project for the liquefaction and export of domestically produced natural gas.\(^5\)

In the Application, GPP requests authorization to export LNG in a volume equivalent to approximately 740 billion cubic feet per year (Bcf/yr) of natural gas (2.02 Bcf/d), which GPP states is equal to 15.6 million metric tons per annum (mtpa) of LNG based on a conversion factor of 47.256 Bcf per million metric tons.\(^6\) GPP states, however, that “should DOE/FE use a different conversion factor … then the total annual exports requested by GPP would increase slightly.”\(^7\) DOE/FE uses a different conversion factor than GPP for U.S.-produced LNG (51.75 Bcf per million metric tons), resulting in an increased export volume. Accordingly, DOE/FE is authorizing GPP in this Order to export LNG from the GPP Export Project at the Golden Pass

\(^1\) Golden Pass Products LLC, Application for Long-Term Authorization to Export LNG to Non-Free Trade Agreement Countries, FE Docket No. 12-156-LNG (Oct. 25, 2012) [hereinafter GPP App.].

\(^2\) The authority to regulate the imports and exports of natural gas, including liquefied natural gas, under section 3 of the NGA (15 U.S.C. § 717b) has been delegated to the Assistant Secretary for FE in Redegelation Order No. 00-006.02 issued on November 12, 2014.

\(^4\) GPP App. at i, 2.

\(^5\) Id. at 7.

\(^6\) See id. at 1.

\(^7\) Id. at 1 n.3.
LNG Terminal in a volume equivalent to approximately 808 Bcf/yr of natural gas (2.21 Bcf/d), not to exceed the 15.6 mtpa of LNG approved by FERC for the GPP Export Project in its December 21, 2016 Order.\(^8\) See infra § XI.

GPP seeks authorization to export this LNG for a 25-year term from the proposed GPP Export Project to any country with which the United States does not have a free trade agreement (FTA)\(^9\) requiring national treatment for trade in natural gas, and with which trade is not prohibited by U.S. law or policy (non-FTA countries). GPP seeks to export this LNG on its own behalf and as agent for other entities that hold title to the LNG at the time of export. GPP requests that this authorization commence on the earlier of the date of first export or seven years from the date this authorization is issued.

In issuing this Order, we note that DOE/FE has previously issued an order authorizing GPP to export domestically produced LNG from the Golden Pass LNG Terminal to countries with which the United States has, or in the future may enter into, a FTA requiring national treatment for trade in natural gas (FTA countries).\(^10\) That order, DOE/FE Order No. 3147 (FE Docket No. 12-88-LNG), authorized the export of 740 Bcf/yr of natural gas (2.03 Bcf/d) to FTA countries.\(^11\) Because the source of LNG for GPP’s FTA order and this Order is the GPP Export Project at the Golden Pass LNG Terminal, the two export volumes are not additive. DOE/FE is issuing this Opinion and Order subject to the additional conditions set forth below.

\(^8\) See *Golden Pass Products LLC*, Order Granting Authorizations Under Sections 3 and 7 of the Natural Gas Act, 157 FERC ¶ 61,222, at PP 3, 9 (Dec. 21, 2016) [hereinafter FERC Order].

\(^9\) The United States currently has FTAs requiring national treatment for trade in natural gas with Australia, Bahrain, Canada, Chile, Colombia, Dominican Republic, El Salvador, Guatemala, Honduras, Jordan, Mexico, Morocco, Nicaragua, Oman, Panama, Peru, Republic of Korea, and Singapore. FTAs with Israel and Costa Rica do not require national treatment for trade in natural gas.

\(^10\) See id.

DOE/FE Proceeding. On December 6, 2012, DOE/FE published a Notice of GPP’s Application in the *Federal Register*.\(^{12}\) The Notice of Application called on interested persons to submit protests, motions to intervene, notices of intervention, and comments by February 4, 2013. In response, DOE/FE received one comment opposing the Application; 11 comments supporting the Application; and two motions to intervene and protest opposing the Application, submitted by Sierra Club and the American Public Gas Association (APGA), respectively. DOE/FE has considered these filings in its review of GPP’s Application. *See infra* §§ VI, XII.

Additionally, in evaluating the public interest under NGA section 3(a), DOE/FE has considered the following economic and environmental studies in its review of GPP’s Application:

(1) Economic Studies:

In 2011, DOE/FE engaged the U.S. Energy Information Administration (EIA) and NERA Economic Consulting (NERA) to conduct a two-part study of the economic impacts of U.S. LNG exports, which together was called the “2012 LNG Export Study.” DOE/FE published a notice of availability of the 2012 LNG Export Study in the *Federal Register* for public comment. The 2012 LNG Export Study is described below (*infra* § VII.A), and DOE/FE responded to the public comments in connection with the LNG export proceedings identified in that notice.\(^{13}\) In relevant part, the NERA study projected that, across all scenarios studied—assuming either 6 Bcf/d or 12 Bcf/d of LNG export volumes—the United States would experience net economic benefits from allowing LNG exports.

By May 2014, in light of the volume of LNG exports to non-FTA countries then-authorized by DOE/FE and the number of non-FTA export applications still pending, DOE/FE determined that an updated study was warranted to consider the economic impacts of exporting LNG from the lower-48 states to non-FTA countries. On May 29, 2014, DOE announced plans to undertake new economic studies to gain a better understanding of how potentially higher levels of U.S. LNG exports—at levels between 12 and 20 Bcf/d of natural gas—would affect the public interest.

DOE/FE commissioned two new macroeconomic studies. The first, *Effect of Increased Levels of Liquefied Natural Gas Exports on U.S. Energy Markets*, was performed by EIA and published in October 2014 (2014 EIA LNG Export Study or 2014 Study). The 2014 Study assessed how specified scenarios of increased natural gas exports could affect domestic energy markets. At DOE’s request, this 2014 Study served as an update of EIA’s January 2012 study of LNG export scenarios and used baseline cases from EIA’s *Annual Energy Outlook 2014* (AEO 2014).

The second study, *The Macroeconomic Impact of Increasing U.S. LNG Exports*, was performed jointly by the Center for Energy Studies at Rice University’s Baker Institute and Oxford Economics under contract to DOE/FE (together, Rice-Oxford) and published in October

14 Because there is no natural gas pipeline interconnection between Alaska and the lower 48 states, DOE/FE generally views those LNG export markets as distinct. DOE/FE therefore focuses on LNG exports from the lower-48 states for purposes of determining macroeconomic impacts.

17 Each Annual Energy Outlook (AEO) presents EIA’s long-term projections of energy supply, demand, and prices. It is based on results from EIA’s National Energy Modeling System model. *See infra § VII.A.*
2015 (2015 LNG Export Study or 2015 Study).¹⁸ The 2015 Study is a scenario-based assessment of the macroeconomic impact of levels of U.S. LNG exports, sourced from the lower-48 states in volumes ranging from 12 to 20 Bcf/d of natural gas under a range of assumptions, including U.S. resource endowment, U.S. natural gas demand, international LNG market dynamics, and other factors. The analysis covers the 2015 to 2040 time period.

Additional information about the 2014 and 2015 Export Studies is set forth below. See infra §§ VII.B, VII.C, VIII.

On December 29, 2015, DOE/FE published a Notice of Availability of the 2014 and 2015 LNG Export Studies in the Federal Register, and invited public comment on those Studies.¹⁹ DOE received 38 comments in response to the Notice of Availability, of which 14 comments opposed the conclusions in the 2014 and 2015 Studies and/or LNG exports generally, 21 expressed support for the Studies, and three took no position. See infra § VIII.

The grant of export authority in this Order—in a volume of LNG equivalent to 2.21 Bcf/d (808 Bcf/yr) of natural gas—brings DOE/FE’s cumulative total of approved non-FTA exports of LNG and compressed natural gas (CNG) to 19.2 Bcf/d of natural gas. Because the 2014 and 2015 Studies examined U.S. LNG exports in excess of 12 Bcf/d, we find it appropriate to review those Studies as part of our public interest review in this proceeding.

(2) Environmental Studies:

On June 4, 2014, DOE/FE issued two notices in the Federal Register proposing to evaluate different environmental aspects of the LNG production and export chain. First,

¹⁹ U.S. Dep’t of Energy, Macroeconomic Impacts of LNG Exports Studies; Notice of Availability and Request for Comments, 80 Fed. Reg. 81,300, 81,302 (Dec. 29, 2015) [hereinafter Notice of Availability] (providing a 45-day public comment period “to help inform DOE in its public interest determinations of the authorizations sought in the 29 non-FTA export applications identified …”).
DOE/FE announced that it had conducted a review of existing literature on potential environmental issues associated with unconventional natural gas production in the lower-48 states. The purpose of this review was to provide additional information to the public concerning the potential environmental impacts of unconventional natural gas exploration and production activities, including hydraulic fracturing. DOE/FE published its draft report for public review and comment, entitled *Draft Addendum to Environmental Review Documents Concerning Exports of Natural Gas from the United States* (Draft Addendum).\(^{20}\) DOE/FE received comments on the Draft Addendum and, on August 15, 2014, issued the final Addendum with its response to the public comments contained in Appendix B.\(^{21}\)

Second, DOE/FE commissioned the National Energy Technology Laboratory (NETL), a DOE applied research laboratory, to conduct an analysis calculating the life cycle greenhouse gas (GHG) emissions for LNG exported from the United States. *See infra § X.A.* The purpose of this analysis was to determine: (i) how domestically-produced LNG exported from the United States compares with regional coal (or other LNG sources) for electric power generation in Europe and Asia from a life cycle GHG perspective, and (ii) how those results compare with natural gas sourced from Russia and delivered to the same markets via pipeline. DOE/FE published NETL’s report entitled *Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States* (LCA GHG Report).\(^{22}\) DOE/FE also received

public comment on the LCA GHG Report, and provides its response to those comments in this Order. See infra § X.B.

With respect to both the Addendum and the LCA GHG Report, DOE/FE has taken all public comments into consideration in this decision and has made those comments, as well as the underlying studies, part of the record in this proceeding. As explained below, neither the Addendum nor the LCA GHG Report are required by the National Environmental Policy Act of 1969 (NEPA), 42 U.S.C. § 4321 et seq., but DOE/FE believes that these documents will inform its review of the public interest under NGA section 3(a), and are responsive to concerns previously raised in this proceeding.

Parallel FERC Proceeding. On July 7, 2014, GPP and GPPL filed their respective applications with the Federal Energy Regulatory Commission (FERC) under section 3 and 7(c) of the Natural Gas Act. These applications were docketed by FERC in Docket Nos. CP14-517-000 and CP14-518-000, respectively, and joined for purposes of FERC review.23

GPP sought authorization to site, construct, and operate the GPP Export Project (called the Export Terminal Project by FERC), to be located at the existing Golden Pass LNG Terminal. As part of this Export Project, GPP intends to construct three liquefaction trains—each with a liquefaction capacity of 5.2 mtpa of LNG, for a total of 15.6 mtpa of liquefaction capacity.24 In conjunction with the GPP Export Project, GPPL requested a certificate of public convenience and necessity to construct and operate compression and looping facilities in Texas and Louisiana (Pipeline Expansion Project). The Pipeline Expansion Project will expand GPPL’s current

23 See FERC Order at PP 1-3.
24 See id. at P 9.
pipeline system to transport up to 2.5 Bcf/d of natural gas southward to the Golden Pass LNG
Terminal for liquefaction and export by GPP.25

As detailed below, DOE/FE participated as a cooperating agency in FERC’s
environmental review proceeding under NEPA.26 As part of its environmental review, FERC
issued a draft environmental impact statement (EIS) for the Export Terminal and Pipeline
Expansion Projects on March 25, 2016,27 and a final EIS on July 29, 2016.28 The EIS evaluated
the potential environmental impacts of the proposed Projects,29 and recommended that FERC
subject any approval of the Projects to 85 environmental conditions.30

On December 21, 2016, FERC issued an Order Granting Authorizations Under Sections 3
and 7 of the Natural Gas Act.31 The FERC Order authorized GPP and GPPL to site, construct,
and operate their respective Projects subject to 83 environmental conditions (or mitigation
measures) contained in the Appendix of the Order. Although FERC Staff had recommended 85
mitigation measures in the final EIS, FERC determined that GPP had met the requirements of
Recommendations 18 and 19 in the final EIS, and therefore omitted these two environmental

25 See id. at PP 12-13.
26 See id. at P 55.
27 See Federal Energy Regulatory Comm’n, Notice of Availability of the Draft Environmental Impact Statement for
the Proposed Golden Pass LNG Export Project, Docket Nos. CP14-517-000, CP14-518-000, 81 Fed. Reg. 18,612
(March 31, 2016); see also FERC Order at PP 55-56.
28 Federal Energy Regulatory Comm’n, Golden Pass LNG Export Project \textit{Final Environmental Impact Statement},
Docket Nos. CP14-517-000, CP14-518-000 (July 29, 2016) [hereinafter Final EIS]; see also FERC Order at P 55, 57.
29 FERC Order at P 55.
30 See Final EIS at § 5.2 FERC Staff’s Recommended Mitigation; see also FERC Order at P 58.
31 See supra note 8.
mitigation measures from the Order. On that basis, FERC adopted 83 environmental mitigation measures as conditions to GPP’s and GPPL’s authorizations granted in the Order.

Upon review, FERC determined that “the proposed project is located on and adjacent to the footprint of the previously approved and currently operating import terminal site,” and that “[m]uch of the land … was previously disturbed during construction of the terminal site.” FERC concluded that the environmental impacts of the GPP Export Project “are not expected to be significant and can be further mitigated with appropriate measures, recommended in the EIS and adopted in this order.” Details of the FERC Order are discussed below. See infra § XI.C.

No party to the FERC proceeding sought rehearing of the FERC Order.

DOE/FE’s Adoption of the EIS and Issuance of a Record of Decision Under NEPA, and NGA Section 3(a) Authorization. After an independent review, and having been a cooperating agency in the EIS preparation, DOE/FE adopted FERC’s EIS for the proposed GPP Export Project (DOE/EIS-0501), and the U.S. Environmental Protection Agency (EPA) published a notice of the adoption on January 27, 2017. Concurrently with this Order, DOE/FE is issuing a Record of Decision (ROD) for the proposed Project. As discussed below, this Order grants the Application and is conditioned on GPP’s compliance with the 83 environmental conditions adopted in the FERC Order.

32 FERC Order at PP 86 (explaining the omission of Recommendation 19), 99 (explaining the omission of Recommendation 18).
33 See id. at P 56 & Ordering Para. A. On February 1, 2017, FERC issued an errata to the FERC Order, in which it corrected its reference to certain environmental conditions in the text of the Order. Those changes are reflected herein. Golden Pass Products, LLC, et al., Errata Notice, 158 FERC ¶ 61,106 (Feb. 1, 2017).
34 FERC Order at P 24.
35 Id.
II. SUMMARY OF FINDINGS AND CONCLUSIONS

This Order presents DOE/FE’s findings and conclusions on all issues associated with GPP’s proposed exports under NGA section 3(a), including both environmental and non-environmental issues. As the basis for this Order, DOE/FE has reviewed a substantial administrative record that includes (but is not limited to) the following: GPP’s Application; the non-intervenor comment opposing the Application; the non-intervenor comments supporting the Application; the motions to intervene and protests filed by Sierra Club and APGA opposing the Application; DOE/FE’s 2014 and 2015 LNG Export Studies; the Addendum; the LCA GHG Report; public comments received on DOE/FE’s various analyses; FERC’s final EIS; and the FERC Order granting authorization for GPP to site, construct, and operate the Export Project.

On the basis of this record, DOE/FE has determined that it has not been shown that GPP’s proposed exports will be inconsistent with the public interest, as is required to deny GPP’s Application under NGA section 3(a). DOE/FE therefore authorizes GPP’s export of domestically produced LNG from the Golden Pass LNG Terminal to non-FTA countries in a total volume equivalent to 808 Bcf/yr of natural gas. This authorization is subject to the Terms and Conditions and Ordering Paragraphs set forth herein, which incorporate by reference the 83 environmental conditions imposed by FERC. See infra §§ XIII-XV.

III. PUBLIC INTEREST STANDARD

Section 3(a) of the NGA sets forth the standard for review of the Application:

[N]o person shall export any natural gas from the United States to a foreign country or import any natural gas from a foreign country without first having secured an order of the [Secretary of Energy38] authorizing it to do so. The [Secretary] shall issue such order upon application, unless after opportunity for

38 The Secretary’s authority was established by the Department of Energy Organization Act, 42 U.S.C. § 7172, which transferred jurisdiction over imports and export authorizations from the Federal Power Commission to the Secretary of Energy.
hearing, [he] finds that the proposed exportation or importation will not be consistent with the public interest. The [Secretary] may by [the Secretary’s] order grant such application, in whole or part, with such modification and upon such terms and conditions as the [Secretary] may find necessary or appropriate.

15 U.S.C. § 717b(a). This provision creates a rebuttable presumption that a proposed export of natural gas is in the public interest. DOE/FE must grant such an application unless opponents of the application overcome that presumption by making an affirmative showing of inconsistency with the public interest.39

While section 3(a) establishes a broad public interest standard and a presumption favoring export authorizations, the statute does not define “public interest” or identify criteria that must be considered. In prior decisions, however, DOE/FE has identified a range of factors that it evaluates when reviewing an application for export authorization. These factors include economic impacts, international impacts, security of natural gas supply, and environmental impacts, among others. To conduct this review, DOE/FE looks to record evidence developed in the application proceeding.40

DOE/FE’s prior decisions have also looked to certain principles established in its 1984 Policy Guidelines.41 The goals of the Policy Guidelines are to minimize federal control and involvement in energy markets and to promote a balanced and mixed energy resource system. The Guidelines provide that:

40 See, e.g., Sabine Pass, DOE/FE Order No. 2961, at 28-42 (reviewing record evidence in issuing conditional authorization).

The market, not government, should determine the price and other contract terms of imported [or exported] natural gas The federal government’s primary responsibility in authorizing imports [or exports] will be to evaluate the need for the gas and whether the import [or export] arrangement will provide the gas on a competitively priced basis for the duration of the contract while minimizing regulatory impediments to a freely operating market.42

While nominally applicable to natural gas import cases, DOE/FE subsequently held in Order No. 1473 that the same policies should be applied to natural gas export applications.43

In Order No. 1473, DOE/FE stated that it was guided by DOE Delegation Order No. 0204-111. That delegation order, which authorized the Administrator of the Economic Regulatory Administration to exercise the agency’s review authority under NGA section 3, directed the Administrator to regulate exports “based on a consideration of the domestic need for the gas to be exported and such other matters as the Administrator finds in the circumstances of a particular case to be appropriate.”44 In February 1989, the Assistant Secretary for Fossil Energy assumed the delegated responsibilities of the Administrator of ERA.45

Although DOE Delegation Order No. 0204-111 is no longer in effect, DOE/FE’s review of export applications has continued to focus on: (i) the domestic need for the natural gas proposed to be exported, (ii) whether the proposed exports pose a threat to the security of domestic natural gas supplies, (iii) whether the arrangement is consistent with DOE/FE’s policy of promoting market competition, and (iv) any other factors bearing on the public interest described herein.

42 Id. at 6685.
44 DOE Delegation Order No. 0204-111, at 1; see also 1984 Policy Guidelines, 49 Fed. Reg. at 6690.
IV. DESCRIPTION OF REQUEST

GPP requests long-term, multi-contract authorization to export domestically produced LNG, on its own behalf and as agent for other entities that will hold title to the LNG, by vessel from the GPP Export Project to be constructed at the existing Golden Pass LNG Terminal to non-FTA countries. GPP seeks to export LNG in a volume equivalent to 740 Bcf/yr of natural gas—which GPP states is equal to 15.6 million metric tons per annum (mtpa) of LNG—to be increased if DOE uses a different conversion factor than GPP. GPP requests this authorization for a 25-year term, commencing on the earlier of the date of first export or seven years from the date of the issuance of this Order.

A. Description of Applicant

GPP is a Delaware limited liability company with its principal place of business in Houston, Texas. GPP is owned by QTL U.S. Terminal LLC (an affiliate of Qatar Petroleum International Limited) and Golden Pass LNG Terminal Investments LLC. GPP is affiliated with Golden Pass LNG Terminal LLC (GPLNG) and Golden Pass Pipeline LLC (GPPL). GPP states that it was formed by affiliates of Qatar Petroleum (QP) and Exxon Mobil Corporation (ExxonMobil), two of the world’s leading energy companies with “unrivaled” experience in producing, shipping, and marketing natural gas globally.46 According to GPP, QP and ExxonMobil have funded billions of dollars of investments in LNG projects, providing a significant contribution to global liquefaction capacity. Additionally, GPP states that ExxonMobil is the leading producer of natural gas and has the largest proven natural gas reserves

46 GPP App. at 3.
in the United States. GPP asserts that it is uniquely positioned to leverage this collective experience, technology, market access, and financial strength in its proposed Export Project.47

B. The Golden Pass LNG Terminal and GPPL Pipeline

GPLNG owns and operates the Golden Pass LNG Terminal, an import terminal that serves as a receiving facility for LNG imported from abroad.48 The Terminal is located on the Sabine-Neches Waterway, approximately 10 miles south of Port Arthur, Texas, in an area zoned for industrial use south of the Beaumont-Port Arthur-Orange industrial complex.49 The GPPL pipeline is a 70-mile interstate pipeline system connected to the Golden Pass LNG Terminal and regulated by FERC. According to GPP, the GPPL pipeline has nine interconnects to intrastate and interstate pipelines, providing access to major markets. FERC authorized both the Terminal and the GPPL pipeline on July 6, 2005.50

GPP states that the Terminal has a nominal output of 2.0 Bcf/d of natural gas, with a peak capacity of 2.7 Bcf/d. In the 2005 FERC Order, FERC authorized GPP under section 3 of the NGA to site, construct and operate: (i) a berthing structure and unloading facilities for LNG ships; (ii) vaporization equipment; (iii) five LNG storage tanks with approximate working capacity of 155,000 cubic meters each; and (iv) associated utilities, infrastructure and facilities required to send out natural gas from the Terminal.51

C. Proposed GPP Export Project and Pipeline Expansion Project

GPP states that it intends to construct and operate the GPP Export Project contiguous to the existing Golden Pass LNG Terminal for the liquefaction and export of domestically produced natural gas. GPP intends to construct and operate the export facilities to maximize use of the

47 See id. at 4.
48 See id. at 5.
49 See id. at 8, 10.
50 See supra note 3; GPP App. at 3 n.5.
51 GPP App. at 5.
existing Golden Pass import terminal facilities, with the intent of preserving full import
capability while also creating the proposed new export capability.52 According to GPP, GPLNG
will optimize its existing state-of-the art assets at the Golden Pass LNG Terminal, thus
promoting the preservation of jobs and the viability of the facility.53

GPP states that domestic natural gas will be delivered to the GPP Export Project through
the GPPL pipeline. As part of GPPL’s Pipeline Expansion Project, the pipeline will be modified
to enable bi-directional flow—specifically, to have the capability to flow natural gas either to the
GPP Export Project for export or from the Terminal import facilities for delivery to interstate and
intrastate markets.

According to GPP, existing facilities at the Golden Pass LNG Terminal that may be
utilized for the GPP Export Project include insulated LNG and natural gas piping, ship berthing
facilities, and the five LNG storage tanks and control systems.54 In addition, GPP anticipates
that it will construct new facilities to liquefy the natural gas delivered to the GPP Export Project
through the GPPL pipeline. Specifically, we take administrative notice that GPP and GPPL
together requested authorization from FERC to construct, modify, and operate the Export Project
and Pipeline Expansion Project in Texas and Louisiana as follows:

- Three liquefaction trains—each with a liquefaction capacity of 5.2 mtpa of LNG, for
 a total liquefaction capacity of 15.6 mtpa;
- Related liquefaction facilities, including a truck loading and unloading facility,
 refrigerant make-up and condensate product storage, safety and control systems, and
 associated infrastructure;
- A supply dock and alternate marine delivery facilities at the Terminal;
- 2.6 miles of a 24-inch-diameter pipeline loop adjacent to the existing GPPL pipeline;
- Three compressor stations;

52 See id. at 7.
53 See id.
54 See id. at 8.
• Five pipeline interconnections and modifications at existing pipeline interconnections; and
• Miscellaneous appurtenant facilities.55

GPP further states that, by locating the GPP Export Project on the existing industrial footprint of the Golden Pass LNG Terminal, environmental and community effects will be minimized.56

D. Procedural History

In a separate application filed in FE Docket No. 12-88-LNG on August 17, 2012, GPP requested authorization to export LNG, on its own behalf and as agent for other entities, from the Golden Pass LNG Terminal to FTA countries in a volume equivalent to 740 Bcf/yr of natural gas (2.03 Bcf/d) for a 25-year period. On September 27, 2012, DOE/FE granted this requested FTA authorization in DOE/FE Order No. 3147.57

E. Business Model

GPP requests authority to export the LNG on its own behalf and as agent for other entities that will hold title to the LNG at the time of export. GPP states that it intends to enter into long-term agreements to export LNG (a contact of more than two years) that do not exceed the term of the requested authorization. These contracts will provide for GPP to liquefy natural gas and load it onto LNG tankers for export. According to GPP, customers contracting with GPP for tolling services will be responsible for procuring their own supplies of natural gas and holding title to the natural gas that they will deliver to GPP for liquefaction. Additionally, the customers will be responsible for arranging the delivery of the natural gas to the Terminal.58

GPP states that the specific terms and conditions related to the use of the Terminal facilities will be set forth in these contracts.

55 See GPP Final EIS at ES-1, ES-2.
56 See GPP App. at 8.
57 See supra note 11.
58 GPP App. at 8-9.
GPP states that it will comply with all DOE/FE requirements for exporters and agents, including registration requirements. GPP further states that, when acting as agent, it will register with DOE/FE each LNG title holder for which it seeks to export LNG as agent, and will comply with other registration requirements, as set forth in recent DOE/FE orders.59

\textbf{F. Source of Natural Gas}

GPP states that the GPP Export Project will be located to provide access to substantial quantities of natural gas from diverse domestic supply sources. According to GPP, the Golden Pass LNG Terminal is located close to the Onshore Gulf Coast, the Offshore Gulf of Mexico, and the Mid-Continent producing regions—all of which GPP states have been, and will continue to be, significant U.S. natural gas supply areas.

Additionally, GPP asserts that there is a well-developed pipeline and transportation infrastructure in the region. The GPP Export Project will be connected, through the GPPL pipeline, with the interstate pipeline systems of Florida Gas Transmission Company, LLC; Golden Triangle Storage, Inc.; Natural Gas Pipeline Company of America; Tennessee Gas Pipeline Company, LLC; Texas Eastern Transmission, LP; and Transcontinental Gas Pipeline Company, LLC. According to GPP, each of these pipelines has interconnections with a larger network of pipelines traversing the Gulf Coast region. These pipelines will enable GPP to receive natural gas from the Onshore Gulf Coast, the Offshore Gulf of Mexico and the Mid-Continent areas, and possibly other production areas as well.60

\textbf{V. APPLICANT’S PUBLIC INTEREST ANALYSIS}

GPP contends that the proposed exports from the GPP Export Project are consistent with the public interest under section 3(a) of the NGA, 15 U.S.C. 717b(a). In support of this position,

59 See id. at 9-10.
60 See id. at 10.
GPP relies principally on data from the U.S. Energy Information Administration’s (EIA) Annual Energy Outlook 2012 (AEO 2012), a study by Deloitte MarketPoint (Deloitte MarketPoint or “DMP” Study) commissioned by GPP, and a study by the Perryman Group (Perryman Group or “TPG” Study) also commissioned by GPP.

GPP states that the Deloitte MarketPoint Study is a comprehensive analysis designed to evaluate the price impact of GPP’s proposed exports. According to GPP, the Deloitte MarketPoint Study assesses the impact of exports using a dynamic model that accounts for changing supply, and includes a forecast of robust U.S. natural gas demand.

GPP states that the Perryman Group Study quantifies the expected socioeconomic impacts—specifically, the potential gains in business activity—from GPP’s proposed exports in Jefferson County, Texas; the surrounding region; and the nation as a whole. GPP maintains that the information presented in the Perryman Group Study further supports its conclusion that GPP’s proposed exports are consistent with the public interest.

GPP asserts that the GPP Export Project will create jobs, develop industry, enhance regional and national economic growth, enhance the energy security of the United States, promote international trade and improve U.S. balance of trade, and foster stronger relationships with other countries. In support of this position, GPP addresses the following factors:

64 GPP App. at 16.

65 See id. at 25.
adequacy of domestic supply of natural gas; (ii) potential effect on domestic natural gas prices; (iii) public benefits; (iv) domestic energy security; and (v) international impacts.

A. Adequacy of Domestic Supply

GPP contends that its proposed exports would not conflict with public need for the natural gas because the U.S. resource base is sufficient to meet both GPP’s requested export volume and future U.S. domestic demand. GPP states that, by helping to create demand for natural gas, its proposed exports will provide much-needed support for ongoing supply development, promotion of long-term supply stability, and enhancement of domestic energy security—all criteria that DOE/FE considers in its public interest analysis. GPP further notes that, in prior LNG export orders, DOE/FE has historically evaluated the volume of exports in relation to the total volume of natural gas resources. GPP contends that, in light of the “dramatic” recent increase in domestic natural gas resources, sufficient resources exist to satisfy both domestic demand and its proposed exports.

First, GPP states that EIA’s AEO 2012 projects natural gas demand to grow at a modest pace of 0.4 percent per year from 2012 to 2035, with more than 65 percent of that growth coming from the power generation sector. GPP contends that, under this scenario, its proposed exports would represent approximately less than 3 percent of total U.S. demand for natural gas in 2035.

Second, GPP states that the Deloitte MarketPoint Study highlights the abundance of natural gas supply available to both domestic needs and LNG exports, including GPP’s proposed exports, under a variety of export scenarios. According to GPP, Deloitte MarketPoint projected

66 See id. at 14.
67 Id. at 15.
68 See id. at 15.
natural gas demand for U.S. power generation far greater than the AEO 2012 outlook. Deloitte MarketPoint’s natural gas demand outlook is also higher than the AEO 2012 outlook, which (according to GPP) reflects the favorable characteristics of natural gas in the power generation sector. GPP asserts that, even under the highest domestic demand scenarios, the Deloitte MarketPoint Study projects development of necessary supply to fuel substantial growth in both domestic demand and LNG exports, at levels that exceed growth in EIA’s AEO 2012 outlook.

According to GPP, EIA’s own studies have demonstrated that the U.S. total natural gas recoverable resource base has increased significantly in recent years. GPP notes that AEO 2012 demonstrates that domestic natural gas supply—as measured by proved natural gas reserves—has increased over the past decade, with the total natural gas recoverable resource base having increased from 1,600 trillion cubic feet (Tcf) in 2005 to 2,203 Tcf in 2012, while production only increased from about 22 Tcf in 2005 to over 24 Tcf in 2011.

Finally, GPP asserts that LNG exports encourage and stabilize U.S. natural gas developments. GPP states that, under the AEO 2012 Reference case, U.S. natural gas production will exceed consumption early in the next decade, and emphasizes that this projection includes increased LNG exports. GPP states that LNG exports can provide a new market for U.S. production that otherwise would be slower to develop, as well as provide an additional outlet for growing domestic natural gas supplies. Relying on the Deloitte MarketPoint Study, GPP concludes that LNG exports are “not likely to induce scarcity, shortage or any significant

69 See id. at 16.
70 GPP App. at 16.
71 See id. at 17.
72 See id. at 17–18 (internal citations omitted).
73 See id. at 19.
74 Id. at 19-21.
deleterious effect on domestic markets,’” and that “[i]ncremental exports from GPP represent a small percentage of the U.S. market.”

B. Impact on Domestic Natural Gas Prices

GPP asserts that its proposed LNG exports will have a minimal effect on U.S. natural gas prices. GPP notes that, in the *Sabine Pass* order (DOE/FE Order No. 2961), DOE/FE found that the studies introduced by Sabine Pass indicated a modest increase in the domestic market price for natural gas through 2035, which DOE/FE determined was not inconsistent with the public interest. GPP contends that the Deloitte MarketPoint Study demonstrates that the potential domestic price effects caused by its proposed LNG exports “are comparable,” and thus supports GPP’s assertion that its proposed LNG exports are not inconsistent with the public interest.

GPP contends that, given the complex nature of the natural gas industry, it is challenging to accurately project future prices. However, GPP asserts that the potential price effect of LNG exports is mitigated by a vast, low-cost domestic resource base, and exports should not materially increase production costs. GPP cites the Deloitte MarketPoint Study’s conclusion that “‘the domestic resource base is large enough to absorb the incremental volumes required by LNG exports without a significant increase to future production costs.’” GPP asserts that, although many factors ultimately will determine actual prices, the Deloitte MarketPoint Study projects that GPP’s proposed exports would have a “modest effect” on domestic natural gas pricing.

75 *Id.* at 20 & n.4 (quoting Deloitte MarketPoint Study at 4).
76 See GPP App. at 21.
77 *Id.*
78 *Id.* at 22 (quoting Deloitte MarketPoint Study at 4).
79 *Id.* at 22-23.
GPP contends that U.S. producers are expected to respond to the long-term signals of increased demand with cost-effective new supplies. GPP argues that any analysis of the price effect of LNG exports must include recognition of the effect of the supply-demand dynamic. According to GPP, increased demand, and the effect of demand increases on the anticipated forward market, will incentivize producers to develop resources. GPP therefore contends that producers will factor into their decision-making the increased demand due to LNG exports.80

GPP also maintains that the United States is expected to remain an efficient and well-supplied natural gas market. GPP states that, due to the level of North American natural gas resources compared to any reasonable expectation of demand, the Deloitte MarketPoint Study concludes that domestic consumers will not be exposed to overseas LNG prices.81

C. Public Benefits

GPP states that the proposed GPP Export Project will create significant public benefits. GPP asserts that the Export Project will require an approximately $10 billion investment in infrastructure. This investment, in turn, will generate billions of dollars of economic growth at local, state, and national levels and billions of dollars in tax revenues to local, state and federal governments.82 GPP commissioned the Perryman Group Study to quantify the socioeconomic impacts of the proposed GPP Export Project at the local, regional, and national levels. According to GPP, the results of the Perryman Group Study demonstrate that the proposed exports will generate substantial direct and indirect gains through both the planning and construction phase of the GPP Export Project and during the term of on-going operations.83

80 See id. at 24.
81 Id. at 24.
82 GPP App. at 25.
83 See id.
GPP states the Perryman Group Study estimates that the GPP Export Project will generate tens of thousands of new jobs for American workers across the country. For example, in Jefferson County, the GPP Export Project is estimated to create the equivalent of approximately 9,000 average annual direct and indirect jobs over the construction phase.\(^{84}\) Once construction is complete, the Perryman Group Study estimates the GPP Export Project will create the equivalent of 3,800 average annual direct and indirect jobs for the requested 25-year life of the facility.\(^{85}\) In Jefferson County alone, the Export Project is estimated to create the equivalent of approximately 2,600 annual direct and indirect jobs over the life of the facility.\(^{86}\)

Citing the Perryman Group Study, GPP asserts that more than 50,000 permanent jobs will be created in a typical year by the additional natural gas exploration and production required to supply the GPP Export Project. Further, the Perryman Group Study projects that increased natural gas liquids due to exports of LNG have the potential to support new investments in the petrochemical industry, leading to an additional 40,000 direct and indirect permanent jobs in the United States.\(^{87}\)

GPP further states that the GPP Export Project will contribute to critical U.S. efforts to expand international trade, including the type of job creation promoted in the National Export Initiative (NEI) established by Executive Order on March 11, 2010.\(^{88}\) At the same time, GPP contends that the proposed exports will have a negligible effect on U.S. customers. The Perryman Group Study, for example, projects that typical U.S. household utility bills will

\(^{84}\) See id. at 26.

\(^{85}\) See id. at 23, 26.

\(^{86}\) See id.

\(^{87}\) See id. at 27.

\(^{88}\) GPP App. at 28 (citing National Export Initiative, 75 Fed. Reg. 12,433 (Mar. 16, 2010)).
experience an increase in residential natural gas bills amounting to approximately 1.1 percent or less.

According to GPP, its Export Project and other LNG export projects can significantly benefit the petrochemical industry and its customers. As natural gas supplies increase to meet LNG export demand, the amount of available natural gas liquids extracted during LNG production and conversion will similarly increase, making the U.S. petrochemical industry more competitive. GPP contends that the economic benefits associated with its Export Project (and other new LNG facilities) would extend beyond the petrochemical industry. Citing the Perryman Group Study, GPP asserts that the GPP Export Project would contribute approximately $31 billion in U.S. gross product (GDP) across the construction and operations of the facility. GPP contends that this economic benefit would be distributed broadly across the economy.

In sum, GPP contends that the Export Project is positioned to deliver significant local and regional economic benefits, and would provide cumulative tax revenues for federal, state and local governments totaling about $4.6 billion across the life of the GPP Export Project.

D. Domestic Energy Security

GPP asserts that its proposed exports will enhance energy security for the United States by increasing opportunities for the development of domestic energy resources to meet domestic needs and generate the benefits of U.S. LNG exports. GPP also argues that its proposed exports will increase the opportunities for more robust development of energy resources (including natural gas, natural gas liquids, and associated oil resources), which in turn will enhance energy

89 See id. at 29.
90 See id. at 31.
91 See id. at 32-33.
security by reducing the need to import foreign oil and improving the balance of trade, among other benefits.92

\textbf{E. International Impacts}

GPP asserts that the GPP Export Project will have favorable international effects, with resulting benefits for the United States. Citing DOE/FE’s conclusions in \textit{Sabine Pass}, GPP cites the following benefits that it asserts are equally applicable in this proceeding: (i) the promotion of new international markets for natural gas, thereby encouraging the development of additional productive resources in the United States and internationally; (ii) the support of overseas electric power generators to switch away from oil or coal, reducing global emissions of sulfur dioxides, nitrogen dioxides and carbon dioxides; and (iii) the diversification of natural gas supply for certain countries.93 GPP further contends that its proposed exports will help expand the benefits of U.S. trade.94

\textbf{VI. CURRENT PROCEEDING BEFORE DOE/FE}

\textbf{A. Overview}

In response to the Notice of Application published in the \textit{Federal Register} on December 6, 2012, DOE/FE received 11 comments in support of the GPP Export Project. These comments were submitted by: (i) James E. Rich, President of the Greater Beaumont Chamber of Commerce; (ii) William B. McCoy, on behalf of the Port Arthur Chamber of Commerce; (iii) Dr. Paul J. Szuch, President of Lamar Institute of Technology; (iv) the Honorable Jeff R. Branick, County Judge for Jefferson County, Texas; (v) Randall Reese, General Manager, Sabine-Neches Navigation District; (vi) United States Representative Kevin Brady, Member of Congress from

92 See id. at 33-34.
93 See id. at 34-35.
94 GPP App. at 35-36.
Texas; (vii) United States Representative Randy K. Weber, Member of Congress from Texas; (viii) United States Representative Ted Poe, Member of Congress from Texas; (ix) United States Senator Mary L. Landrieu, Louisiana; (x) United States Senator John Cornyn, Texas; and (xi) Deloris “Bobbie” Prince, Mayor of Port Arthur, Texas. DOE/FE received one comment opposing the GPP Export Project, submitted by Jean Public.

DOE/FE also received two timely-filed motions to intervene in this proceeding. Sierra Club and APGA moved to intervene and submitted protests in opposition to the GPP Export Project. GPP filed a consolidated Answer opposing both Sierra Club and AGPA’s motions to intervene and protests. Sierra Club filed a renewed motion to reply and reply in response to GPP’s Answer, and GPP filed a second Answer opposing Sierra Club’s motion to reply and reply.

B. Non-Intervenor Comments Supporting the Application

The non-intervenor comments submitted in support of the GPP Export Project describe the benefits that the GPP Export Project is expected to provide to the State of Texas and to the local economy in Southeast Texas. The non-intervenor commenters supporting the GPP Export Project state that the proposed $10 billion investment by GPP in the Export Project will provide substantial economic development benefits, including the creation of thousands of jobs as well

95 The comment filed by Mayor Prince was received by DOE/FE on February 12, 2013, several days after the February 4, 2013 deadline for the comment period. DOE/FE finds that acceptance of the letter out of time will not prejudice other parties to this proceeding, and therefore accepts Mayor Prince’s letter for filing. See infra § XV.U.
96 Sierra Club, Motion for Leave to Intervene, Protest, and Comments, FE Docket No. 12-156-LNG (Feb. 4, 2013) [hereinafter Sierra Club Mot.].
97 American Public Gas Ass’n, Motion for Leave to Intervene and Protest, FE Docket No. 12-156-LNG (Feb. 4, 2013) [hereinafter APGA Mot.].
98 Golden Pass Products LLC, Answer to Motions to Intervene and Protests, FE Docket No. 12-156-LNG (Feb. 28, 2013) [hereinafter GPP Answer].
99 Sierra Club, Renewed Motion to Reply and Reply, FE Docket No. 12-156-LNG (Mar. 14, 2013) [hereinafter Sierra Club Reply].
100 Golden Pass Products, Answer to Motion to Reply and Reply, FE Docket No. 12-156-LNG (Apr. 1, 2013) [hereinafter GPP Answer II].
as the generation of millions of dollars in increased tax revenues and billions of dollars in enhanced economic activity at the local, state, and national levels. Representative Randy Weber asserts, for example, that the GPP Export Project will create over 40,000 jobs both in and out of the oil and natural gas industry. Representative Weber and Representative Kevin Brady both assert that the GPP Export Project will yield lasting economic benefits for Texas and the rest of the country. Representative Ted Poe and Mayor Prince, among others, maintain that adding export capabilities to the existing Golden Pass LNG Terminal will create operating sustainability, which in turn will protect existing jobs and investment while positioning the economy for future growth. Mr. Randall Reese further attests to the long-standing, productive relationship between GPP and the Sabine-Neches Navigation District, and asserts that GPP’s economic growth will lead to significant investment in the economic development of the region and improvements in the quality of life of Jefferson County residents.

Several commenters, including Representatives Brady, Weber, and Poe, as well as then-Senator Mary Landrieu, emphasize that constructing the GPP Export Project on the existing industrial footprint of the Golden Pass LNG Terminal will minimize the impact on the environment and local community. The Honorable Jeff Branick and Mr. Randall Reese further note that Jefferson County has benefited from GPP’s ongoing operations through the company’s investments in community development, environmental restoration, and hurricane relief efforts. United States Senator John Cornyn also notes that exporting natural gas represents an opportunity to enhance diplomatic and strategic relations between the United States and importing countries.

C. Non-Intervenor Comment Opposing the Application

Jean Public submitted a comment in opposition to the GPP Export Project. Ms. Public states that DOE should deny the export of any natural gas from the United States at any time. In
her view, the United States suffers from environmental pollution related to the production of natural gas. Ms. Public further suggests that the United States, not foreign countries, should benefit from U.S. natural gas reserves. In Ms. Public’s view, the way to ensure this benefit for Americans is to keep the natural gas in the United States for domestic use, rather than exporting it.

D. Sierra Club’s Motion to Intervene, Protest, and Comments

On February 4, 2013, Sierra Club filed a motion to intervene, protest, and comments opposing the GPP Export Project.101 Sierra Club states that its members live and work throughout the area that will be affected by the GPP Export Project, including in the regions adjacent to the proposed facility and any associated infrastructure. Additionally, Sierra Club states that its members live in the domestic natural gas fields that will likely see increased production as a result of GPP’s exports, and that its members everywhere will be affected by increased natural gas prices resulting from the proposed exports.102 Specifically, Sierra Club states that, as of January 2013, it had 22,089 members in Texas and 601,141 members overall. Sierra Club states that its members have vital economic, aesthetic, spiritual, personal, and professional interests in the proposed GPP Export Project.103

Sierra Club contends that the GPP Export Project is not in the public interest and is not supported by adequate environmental and economic analysis, as is required to satisfy the NGA and NEPA.

101 Sierra Club Mot. at 1.
102 See id. at 1.
103 See id. at 2.
1. Alleged Need for Full Environmental Impact Statement

Sierra Club asserts that, while the NGA designated FERC as the “lead agency” for NEPA purposes, DOE/FE cannot proceed with the GPP Export Project until the NEPA process is completed and properly considered.104 Sierra Club states that DOE/FE must prepare a separate EIS if the NEPA analysis FERC prepares in its capacity is inadequate to inform DOE/FE’s decision or discharge DOE/FE’s separate NEPA obligations.105 Sierra Club further contends that a programmatic EIS is appropriate here.106

Sierra Club asserts that DOE/FE must consider the GPP Export Project against the backdrop of significant export applications pending before DOE/FE and already approved, which allegedly already includes significant environmental and economic impacts.107 Sierra Club asserts that the GPP Export Project would have severe adverse environmental impacts “plainly surpassing the threshold of ‘significance’ that mandates preparation of a full EIS.”108 Sierra Club states LNG exports will induce additional natural gas production that, every year, will potentially emit millions of tons of methane pollution, emit thousands of tons of VOC and hazardous pollutants, and require hundreds of millions of tons of fresh water.109 For these reasons, Sierra Club contends that there is a “substantial question” as to whether the GPP Export Project would have a significant impact on the environment, and thus DOE/FE is required to conduct an EIS.110

Sierra Club next asserts that the NGA and NEPA, as well as the Endangered Species Act, require DOE/FE to consider GPP’s Application in the context in which the proposed Export

104 See id. at 7.
105 Id.
106 Id. at 8-9.
107 Sierra Club Mot. at 10.
108 Id.
109 Id. at 11.
110 Id.
Project will occur. Therefore, according to Sierra Club, DOE/FE must consider the cumulative effects of all pending export proposals, and DOE/FE can best conduct this analysis in the context of a programmatic EIS that considers the impacts of all natural gas export proposals all at once.111

Sierra Club argues that NEPA and the NGA require DOE/FE to consider a broad range of alternatives to the GPP Export Project, including but not limited to: whether DOE/FE should allow LNG exports but on a smaller-scale and a slower time-table; whether the source of exported natural gas should be restricted to certain plays, formations, or regions; whether to delay, deny, or condition exports based upon their effect on the U.S. utility market; and whether to deny export proposals altogether as contrary to the public interest.112

2. Alleged Economic Impacts from the Requested Authorization

Addressing economic consequences associated with the GPP Export Project, Sierra Club broadly contends that the proposed exports will increase domestic natural gas and energy prices and “are likely to depress the rest of the national economy, reduce employment overall (or, at best, have almost no positive effect upon it), and deepen national and regional dependence on fossil fuel extraction strategies that have been shown to damage economic growth and diversity.”113

Sierra Club contends that the 2012 EIA Study shows that, as natural gas exports increase, so do domestic gas prices—often quite sharply. Sierra Club also notes that the 2012 NERA Study, despite being “deeply flawed,” demonstrates that the economy-wide price increases caused by LNG exports translate into economic decline for all sectors that do not hold natural

111 Id.
112 See id. at 13.
113 Sierra Club Mot. at 14.
gas export capital, including the vast majority of Americans, through reduced GDP and real income.

Sierra Club further contends that DOE/FE cannot rely on the 2012 NERA Study’s broad conclusion that the United States will experience net economic benefits from LNG exports. Sierra Club states that this conclusion rests on a forecast of net GDP growth. Sierra Club submits that other economic studies—such as a working paper prepared by Purdue University economist Wallace E. Tyner—found that exports would cause a net reduction in GDP once all impacts on other sectors are accounted for.114

Sierra Club also notes that it prepared a detailed analysis of the NERA and EIA studies, and commissioned independent economists at Synapse Energy Economics to evaluate the implications of LNG exports. Sierra Club notes these studies raise several key points DOE/FE should consider, including (but not limited to): (i) LNG exports cause economic declines in all other sectors and are linked to unemployment; (ii) LNG exports reduce income and wages to most Americans; (iii) reports of economic benefits associated with LNG exports ignore significant costs, particularly significant economic disruptions and dislocations associated with resource “booms”; and (iv) dependence on fossil fuel extraction and export is strongly associated with economic decline, also known as the “resource curse” in natural gas production areas.115

Sierra Club contends that these studies demonstrate that a rise in natural gas prices will cause increased prices for domestic consumers, reduced employment overall, and harm to manufacturing industries and the jobs they support.116

114 See id. at 15.
115 Id. at 15-17.
116 See id.
Next, Sierra Club argues GPP’s own economic reports fail to demonstrate that the GPP Export Project in in the public interest. Sierra Club states that the Deloitte MarketPoint Study projects significant price increases in natural gas price from LNG exports, yet fails to demonstrate such price increases are justified by corresponding public benefits.117 Sierra Club maintains the Deloitte MarketPoint Study is unreliable because it calculates low export volumes, speculatively asserts benefits to one segment of the U.S. economy, and fails to consider price impacts on the larger economy in any rigorous way or any economic alternatives to LNG exports, including whether exports do not move forward.118

Similarly, Sierra Club asserts that the Perryman Group Study “suffers from essentially the same failure” as the Deloitte MarketPoint Study: “It does not consider the economic situation without Golden Pass but with alternate economic choices.”119 Specifically, Sierra Club contends that, in focusing on the economic benefits associated with the GPP Export Project, the Perryman Group Study does not show that LNG exports are superior to an economic scenario in which exports do not occur—i.e., an alternate, non-export project of similar size, such as increased development of domestic industry.

Likewise, according to Sierra Club, the Perryman Group Study fails to address that increasing natural gas development comes with long-term economic dislocation and reduced growth.120 Sierra Club criticizes the Perryman Group Study for using an “input-output” model, which (according to Sierra Club) lead to drastically overstating economic benefits.121 Sierra Club points to a study by Amanda Weinstein and Mark D. Partridge, among others, in arguing

117 See id. at 17-20.
118 See id.
119 Sierra Club Mot. at 21.
120 Id. at 22.
121 See id. at 21.
that input-output models cannot consider these counterfactual scenarios, and thus cannot account for the “significant long-term structural damage to the economy that increasing dependence on fossil fuels would cause.”

Sierra Club also contends that GPP’s claim that the GPP Export Project would benefit the United States and U.S. consumers by expanding international trade is undermined by the depressing effect the GPP Export Project would have on the U.S. manufacturing base.

Sierra Club argues that trade-exposed industries suffer in a future with LNG exports, especially those dependent on natural gas as a fuel or feedstock.

In sum, Sierra Club asserts that the GPP Export Project, alone or considered in tandem with other export approvals, will increase natural gas prices, lower wages, lower employment, and remove wealth from most of the economy, concentrating any gains within the narrow sector of the American economy that owns LNG and natural gas capital. Because GPP’s submissions allegedly claim economic benefits from the GPP Export Project but fail to include any economic costs, Sierra Club contends these submissions do not overcome the record already in this docket demonstrating that exports are in neither America’s economic interest nor in the public interest.

3. Alleged Environmental Impacts of the Requested Authorization

Addressing potential environmental impacts, Sierra Club charges that construction and operation of the GPP Export Project will impose a range of significant environmental impacts.

122 Id. at 21-22 (citing Amanda Weinstein and Mark D. Patridge, The Economic Value of Shale Natural Gas in Ohio, Ohio State University, Swank Program in Rural-Urban Policy Summary & Report (Dec. 2010)).
123 Id.
124 Id.
125 Sierra Club Mot. at 23.
that have not been discussed in GPP’s Application.126 Sierra Club argues that these environmental impacts fall into three categories: (i) direct effects of the GPP Export Project and any associated infrastructure; (ii) indirect effects of the additional natural gas production the GPP Export Project will induce, and (iii) non-localized indirect effects resulting from increased domestic natural gas prices and resulting increases in coal combustion.127

Addressing potential air pollution, Sierra Club charges that construction and operation of the GPP Export Project will emit harmful quantities of carbon monoxide, nitrogen oxides, volatile organic chemicals, and GHGs, and also will likely emit harmful sulfur dioxides and particulate matter. Sierra Club asserts that each of these types of emissions will have injurious environmental and health impacts.128

In addition to air emissions, Sierra Club maintains that the GPP Export Project will likely have deleterious environmental impacts on local water quality, fish and wildlife, and other environmental resources. The likely water impacts identified by Sierra Club include the effects of water withdrawals and wetlands filling necessary for construction of the terminal expansion, additional stormwater runoff from the expanded facility, and discharge and suspension or re-suspension of sediment as a result of dredging and ship transits.129 Sierra Club also expects the GPP Export Project to disproportionately impact citizens of the Gulf Coast region and to impact wildlife and species habitat in numerous ways.130

Furthermore, Sierra Club argues that the GPP Export Project will have environmental impacts greater than the local impacts because the Export Project will induce additional natural

\begin{footnotesize}
\begin{itemize}
\item 126 \textit{Id.}
\item 127 \textit{Id.}
\item 128 \textit{See id. at 24-27.}
\item 129 \textit{See id. at 27.}
\item 130 \textit{Id. at 28.}
\end{itemize}
\end{footnotesize}
gas production in the United States.\footnote{Sierra Club Mot. at 28.} Sierra Club asserts that these impacts are reasonably foreseeable, and that NEPA and the NGA require DOE/FE to consider the effects of this additional natural gas production. In support of this argument, Sierra Club contends that the 2012 EIA Study projected that about 60 to 70 percent of additional demand created by LNG would be met by increases in domestic production, with about three quarters of this increased production coming from unconventional shale sources. Sierra Club further notes that GPP’s Application agrees with this prediction; GPP’s Deloitte MarketPoint Study predicts that about 63 percent of natural gas demand created by exports will be met with new production.\footnote{See id. at 29.}

Sierra Club maintains that available tools enable DOE/FE and GPP to predict where this increased natural gas production will occur, specifically citing the NEMS model employed by EIA in the 2012 EIA Study. Sierra Club contends that GPP’s own Application includes play-specific predictions of how production will increase in response to the GPP Export Project, based on Deloitte’s “World Gas Model,” which is also capable of identifying the geographic region in which additional production will occur.\footnote{See id. at 27.}

Next, Sierra Club argues that induced production must be considered in the NEPA and NGA analyses. Sierra Club states that NEPA regulations, applicable case law, and recent EPA scoping comments all call for DOE/FE to consider the environmental effects of induced production because “induced production is not only an effect of the project—it is “part of the justification offered for it” and “is therefore plainly a ‘reasonably foreseeable’ effect” that DOE/FE must analyze and consider.\footnote{See id. at 31.} Sierra Club further states DOE/FE’s order in \textit{Sabine Pass}, which accepted and adopted FERC’s determination that induced shale gas production is
not a reasonably foreseeable effect of LNG exports for NEPA purposes, should not be the basis for future DOE/FE LNG export decisions because that order contains factual and legal errors identified by Sierra Club.135

Sierra Club asserts that much of the induced production will come from shale gas and other unconventional sources, citing the 2012 EIA Study for EIA’s projection that 72 percent of the increased production will come from shale gas, 13 percent from tight gas, and 8 percent from coalbed sources.136

Sierra Club states that air pollution is emitted during all stages of natural gas production. Sierra Club claims that natural gas production operations emit methane (CH$_4$), volatile organic compounds (VOCs), nitrogen oxides (NOx), sulfur dioxide (SO$_2$), hydrogen sulfide (H$_2$S), particulate matter (PM), and significant quantities of hazardous air pollutants (HAPs) that contribute to cancer risks and other acute public health problems.137

Sierra Club asserts that methane is the dominant pollutant from the oil and gas sector, and that EPA has identified natural gas systems as the largest contributor to anthropogenic methane emissions in the United States. Sierra Club argues that methane is a potent greenhouse gas that substantially contributes to global climate change.

Sierra Club states that the natural gas industry is also a major source of VOCs and NOx. Sierra Club asserts that, as a result of significant VOC and NOx emissions associated with oil and gas development, numerous areas of the country with heavy concentrations of drilling are now suffering from serious ozone problems. Sierra Club identifies the Dallas-Fort Worth area in Texas, the Wyoming Upper Green River Basin, and the Uintah Basin in Northeastern Utah in

135 See id. at 32-34.
136 See id. at 34.
137 Sierra Club Mot. at 35.
particular as ozone non-attainment areas where there is a significant concentration of oil and gas production activities. As another example, Sierra Club states that, in 2008, the Colorado Department of Public Health and Environment concluded that the smog-forming emissions from oil and gas operations exceeded vehicle emissions for the entire state. According to Sierra Club, significant development in the San Juan Basin in southeastern Colorado and northwestern New Mexico, in combination with several coal-fired power plants in the vicinity, has caused serious ozone pollution, which in turn has increased emergency room visits in San Juan County, New Mexico associated high ozone levels. Sierra Club states that emissions from oil and natural gas development are also harming air quality in national parks and wilderness areas. Sierra Club asserts that as oil and gas development moves into new areas, particularly as a result of the boom in shale resources, ozone problems are likely to follow. Moreover, Sierra Club charges that VOCs are likely to be co-emitted with HAPs (such as benzene) which are carcinogenic and endocrine disrupters.

Sierra Club argues that oil and natural gas production also emits sulfur dioxide, primarily from natural gas processing plants, and that some natural gas in the United States contains hydrogen sulfide. Sierra Club reports that EPA has concluded that the potential for hydrogen sulfide emissions from the oil and gas industry is “significant.” According to Sierra Club, hydrogen sulfide can be emitted during all stages of development, including exploration, extraction, treatment and storage, transportation, and refining. Sierra Club asserts that, although direct monitoring of hydrogen sulfide emissions is limited, there is evidence that these emissions may be substantial. Sierra Club states that people living near gas wells that have been exposed to hydrogen sulfide have reported eye, nose, and throat irritation, nose bleeds, dizziness, and

\[\text{See id. at 38-41.}\]

\[\text{Id. at 41-42 (citation omitted).}\]
headaches. Although hydrogen sulfide was originally included in the Clean Air Act’s list of hazardous air pollutants, Sierra Club acknowledges that it has since been removed from the list, but disputes that the removal was appropriate.140

Sierra Club states that the oil and gas industry is also a major source of PM pollution, which is generated by heavy equipment used to move and level earth during well pad and road construction. According to Sierra Club, PM emissions from the oil and gas industry are leading to significant pollution problems. For example, according to Sierra Club, monitors in Uintah and Duchesne Counties in Utah have repeatedly measured wintertime PM concentrations above federal standards. Sierra Club maintains that these elevated levels of PM have been linked to oil and gas activities in the Uinta Basin.141

Sierra Club further contends that EPA’s new source performance standards and standards for hazardous air pollutants will not fully address these air pollution problems for a variety of reasons. Sierra Club argues that DOE/FE may not rely on these rules to avoid weighing and disclosing these impacts.142

Focusing on GPP’s requested authorization, Sierra Club argues that the GPP Export Project will induce significant production-related air emissions. Specifically, Sierra Club asserts that GPP’s proposed exports of 740 Bcf/yr will correspondingly induce approximately 740 Bcf/yr of new natural gas demand.143 Assuming a 1.0 percent leak rate, this new natural gas demand allegedly will be responsible for the incremental emission of 96,920 tons per year (tpy) of methane, 14,148 tpy of VOCs, and 1,028 tpy of hazardous air pollutants (HAPs).144

140 See id. at 41-43 & n.166.
141 See id. at 42-43.
142 Id. at 43-44.
143 See id. at 44.
144 See Sierra Club Mot. at 43-44 & Table 1.
Club states that GPP would be responsible for hundreds of thousands of tons of increased air pollution.

Sierra Club argues that natural gas production also poses risks to ground and surface water. Sierra Club notes that most of the increased production will involve hydraulic fracturing, a process of injecting various chemicals into gas-bearing formations at high pressures to fracture rock and release natural gas. According to Sierra Club, each step of this process presents a risk to water resources. Sierra Club states that hydraulic fracturing requires large quantities of water and that the large water withdrawals could drastically impact aquatic ecosystems and human communities. Sierra Club also contends that hydraulic fracturing poses a serious risk of groundwater contamination from the chemicals added to the drilling mud and fracturing fluid and from naturally occurring chemicals in deeper formations mobilized during the hydraulic fracturing process. Sierra Club asserts that contamination can occur through several methods, including where the well casing fails or where the fractures created through drilling intersect an existing, poorly sealed well. Sierra Club asserts that hydraulic fracturing has resulted in groundwater contamination in at least five documented instances. According to Sierra Club, EPA has investigated groundwater contamination likely resulting from hydraulic fracturing in Pavillion, Wyoming, and Dimock, Pennsylvania, concluding that surface pits previously used for storage of drilling wastes and produced/flowback waters were a likely source of contamination for shallower waters, while hydraulic fracturing likely explained deeper contamination.145

Sierra Club states that natural gas production, particularly hydraulic fracturing, produces liquid and solid wastes, including drilling mud, drill cuttings, “flowback” (the fracturing fluid that returns to the surface after the hydraulic fracturing is completed), and produced water (a

145 See id. at 45-51.
mixture of water naturally occurring in the shale formation and lingering fracturing fluid). Sierra Club argues that these wastes must be managed and disposed. Sierra Club states that drilling mud, drill cuttings, flowback, and produced water are often stored on site in open pits that can have harmful air emissions, can leach into shallow groundwater, and can fail and result in surface discharges. Sierra Club also notes that flowback and produced water must be disposed offsite, with a common method being underground injection wells. Sierra Club claims that underground injection of hydraulic fracturing wastewater appears to have induced earthquakes in several regions—a phenomenon known as induced seismicity.146

In addition to the air and water pollution impacts of natural gas production, Sierra Club argues that increased natural gas production will transform the landscape of regions overlying shale gas plays, bringing industrialization to previously rural landscapes and significantly affecting ecosystems, plants, and animals. According to Sierra Club, land use disturbance associated with natural gas development impacts plants and animals through direct habitat loss (where land is cleared for natural gas uses) and indirect habitat loss (where adjacent land loses some of its important characteristics).147

Sierra Club states that, in addition to the above-described production-related impacts, the GPP Export Project will increase air pollution by increasing the amount of coal used for domestic electricity production. Citing the 2012 EIA Study, Sierra Club states that exports will cause natural gas prices to rise, leading to increased electricity generation from coal. Specifically, Sierra Club maintains that EIA projected that 72 percent of the decrease in natural gas-fired electricity production due to gas exports will be replaced by coal-fired production, which, according to Sierra Club, will increase emissions of both traditional air pollutants and

146 See id. at 51-53.
147 See id. at 53-56.
greenhouse gases.148 Sierra Club urges DOE/FE to take a hard look at the change in domestic GHG emissions that would result.149

Additionally, Sierra Club argues that LNG exports will increase greenhouse gas emissions not only domestically but also internationally. Sierra Club contends that a recent study by the International Energy Agency predicts that international trade in LNG will lead many countries to use natural gas in place of renewable energy (instead of displacing fossil fuels), and to increase their levels of energy consumption.150 Additionally, Sierra Club claims that the liquefaction, transportation, and regasification process is energy intensive and increases the lifecycle GHG emissions of LNG compared to methods of consumption where the natural gas remains in a gaseous phase. Sierra Club argues that, for these reasons, LNG has little, if any, advantage over coal, and thus it is unlikely LNG exports would reduce global GHG emissions.151

In conclusion, Sierra Club contends that the GPP Export Project would cause or contribute to serious negative environmental consequences which are not in the public interest, including serious air, water, waste, and land use impacts. Because none of these consequences are in the public interest, Sierra Club argues DOE/FE must not approve the GPP Export Project.152

\textbf{E. APGA’s Motion to Intervene and Protest}

APGA filed a Motion for Leave to Intervene and Protest on February 4, 2013. APGA is a national non-profit association of publicly-owned natural gas distribution systems, with approximately 700 members in 36 states. APGA states that its membership covers 950 not-for-

148 See id. at 56-58.
149 See id. at 57.
150 Sierra Club Mot. at 59.
151 See id. at 59-63.
152 Id. at 63.
profit retail distribution entities that are owned by, and accountable to, the citizens they serve, including municipal gas distribution systems, public utility districts, county districts, and other public agencies that have natural gas distribution facilities. APGA maintains that its members are active participants in the domestic market for natural gas where they secure the supplies of natural gas to serve their end users. APGA states that it has a direct and substantial interest in this proceeding that cannot be adequately represented by any other party.

In protesting the GPP Export Project, APGA asserts that GPP’s request for authority to export domestic LNG to non-FTA countries is inconsistent with the public interest and should be denied. APGA argues that the GPP Export Project will increase domestic natural gas prices, burdening households and jeopardizing potential growth in the U.S. manufacturing sector, as well as the transition away from more environmentally damaging fossil fuels.153

APGA first argues that the EIA 2012 Study, conducted as part of DOE’s 2012 LNG Export Study, concluded that LNG exports will increase prices, with higher volumes causing more drastic increases. APGA points out that the NERA Study, also part of DOE’s 2012 LNG Export Study, found that exports would yield net positive economic benefits but would raise domestic natural gas prices. According to APGA, these price increases would burden the U.S. consumers who can least afford the increase and disadvantage domestic manufacturing. APGA argues that DOE/FE must go beyond the EIA and NERA Studies to consider the tradeoffs entailed by exporting an increasingly valuable U.S. fuel, rather than supporting and enhancing the use of natural gas domestically.154

APGA points out that, as of February 4, 2013, DOE/FE had received 22 applications for LNG export authority to FTA or non-FTA countries. APGA states that the total applied for

153 APGA Mot. at 3.

154 Id. at 3-4.
export capacity (to both FTA and non-FTA countries) would increase the demand for natural gas by roughly 48 percent. APGA contends that authorization of this large quantity for export will have an impact on natural gas demand, will increase domestic natural gas and electricity prices, will inhibit the United States’ ability to forge a path toward energy independence, and will undermine sustained economic growth in key manufacturing sectors.

APGA states that the current increased production of natural gas and resulting low prices of natural gas in the United States provides the nation with an unprecedented opportunity to pursue energy independence and sustained economic growth through a manufacturing renaissance grounded in plentiful, low cost natural gas. Price increases due to exports, APGA contends, will both: (i) jeopardize the viability of natural gas as a “bridge fuel” in the transition away from carbon-intensive coal-fired electric generation, and (ii) inhibit efforts to foster natural gas as a major transportation fuel. APGA claims that these steps are necessary to wean the United States from its dependence on foreign oil.

APGA contends that new environmental regulations will soon force the retirement of coal-fired power plants, and that future greenhouse gas regulations could cause additional retirements in the future. Sustained low prices for natural gas, according to APGA, will help to keep electricity prices from spiking higher during this transition period. According to APGA, spiking electricity prices will have adverse rippling effects on the U.S. economy, especially on cost-sensitive manufacturing.

At the same time, APGA contends that the GPP Export Project will not prove economically viable. APGA states that foreign alternatives will soon remove the price arbitrage

155 See id. at 4
156 See id. at 5-6.
157 See id. at 4, 6, 8, 10.
158 See id. at 12.
opportunity that GPP (and others) seek to take advantage of, as natural gas reserves from shale formations and export capacity expand around the globe. According to APGA, as other nations develop their resources and export capacity and as U.S. natural gas prices increase due to the GPP Export Project, international and domestic prices will converge. This, in turn, will “leave the U.S. with the worst of all worlds, i.e. higher domestic prices that thwart energy independence and that undermine the competitiveness of the manufacturing sector that relies heavily on natural gas a process fuel.”

F. GPP’s Consolidated Answer to APGA’s and Sierra Club’s Motions to Intervene, Protest, and Comments

On February 28, 2013, GPP filed its consolidated Answer to Sierra Club’s and APGA’s motions to intervene and protest. GPP asserts that DOE/FE should not grant intervention to Sierra Club or APGA because neither organization demonstrated an interest in this proceeding. GPP further urges DOE/FE to reject the arguments presented in APGA’s and Sierra Club’s protests because they are without merit. GPP states that both Protestors fail to rebut the statutory presumption that the GPP Export Project is in the public interest. GPP further argues that Sierra Club raises environmental issues that are not relevant to the issues before DOE, including general environmental issues that are substantially beyond the reasonably foreseeable impact of the GPP Export Project. GPP accordingly contends that DOE/FE should deny APGA’s and Sierra Club’s motions to intervene and promptly approve the GPP Export Project.

159 APGA Mot. at 13-16.
160 GPP Answer at 1.
161 Id. at 1-2, 5-7.
1. Sierra Club’s Interest in the Proceeding

GPP states that DOE/FE should deny Sierra Club’s Motion to Intervene because Sierra Club’s affidavit does not establish any potential “aggrievement” that would establish Sierra Club’s standing to challenge this order.162 GPP further contends that, although Sierra Club claims its interest is based on the purported connection between GPP’s proposed LNG export and the asserted use of unconventional natural gas production techniques, Sierra Club cannot show that any particular production activity would not have occurred but for the export authorization—or, conversely, that denial of GPP’s export authorization would prevent any unconventional production from occurring.163 Consequently, GPP contends DOE/FE should deny Sierra Club’s Motion to Intervene.

2. APGA’s Interest in the Proceeding

GPP argues that DOE/FE should deny APGA’s Motion to Intervene because APGA does not cite any specific interest that relates directly to the proposed GPP Export Project. GPP maintains that APGA’s arguments relate only generally to DOE/FE’s natural gas export policy and domestic natural gas production.

3. Applicable Legal Standard

According to GPP, the Protestors fail to rebut the statutory presumption that the GPP Export Project is in the public interest. Rather, GPP charges that the Protestors are merely stating their general opposition to all natural gas exports. GPP contends that almost all of the exhibits submitted by Sierra Club are irrelevant to the GPP Export Project.164

162 See id. at 7-8.
163 Id. at 8-9.
164 Id. at 10-11.
GPP further contends that the Protestors have misstated the applicable legal standard under NGA section 3. GPP notes that section 3(a) of the NGA establishes a rebuttable presumption that a proposed export of natural gas is in the public interest, and that DOE/FE must grant an export application unless the export is found to be inconsistent with the public interest. GPP states that any opponents of an export application must make an affirmative showing of inconsistency with the public interest in order to overcome the rebuttable presumption favoring export applications.165 GPP asserts that Sierra Club and APGA fail to “come close to overcoming the statutory presumption” because they failed to submit evidence to rebut this statutory presumption and confined their protests to general criticisms of the supporting studies GPP submitted as well as “unsupported speculation about implausible and unrealistic potential impacts.”166

4. Protestors’ Challenges to GPP’s Deloitte MarketPoint Study

GPP argues that Protestors’ challenges to the price impact study (i.e., the Deloitte MarketPoint Study) are unsupported and based on unfounded speculation. GPP asserts that—contrary to Sierra Club’s assertion—DOE/FE may take into consideration market forces in determining whether a proposed LNG export is in the public interest.167

GPP also argues it had supported its contention that the GPP Export Project would not adversely affect the adequacy of domestic supply to meet demand with a comprehensive analysis, and may in fact provide a new market for U.S. production that would have otherwise been slow to develop. GPP disputes Sierra Club’s assertion that the EIA recently drastically reduced its estimates of total natural gas supplies by 40 percent, stating that this reduction

165 Id. at 11-12.
166 GPP Answer at 13.
167 Id. at 13-14.
applied to the subset of “unproved reserves,” not “proved reserves” or total natural gas supplies.\ref{footnote168}

GPP next contends that the Deloitte MarketPoint Study amply supports its contention that the GPP Export Project will not significantly affect domestic gas prices, and presents a rigorous assessment of the economic and related impacts of the proposed exports. GPP disputes APGA’s argument that the GPP Export Project will increase prices to consumers, thereby harming residential consumers and discouraging the growth of industrial manufacturing as well as electric power generation based on natural gas. GPP argues that APGA offers nothing but speculation for its assertion that various trends—LNG exports, lower natural gas prices in importing countries, and global shale gas development—would result in convergence to a global price for natural gas.\ref{footnote169}

Next, GPP contends that Sierra Club’s contention that the Deloitte MarketPoint Study documents significant price increases, even at far lower export levels than may occur, misrepresents the Study’s analysis and conclusions. GPP also challenges Sierra Club’s argument that the Study does not provide a valid basis for evaluation because GPP assumed only its exports would move forward when considering price impacts. GPP contends DOE/FE may consider the likelihood that actual LNG export levels will be well below the aggregate export capacity for which applications have been filed, noting that “simply because export applications are filed does not mean that all authorized exports will in fact occur.”\ref{footnote170}

\footnotetext[168]{Id. at 14-17.} \footnotetext[169]{Id. at 17-20.} \footnotetext[170]{Id. at 20-21.}
5. Economic Benefits

GPP next contends that neither the Sierra Club nor APGA rebutted GPP’s evidence of economic benefits. GPP states that its Application included evidence of substantial, long-term economic benefits that would result from the GPP Export Project in the economic study prepared by the Perryman Group. GPP contends that neither Sierra Club nor APGA presented any evidence to directly rebut the Perryman Group Study’s fact-based analysis and conclusions. GPP argues that the two studies cited by Sierra Club in its Protest are not a direct response to that Study’s analysis and have no direct relevance to the GPP Export Project. GPP also cites the detailed analysis performed in the Perryman Group Study, which GPP contends demonstrate significant economic benefits during both construction and ongoing operations.171

6. DOE/FE’s NEPA Analysis of Environmental Impacts

GPP next challenges Sierra Club’s argument that NEPA requires DOE/FE to consider the environmental impacts from the construction and operation of GPP’s export facilities, the indirect effects of increased gas production, and the non-localized effects of increased gas prices and the increase in coal consumption that Sierra Club predicts will results. GPP asserts that Sierra Club’s comments do not focus specifically on the GPP Export Project, but instead mount a general attack on unconventional natural gas production.172

First, GPP argues that Congress unambiguously assigned NEPA environmental review responsibilities for natural gas exports to FERC, and that the FERC EIS process will afford the Protestors ample opportunity to voice their environmental concerns and DOE/FE (as a cooperating agency) the ability to discharge both its NGA section 3 and NEPA responsibilities. GPP charges that all of the environmentally-related objections raised by Sierra Club in its Protest

171 Id. at 21-24.
172 GPP Answer at 24-25.
either lack a legal foundation or will be considered in a different forum, and ignore the fact that FERC is the lead agency in the NEPA process for LNG export applications. Consequently, GPP contends that, as long as FERC examines all reasonably foreseeable impacts of the exports it approves, DOE/FE is not required to conduct an independent NEPA analysis of the GPP Export Project that is broader (such as a programmatic EIS) or different from the analysis required by FERC.173

Second, GPP argues DOE/FE must reject Sierra Club’s attempts to link induced natural gas production to the environmental review of the GPP Export Project, as both DOE/FE and FERC have already held that the potential for induced natural gas production is neither a “reasonably foreseeable” result of LNG exports, nor an “effect” of LNG exports for purposes of a “cumulative impacts analysis.” GPP contends that Sierra Club’s argument here fails to connect the GPP Export Project with any specific induced natural gas production. GPP further denies that tools are available to both GPP and DOE/FE to predict where this production will occur as a distortion of GPP’s Application. GPP asserts the models employed in the Deloitte MarketPoint Study and by the EIA have the capability to predict that adequate supply will be available from one or more of a variety of sources, but lack the capability to provide a practical basis for determining the scope of environmental review.174

Third, GPP challenges Sierra Club’s contention that DOE/FE must deny the GPP Export Project based on the purported environmental effects of induced natural gas production attributable to the GPP Export Project. GPP states that the alleged harms identified by Sierra Club are not a “reasonably foreseeable” consequence of the GPP Export Project, and that Sierra Club has failed to address means of mitigating such alleged environmental harms or to

173 Id. at 25-29.
174 Id. at 32-34.
demonstrate why such harmful impacts cannot be addressed by authorities with direct jurisdiction. GPP further notes that DOE/FE does not have authority to grant or deny permission to engage in particular production activities, and contends that Sierra Club’s argument seeks to shift the statutory burden of proof set forth in section 3(a) of the NGA.\footnote{Id. at 34-35.}

In sum, GPP contends that Protestors’ environmental objections are not relevant to the instant proceeding and should have no bearing on the approval of requested authorization.\footnote{Id. at 35.}

G. Sierra Club’s Renewed Motion to Reply and Reply

Sierra Club filed a Renewed Motion to Reply and Reply on March 14, 2013. Sierra Club contends that the public interest test of 15 U.S.C. 717(b) requires DOE/FE to conduct a searching public interest inquiry that places particular attention on environmental issues. Sierra Club restates that some of its members live and work in and around the area that will be affected by the GPP Export Project and that its members have vital personal interests in the proposed GPP Export Project.\footnote{Sierra Club Renewed Mot. at 1-2.}

Sierra Club asserts that the environmental and economic harm that would result from the GPP Export Project are inconsistent with the public interest. Sierra Club argues that DOE/FE has an independent obligation to evaluate the GPP Export Project and may not place “undue reliance” on the statutory presumption in favor of exports.

Sierra Club maintains that the administrative record does not support GPP’s claimed economic benefits, asserting that DOE/FE must take into account cumulative effects of all proposed export terminals when considering any one project. Sierra Club points to the Deloitte MarketPoint Study showing that Henry Hub prices will increase by approximately 2.3 percent if

\footnote{Id. at 34-35.} \footnote{Id. at 35.} \footnote{Sierra Club Renewed Mot. at 1-2.}
the export terminal is authorized, arguing that GPP is intentionally underestimating these figures. According to Sierra Club, DOE/FE must go beyond the 2012 NERA Study to consider other studies in the record that indicate that LNG exports will depress economic growth and raise domestic energy prices.178

Sierra Club further asserts that increased natural gas production will be accompanied by environmental harm which must be substantively considered under the NGA, as well as procedurally under NEPA. Sierra Club contends that DOE/FE cannot reach a public interest determination, or take any action, without a NEPA analysis that considers induced natural gas production.

H. Answer of GPP to Sierra Club’s Renewed Motion to Reply and Reply

GPP submitted its Answer to Sierra Club’s Renewed Motion to Reply and Reply on April 1, 2013. GPP argues, among other points, that Sierra Club’s Renewed Motion to Reply and Reply should be disregarded as untimely and improper under DOE’s regulations. GPP argues that Sierra Club’s motion constitutes an attempt by Sierra Club to rehabilitate its motion to intervene. GPP further asserts that the Reply improperly attempts to insert a study by Charles River Associates into the record on an untimely basis. GPP also states that the study prepared by Wallace Tyner that Sierra Club includes in its Reply has not undergone peer review and is not final, and thus does not provide DOE with the ability to assess its validity.179 For these reasons, GPP contends that Sierra Club’s Motion to Reply should be denied and the Reply disregarded.

178 See id. at 5-7.
179 See GPP Answer II at 1-4.
VII. DOE/FE’S LNG EXPORT STUDIES

A. 2012 LNG Export Study

On May 20, 2011, DOE/FE issued Order No. 2961, DOE/FE’s first order conditionally granting a long-term authorization to export LNG produced in the lower-48 states to non-FTA countries. By August 2011, with several other non-FTA export applications then pending before it, DOE/FE determined that further study of the economic impacts of LNG exports was warranted to better inform its public interest review under section 3 of the NGA.

Accordingly, DOE/FE engaged EIA and NERA Economic Consulting to conduct a two-part study of the economic impacts of LNG exports.

First, in August 2011, DOE/FE requested that EIA assess how prescribed levels of natural gas exports above baseline cases could affect domestic energy markets. Using its National Energy Modeling System (NEMS), EIA examined the impact of two DOE/FE-prescribed levels of assumed LNG exports—equivalent to 6 Bcf/d and 12 Bcf/d of natural gas—under numerous scenarios and cases based on projections from EIA’s Annual Energy Outlook 2011 (AEO 2011), the most recent EIA projections available at that time. The new scenarios and cases examined by EIA included a variety of supply, demand, and price outlooks. EIA published its study, Effect of Increased Natural Gas Exports on Domestic Energy Markets, in January 2012. EIA generally found that LNG exports will lead to higher domestic natural gas

181 DOE/FE stated in Sabine Pass that it “will evaluate the cumulative impact of the [Sabine Pass] authorization and any future authorizations for export authority when considering any subsequent application for such authority.” Id. at 33.
184 See id.
prices, increased domestic natural gas production, reduced domestic natural gas consumption, and increased natural gas imports from Canada via pipeline.

Second, DOE contracted with NERA to assess the potential macroeconomic impact of LNG exports by incorporating EIA’s then-forthcoming case study output from the NEMS model into NERA’s general equilibrium model of the U.S. economy. NERA analyzed the potential macroeconomic impacts of LNG exports under a range of global natural gas supply and demand scenarios, including scenarios with unlimited LNG exports. DOE published the NERA Study, Macroeconomic Impacts of LNG Exports from the United States, in December 2012 (NERA Study). Among its key findings, NERA projected that the United States would gain net economic benefits from allowing LNG exports. For every market scenario examined, net economic benefits increased as the level of LNG exports increased.

In December 2012, DOE/FE published a Notice of Availability (NOA) of the EIA and NERA studies (collectively, the 2012 LNG Export Study or Study).185 DOE/FE invited public comment on the Study, and stated that its disposition of the then-pending non-FTA LNG export applications would be informed by the Study and the comments received in response thereto.186 DOE/FE received over 188,000 initial comments and over 2,700 reply comments, of which approximately 800 were unique.187 The comments were posted on the DOE/FE website and entered into the public records of the 15 LNG export proceedings identified in the NOA.188

185 77 Fed. Reg. at 73,627.
186 Id. at 73,628.
187 Because many comments were nearly identical form letters, DOE/FE organized the initial comments into 399 docket entries, and the reply comments into 375 entries. See http://www.fossil.energy.gov/programs/gasregulation/authorizations/export_study/export_study_initial_comments.html (Initial Comments – LNG Export Study) & http://www.fossil.energy.gov/programs/gasregulation/authorizations/export_study/export_study_reply_comments.html (Reply Comments – LNG Export Study).
188 See 77 Fed. Reg. at 73,629 & n.4.
DOE/FE responded to those public comments in connection with the LNG export proceedings identified in the NOA.189

1. Methodology

DOE/FE asked EIA to evaluate the impact of increased natural gas demand, reflecting possible exports of U.S. natural gas, on domestic energy markets using the modeling analysis presented in AEO 2014 as a starting point. DOE/FE requested an assessment of how specified scenarios of increased exports of LNG from the lower-48 states could affect domestic energy markets, focusing on consumption, production, and prices. At DOE/FE’s request, EIA assumed three LNG export scenarios, including exports of:

- 12 Bcf/d, phased in at a rate of 2 Bcf/d each year beginning in 2015;
- 16 Bcf/d, phased in at a rate of 2 Bcf/d each year beginning in 2015; and
- 20 Bcf/d, phased in at a rate of 2 Bcf/d each year beginning in 2015.

EIA noted that the ramp-up specified by DOE/FE for these scenarios is extremely aggressive and intended to provide results that show an outer envelope of domestic production and consumption responses that might follow from the approval of exports beyond 12 Bcf/d. Accordingly, EIA also included a 20 Bcf/d export scenario, applied to the AEO 2014 Reference case, with a delayed ramp-up to identify the impact of higher LNG exports implemented at a slower pace, referred to as the “Alt 20 Bcf/d scenario.”

DOE/FE requested that EIA consider the above scenarios in the context of baseline cases from EIA’s AEO 2014. These five cases are:

- The AEO 2014 Reference case;

189 See, e.g., \textit{Sabine Pass Liquefaction, LLC}, DOE/FE Order No. 3792, at 66-121 (Mar. 11, 2016).
• The High Oil and Gas Resource (HOGR) case, which reflects more optimistic assumptions about domestic natural gas supply than the Reference case;

• The Low Oil and Gas Resource (LOGR) case, which reflects less optimistic assumptions about domestic oil and natural gas supply than the Reference case;

• The High Economic Growth (HEG) case, in which the U.S. gross domestic product grows at an average annual rate 0.4 percentage points higher than in the Reference case, resulting in higher domestic energy demand; and

• The Accelerated Coal and Nuclear Retirements (ACNR) case, in which higher costs for running existing coal and nuclear plants result in accelerated capacity retirements and greater reliance on natural gas to fuel electricity generation than in the Reference case.

Taken together, the four scenarios and five cases presented 16 case scenarios:

Table 1: Case Scenarios Considered By EIA in Analyzing Impacts of LNG Exports

<table>
<thead>
<tr>
<th>AEO 2014 Cases</th>
<th>Export Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>12 Bcf/d</td>
</tr>
<tr>
<td>2</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>16 Bcf/d</td>
</tr>
<tr>
<td>3</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>20 Bcf/d</td>
</tr>
<tr>
<td>4</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>Alt 20 Bcf/d</td>
</tr>
<tr>
<td>5</td>
<td>HOGR</td>
</tr>
<tr>
<td></td>
<td>12 Bcf/d</td>
</tr>
<tr>
<td>6</td>
<td>HOGR</td>
</tr>
<tr>
<td></td>
<td>16 Bcf/d</td>
</tr>
<tr>
<td>7</td>
<td>HOGR</td>
</tr>
<tr>
<td></td>
<td>20 Bcf/d</td>
</tr>
<tr>
<td>8</td>
<td>LOGR</td>
</tr>
<tr>
<td></td>
<td>12 Bcf/d</td>
</tr>
<tr>
<td>9</td>
<td>LOGR</td>
</tr>
<tr>
<td></td>
<td>16 Bcf/d</td>
</tr>
<tr>
<td>10</td>
<td>LOGR</td>
</tr>
<tr>
<td></td>
<td>20 Bcf/d</td>
</tr>
<tr>
<td>11</td>
<td>HEG</td>
</tr>
<tr>
<td></td>
<td>12 Bcf/d</td>
</tr>
<tr>
<td>12</td>
<td>HEG</td>
</tr>
<tr>
<td></td>
<td>16 Bcf/d</td>
</tr>
<tr>
<td>13</td>
<td>HEG</td>
</tr>
<tr>
<td></td>
<td>20 Bcf/d</td>
</tr>
<tr>
<td>14</td>
<td>ACNR</td>
</tr>
<tr>
<td></td>
<td>12 Bcf/d</td>
</tr>
<tr>
<td>15</td>
<td>ACNR</td>
</tr>
<tr>
<td></td>
<td>16 Bcf/d</td>
</tr>
<tr>
<td>16</td>
<td>ACNR</td>
</tr>
<tr>
<td></td>
<td>20 Bcf/d</td>
</tr>
</tbody>
</table>

EIA used the five AEO 2014 cases described above as the starting point for its analysis and made several changes to represent the export scenarios specified in the study request. EIA exogenously added LNG exports from the lower-48 states in its model runs, using the NEMS
model, to reach the targeted LNG export levels.

The Mid-Atlantic and South Atlantic regions were each assumed to host 1 Bcf/d of LNG export capacity, the Pacific region was assumed to host 2 Bcf/d, with all of the remaining Lower 48 states’ export capacity hosted along the Gulf Coast in the West South Central Census division. In addition to the volume of natural gas needed to satisfy the levels of LNG exports defined in the scenarios, a supplemental volume of gas is required in order to liquefy natural gas for export as LNG. EIA assumed that this volume would equal 10 percent of the LNG export volume. The additional natural gas consumed during the liquefaction process is counted as fuel use within the U.S. region where liquefaction occurs.

As in AEO 2014, U.S. natural gas pipeline imports and exports and U.S. LNG imports are endogenously determined in the model. However, LNG exports out of Alaska were set exogenously to the projected level from the corresponding baseline cases.

One further modeling change was applied only in export scenario runs using the Accelerated Coal and Nuclear Retirements case. This case was included in the Study to reflect a baseline with high use of natural gas and low use of coal for electricity generation that is driven by factors other than favorable natural gas supply conditions and low natural gas prices, which are considered in the High Oil and Gas Resource case. In order to represent a situation in which increased coal generation is not an available response to higher domestic natural gas prices, coal-fired generation was not allowed to rise above the Accelerated Coal and Nuclear Retirements baseline level when the DOE/FE export scenarios were implemented.

2. Scope of EIA Study

The EIA Study recognizes that projections of energy markets over a 25-year period are highly uncertain, and that many events—such as supply disruptions, policy changes, and
technological breakthroughs—cannot be foreseen. Other acknowledged limitations on the scope of the EIA Study include:

- NEMS is not a world energy model and does not address the interaction between the potential for additional U.S. natural gas exports and developments in world natural gas markets;

- Global natural gas markets are not fully integrated, and their nature could change substantially in response to significant changes in natural gas trading patterns. Future opportunities to profitably export natural gas from the United States depend on the future of global natural gas markets, the inclusion of relevant terms in specific contracts to export natural gas, and the assumptions in the various cases analyzed;

- Given its focus on the domestic energy system, NEMS does not fully account for interactions between energy prices and the global economy that could benefit the U.S. economy; and

- Measures of domestic industrial activity in NEMS are sensitive to both the composition of final U.S. demand and changes in domestic energy prices. However, NEMS does not account for the impact of domestic and global energy price changes on the global utilization pattern for existing manufacturing capacity or the siting of new capacity inside or outside of the United States in energy-intensive industries.

3. Results of the 2014 EIA LNG Export Study

EIA generally found that LNG exports will lead to higher domestic natural gas prices, increased domestic natural gas production, reduced domestic natural gas consumption, and higher levels of economic output (as measured by real gross domestic product or GDP). The impacts of exports, according to EIA, are as follows:

Increased natural gas prices. EIA stated that larger export levels would lead to larger domestic price increases. Percentage changes in delivered natural gas prices would be lower than percentage changes in producer prices, particularly for residential and commercial customers.
Increased natural gas production and supply. Increased exports would result in increased natural gas production that would satisfy 61 to 84 percent of the increase in natural gas exports, with a minor additional contribution from increased imports from Canada. Across most cases, EIA states that about three-quarters of this increased production would come from shale sources.

Decreased natural gas consumption. Due to higher prices, EIA projects a decrease in the volume of natural gas consumed domestically. EIA states that the electric power generation mix would shift toward other generation sources, including coal and renewable fuels. EIA indicates that there also would be a small reduction in natural gas use in all sectors from efficiency improvements and conservation.

Increased levels of GDP. EIA states that increased energy production would spur investment, which would more than offset the adverse impact of somewhat higher energy prices. GDP increases would range from 0.05 to 0.17 percent and generally increase with the amount of added LNG exports.

4. Increased Natural Gas Prices

EIA found that natural gas prices would increase generally across all of the export scenarios, with the greatest impact during the first 10 years when LNG exports are ramping up. The smallest price change over the baseline occurs in the High Oil and Gas Resource case. The Low Oil and Gas Resource case yields the largest price response.

EIA notes that the percentage changes in producer natural gas prices and delivered prices to customers compared to the AEO 2014 Reference case baseline would vary, but would be relatively modest. Prices paid to producers would increase from 4 to 11 percent under the 12 and
20 Bcf/d scenario, respectively, while prices paid by residential customers would rise even less—from 2 to 5 percent under the 12 and 20 Bcf/d scenarios.

5. **Increased Natural Gas Production and Supply**

EIA projected that most of the additional natural gas needed for export would be provided by increased domestic production with a minor contribution from increased pipeline imports from Canada. The remaining portion of the increased export volumes would be offset by decreases in consumption resulting from higher prices associated with the increased exports.

6. **Decreased Domestic Natural Gas Consumption**

EIA projected that greater export levels would lead to decreases in domestic natural gas consumption. This decrease would occur largely within the electric power sector. EIA projected that over the 2015-40 period, the decline in natural gas consumption from electric power generators, on average, contributes from 10 to 18 percent to the levels of natural gas needed for the increased LNG export demands, across all cases and scenarios. The Study noted that the trade-off in natural gas-fired generation and generation from competing fuels varies depending on the case, and generally depends on the generation fuel mix in the base scenarios.

7. **Energy-Related Carbon Dioxide Emissions**

EIA projected that the use of natural gas to provide energy for added liquefaction, combined with the displacement of natural gas by more carbon-intensive fuels in end-use sectors, causes an increase in U.S. CO₂ emissions over the analysis period in most pairings of export scenarios and baselines. The Study noted that the increased use of coal in the electric power sector and the increased use of liquids in the industrial sector generally result in a net increase in CO₂ emissions. The Study also noted that, despite the CO₂ emission increases projected in the
LNG export scenarios, energy-related CO₂ emissions remain below the 2005 level in each year of the projection period across all pairings of scenarios and baselines.

EIA’s analysis did not include the U.S. Environmental Protection Agency’s (EPA) Transport Rule, as it had been vacated at the time, or other proposed EPA rulemakings. EIA also did not analyze global CO₂ emissions or life cycle emissions. DOE looked at these latter issues in a separate analysis—the LCA GHG Report, discussed below in Section IX.

8. Increased End-User Natural Gas and Electricity Delivered Prices

EIA projected increased total end-use energy expenditures across the range of LNG export scenarios and baselines. Implementation of the 12 Bcf/d scenario under Reference case conditions is projected to increase total end-use energy expenditures by $9 billion per year, or 0.6 percent on average, from 2015-2040. For the 20 Bcf/d scenario, total end-use energy expenditures are projected to rise by $18 billion per year, or 1.3 percent on average, from 2015 to 2040. EIA projected that increased end-use expenditures on natural gas account for one-third of additional expenditures.

9. Increased Gross Domestic Product

EIA projected that increased LNG exports leads to higher economic output, as measured by real GDP, as increased energy production spurs investment. This higher economic output is enough to overcome the negative impact of higher domestic energy prices over the projection period. EIA projected that implementing the export scenarios specified for this Study increased GDP by 0.05 to 0.2 percent over the 2015-2040 period depending on the export scenario. The

GDP gains from increasing LNG exports are positive across all cases, although relatively modest.

The Center for Energy Studies at Rice University’s Baker Institute and Oxford Economics (hereinafter, Rice-Oxford) were commissioned by Leonardo Technologies, Inc. (LTI) on behalf of DOE/FE to undertake a scenario-based assessment of the macroeconomic impact of alternative levels of U.S. LNG exports under a range of assumptions concerning U.S. resource endowment, U.S. natural gas demand, and the international market environment—referred to herein as the 2015 Study.

1. Overview of Rice-Oxford’s Findings in the 2015 Study

The key findings of the 2015 Study include the following:

Rising LNG exports are associated with a net increase in domestic natural gas production. The 2015 Study finds that the majority of the increase in LNG exports is accommodated by expanded domestic production rather than reductions in domestic demand.

As exports increase, the spread between U.S. domestic prices and international benchmarks narrows. In every case, greater LNG exports raise domestic prices and lower prices internationally. The majority of the price movement (in absolute terms) occurs in Asia.

The overall macroeconomic impacts of higher LNG exports are marginally positive, a result that is robust to alternative assumptions for the U.S. natural gas market. With external demand for U.S. LNG exports at 20 Bcf/d, the impact of increasing exports from 12 Bcf/d is between 0.03 and 0.07 percent of GDP over the period of 2026–2040, or $7 to $20 billion annually in today’s prices.
An increase in LNG exports from the United States will generate small declines in output at the margin for some energy-intensive, trade-exposed industries. The sectors that appear most exposed are cement, concrete, and glass, but the estimated impact on sector output is very small compared to expected sector growth to 2040.

Negative impacts in energy-intensive sectors are offset by positive impacts elsewhere. Other industries benefit from increasing U.S. LNG exports, especially those that supply the natural gas sector or benefit from the capital expenditures needed to increase production. This includes some energy-intensive sectors and helps offset some of the impact of higher energy prices.

2. Methodology

Rice-Oxford’s analysis in the 2015 Study used a highly specialized, multi-stage modeling approach. First, the Rice World Gas Trade Model (RWGTM) was used to simulate various alternative futures for the global natural gas market. These output data were input into the Oxford Economics Global Economic Model (GEM) and Global Industry Model (GIM) to simulate broad macroeconomic and sectors impacts of the various alternative paths for the global natural gas market.

According to Rice-Oxford, the 2015 Study analyzed a wide range of scenarios in order to establish conclusions that are not dependent on any particular set of starting conditions for the U.S. or international natural gas markets. The scenario assumptions fall along two core dimensions. In one dimension, Rice-Oxford considered different U.S. domestic market conditions regarding resources and domestic demand. In the other dimension, Rice-Oxford

192 The Rice World Gas Trade Model is an equilibrium global natural gas model, as described in Annex B of the 2015 LNG Study. The model has 290 regional demand areas that cover countries having 90 percent of the global energy demand, and 140 natural gas resource and production regions modeled on recent authoritative resource estimates.
considered specific circumstances that result in different international demand pull for U.S.-
sourced LNG for each domestic scenario. The domestic scenarios were:

- Reference domestic case;
- High Resource Recovery (HRR) case, which reflects a higher level of recoverable
 resource in the United States;
- Low Resource Recovery (LRR) case, which reflects a lower level of recoverable resource
 in the United States; and
- High Natural Gas Demand (Hi-D) case, which reflects a higher level of demand in the
 United States.

The international demand scenarios were:

- Reference international case;
- Global demand for U.S. LNG supports 12 Bcf/d of exports;
- Global demand for U.S. LNG supports 20 Bcf/d of exports but U.S. exports do not
 exceed 12 Bcf/d;
- Global demand for U.S. LNG supports 20 Bcf/d of exports but U.S. exports do not
 exceed 20 Bcf/d; and
- Global demand for U.S. LNG supports 20 Bcf/d of exports and U.S. exports are
 endogenously determined by the RWGTM.

The table below outlines the approach.
Table 2: Rice-Oxford Study Scenarios

<table>
<thead>
<tr>
<th>International Demand Scenarios</th>
<th>Domestic Scenarios</th>
<th>Reference</th>
<th>High Resource Recovery</th>
<th>Low Resource Recovery</th>
<th>High Natural Gas Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>Ref_Ref</td>
<td>Ref_HRR</td>
<td>Ref_LRR</td>
<td>Ref_Hi-D</td>
<td></td>
</tr>
<tr>
<td>Global Demand for U.S. LNG Supports 12 Bcf/d</td>
<td></td>
<td>LNG12_Ref</td>
<td>LNG12_HRR</td>
<td>LNG12_LRR</td>
<td>LNG12_Hi-D</td>
</tr>
<tr>
<td>Global Demand</td>
<td></td>
<td>LNG20_Ref12</td>
<td>LNG20_HRR12</td>
<td>LNG20_LRR12</td>
<td>LNG20_Hi-D12</td>
</tr>
<tr>
<td>for U.S. LNG Exports 12 Bcf/d</td>
<td></td>
<td>LNG20_Ref20</td>
<td>LNG20_HRR20</td>
<td>LNG20_LRR20</td>
<td>LNG20_Hi-D20</td>
</tr>
<tr>
<td>U.S. LNG Exports 20 Bcf/d</td>
<td></td>
<td>LNG20_Ref</td>
<td>LNG20_HRR</td>
<td>LNG20_LRR</td>
<td>LNG20_Hi-D</td>
</tr>
<tr>
<td>U.S. LNG Exports Endogenous</td>
<td></td>
<td>LNG20_Ref</td>
<td>LNG20_HRR</td>
<td>LNG20_LRR</td>
<td>LNG20_Hi-D</td>
</tr>
</tbody>
</table>

In general, when reading the case nomenclature in the table above, Rice-Oxford notes for a case “N1_N2X,” N1 denotes the name of the international demand scenario, N2 denotes the domestic scenario, and X (either 12 or 20 Bcf/d) denotes the level of LNG exports that can occur from the United States based on the scenario. If X is not present, this means that the amount of LNG exports from the United States is fully endogenous to (i.e., internally generated within) the scenario being considered.

3. Natural Gas Market Assumptions across International Demand Scenarios

Rice-Oxford constructed the scenarios of the 2015 Study to show sufficient international market opportunity to support commercially viable LNG exports from the United States in accordance with the volumes indicated in each case. Various assumptions are made about the international natural gas market so as to stimulate investment in the U.S. upstream sector and the commensurate development of LNG export infrastructure. These scenario assumptions primarily
constrain alternative sources of global supply, such as foreign shale production or LNG capacity, to leave more global natural gas demand to be met by U.S. LNG. The Reference, Global Demand for U.S. LNG at 12 Bcf/d (LNG12), and Global Demand for U.S. LNG at 20 Bcf/d (LNG20) international demand scenarios adjust shale resource availability, pipeline, and LNG infrastructure expansion opportunities outside the United States, and natural gas demand in different countries. Table 3 below presents key assumptions used in the 2015 Study.

For U.S. LNG exports to reach 12 to 20 Bcf/d of natural gas, several unlikely developments in the global natural gas market were included in the 2015 Study. For example, accessible global shale resources were limited to 3,542 Tcf in the LNG20 Scenario compared to 8,407 Tcf in the Reference case. Other assumptions in Table 3 are equally drastic, such as assuming no foreign LNG export capacity comes online after 2020. Without significant assumptions of this magnitude, U.S. LNG exports in the Rice World Gas Trade Model would not reach the 12 or 20 Bcf/d export levels.

Table 3: Select Natural Gas Market Assumptions Across International Demand Scenarios

<table>
<thead>
<tr>
<th>Accessible Shale Resource (trillion cubic feet)</th>
<th>Reference</th>
<th>LNG12</th>
<th>LNG20</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>8,407</td>
<td>6,500</td>
<td>3,542</td>
</tr>
<tr>
<td>Africa</td>
<td>1,918</td>
<td>1,918</td>
<td>0</td>
</tr>
<tr>
<td>Asia and Pacific</td>
<td>2,107</td>
<td>1,075</td>
<td>90</td>
</tr>
<tr>
<td>China</td>
<td>1,285</td>
<td>390</td>
<td>0</td>
</tr>
<tr>
<td>Australia</td>
<td>529</td>
<td>529</td>
<td>90</td>
</tr>
<tr>
<td>Europe</td>
<td>444</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>South America</td>
<td>1,786</td>
<td>1,786</td>
<td>1,260</td>
</tr>
<tr>
<td>North America</td>
<td>1,839</td>
<td>1,839</td>
<td>1,839</td>
</tr>
<tr>
<td>US</td>
<td>829</td>
<td>829</td>
<td>829</td>
</tr>
<tr>
<td>Canada</td>
<td>498</td>
<td>498</td>
<td>498</td>
</tr>
<tr>
<td>Mexico</td>
<td>513</td>
<td>513</td>
<td>513</td>
</tr>
<tr>
<td>Rest of World</td>
<td>314</td>
<td>86</td>
<td>0</td>
</tr>
<tr>
<td>LNG New Build Capability</td>
<td>No limits</td>
<td>Limited expansion capabilities in</td>
<td>Only U.S. has expansion capability beyond</td>
</tr>
</tbody>
</table>
The Rice World Gas Trade Model

The Rice World Gas Trade Model (or RWGTM) is used in the 2015 Study to investigate how various assumptions about international and domestic demand and resource availability could impact the U.S. natural gas market over the coming decades. The Rice World Gas Trade Model proves and develops resources, constructs and utilizes transportation infrastructure, and calculates prices to equate demands and supplies while maximizing the present value of producer profits within a competitive framework. New capital investments in production and delivery infrastructure thus must earn a minimum return for development to occur. The debt-equity ratio is allowed to differ across different categories of investment, such as proving resources, developing wellhead delivery capability, constructing pipelines, and developing LNG infrastructure. By developing supplies, pipelines, and LNG delivery infrastructure, the Rice World Gas Trade Model provides a framework for examining the effects of different economic and political influences on the global natural gas market within a framework grounded in geologic data and economic theory.

<table>
<thead>
<tr>
<th>Pipeline New Build Capability</th>
<th>selected locations</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>No limits</td>
<td>No future expansions of Central Asian pipelines to China</td>
<td>LNG12 plus existing Russia-China pipeline supply agreements dissolve</td>
</tr>
</tbody>
</table>

Demand

- In all scenarios, a CO₂ trading platform is in place in Europe and the United States is assumed to retire 61 GWs of coal by 2030
- Chinese gas demand rises in response to policies to limit coal use; Japanese nukes remain offline
- LNG12 case plus CO₂ reduction protocols targeting coal use in India, Indonesia, South Korea, and a handful of other smaller coal consuming nations

4. The Rice World Gas Trade Model

The Rice World Gas Trade Model (or RWGTM) is used in the 2015 Study to investigate how various assumptions about international and domestic demand and resource availability could impact the U.S. natural gas market over the coming decades. The Rice World Gas Trade Model proves and develops resources, constructs and utilizes transportation infrastructure, and calculates prices to equate demands and supplies while maximizing the present value of producer profits within a competitive framework. New capital investments in production and delivery infrastructure thus must earn a minimum return for development to occur. The debt-equity ratio is allowed to differ across different categories of investment, such as proving resources, developing wellhead delivery capability, constructing pipelines, and developing LNG infrastructure. By developing supplies, pipelines, and LNG delivery infrastructure, the Rice World Gas Trade Model provides a framework for examining the effects of different economic and political influences on the global natural gas market within a framework grounded in geologic data and economic theory.
5. The Oxford Global Economic Model and Global Industry Model

Rice-Oxford stated that the Global Economic Model is the world’s leading globally integrated macro model, used by over 100 clients around the world, including finance ministries, leading banks, and blue-chip companies. The Global Economic Model covers 46 countries, including the United States, Canada, the EU, and major emerging markets including China and India. The model provides a rigorous, consistent structure for analysis and forecasting, and allows the implications of alternative global scenarios and policy developments to be analyzed at both the macro and sector level.

The Global Economic Model is an error correction model, a form of a multiple time series model that estimates the speed at which a dependent variable returns to its equilibrium after a shock to one or more independent variables. Rice-Oxford noted that this form of model is useful as estimating both the short and long run effects of variables on the given variable in question. The Global Economic Model exhibits “Keynesian” features in the short run. Factor prices are sticky and output is determined by aggregate demand. In the long-run, its properties are Neoclassical, such that prices adjust fully, the equilibrium is determined by supply factors (productivity, labor and capital), and attempts to raise growth by boosting demand only lead to higher prices.

Linked to the Global Economic Model is the Global Industry Model. This model, based upon standard industrial classifications and updated quarterly, has a detailed breakdown of output by sector across 100 sectors and 67 countries. The model includes a particularly detailed breakdown in the manufacturing sector, covering eight key sectors: metals, chemicals, motor vehicles, engineering and metal goods, electronics and computers, textiles and clothing.
aerospace, and other intermediate goods. The Global Industry Model generates forecasts for both gross output and gross value added (output excluding intermediate consumption).

6. Results of the 2015 LNG Export Study

In the 2015 Study, Rice-Oxford generally found that LNG exports will lead to:

(i) increased domestic natural gas production, (ii) a narrowing of the spread between domestic prices and marginally positive international benchmarks, (iii) macroeconomic impacts, and (iv) small declines in output at the margin for some energy-intensive industries that are offset by positive impacts elsewhere.

Table 4 below indicates the level of U.S. LNG exports in the year 2040 for every case considered. The Rice World Gas Trade Model Reference International and Domestic Scenario (Ref_Ref case) has 6.38 Bcf/d of U.S. LNG exports in 2040. With the Reference International Demand Scenario and different Domestic Scenarios, U.S. LNG exports range from 5.20 Bcf/d to 6.74 Bcf/d.193

193 Additional explanation of the Ref_Ref case is provided in the 2015 LNG Export Study. The Study explains that, although U.S. LNG exports increase in the Ref_Ref case, the impact of U.S. LNG exports and other global supply developments on international domestic prices ultimately places a check on the total volume of U.S. LNG exports. Specifically, the price spreads in the international marketplace weaken to the point that full cost recovery of U.S. LNG export facilities currently under construction is compromised for about a decade. Although those facilities operate during that time period, further investment in LNG export capacity is stymied until global demand expands to stimulate new capital flows into the U.S. LNG export value chain. See 2015 LNG Export Study at 41.
Table 4: U.S. LNG Exports in 2040 Across Cases (Bcf/d)

<table>
<thead>
<tr>
<th>International Demand Scenarios</th>
<th>Domestic Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reference</td>
</tr>
<tr>
<td>Reference</td>
<td>6.38</td>
</tr>
<tr>
<td>Global Demand for U.S. LNG Supports 12 Bcf/d</td>
<td>11.18</td>
</tr>
<tr>
<td>Global Demand for U.S. LNG Supports 20 Bcf/d</td>
<td>11.81</td>
</tr>
<tr>
<td>U.S. LNG Exports 12 Bcf/d</td>
<td>11.81</td>
</tr>
<tr>
<td>U.S. LNG Exports 20 Bcf/d</td>
<td>18.82</td>
</tr>
<tr>
<td>U.S. LNG Exports Endogenous</td>
<td>22.34</td>
</tr>
</tbody>
</table>

* The level of exports in these cases is the same as in the “U.S. LNG Exports Endogenous” cases.

The impacts of exports, according to Rice-Oxford, included:

Increase in domestic natural gas production. The 2015 Study found that the majority of the increase in LNG exports is accommodated by expanded domestic production rather than reductions in domestic demand. Domestic production continues to increase through the time horizon when LNG export volumes can expand to 20 Bcf/d of natural gas, rising 4 percent on average from 2026-2040.

As exports increase, the spread between U.S. domestic prices and international benchmarks narrows. In every case, greater LNG exports raise domestic prices and lower prices internationally. The majority of the price movement (in absolute terms) occurs in Asia. The Japan Korea Marker (JKM) price declines in dollar terms by an amount that is roughly six times greater than the price increase at Henry Hub in the United States. Rice-Oxford states that
this is the result of the international market conditions that are simulated in the LNG20 cases. Additionally, the LNG demand stimulus is primarily the result of highly constrained supply potentials plus higher demand in Asia. Although shale potential is also constrained in Europe in the LNG20 cases, the change relative to the Reference international case is small compared to the change in Asia.

Marginally positive overall macroeconomic impacts. This result is robust to alternative assumptions for the U.S. natural gas market. With external demand for domestically produced LNG exports at 20 Bcf/d of natural gas, the impact of increasing exports in excess of 12 Bcf/d is between 0.03 and 0.07 percent of GDP from 2026-2040, or $7 to $20 billion annually in today’s prices. The 2015 Study detailed several key drivers of the macroeconomic impacts:

- **U.S. LNG Production and Investment:** When U.S. LNG exports rise to 20 Bcf/d from 12 Bcf/d, natural gas production is 4.0 percent higher in the domestic Reference case. This is associated with a rise in net fuel exports of just 0.02 percent of GDP over the period 2026–2040 and additional investment of 0.06 percent of GDP. There are positive multipliers from the extra production and investment, as activity is stimulated in the rest of the economy, and as a result total output is 0.1 percent higher from 2026–2040.

- **U.S. Natural Gas Prices:** The Henry Hub price is, on average, 4.3 percent higher in the 20 Bcf/d export case than the 12 Bcf/d case over the period 2026–2040. As noted above, higher gas prices dampen domestic consumption and erode U.S. export competitiveness. In total, higher prices reduce GDP by 0.1 percent from 2026–2040.

- **U.S. Profits:** Profits in the 20 Bcf/d export case are higher given the rise in prices, production and export volumes, but the scale of the impact is small relative to the size of GDP. Profits are 0.03 percent of GDP higher in the 20 Bcf/d case compared with the 12 Bcf/d case. The rise in profit is also modest because it is assumed U.S. producers receive the Henry Hub price on LNG exports rather than the price in the destination market. It assumed that 95 percent of profits are distributed to households and this results in a marginal increase in consumption and GDP from 2026–2040.

- **Rest of World Natural Gas Production and Investment:** Production in the rest of the world is little changed when U.S. LNG exports increase to 20 Bcf/d from 12 Bcf/d. Due to the Study’s scenario assumptions, international demand conditions
remain unchanged, and the addition of incremental U.S. LNG exports displaces very little supply from the rest of the world. As a result, capital expenditures by the natural gas sector in the rest of the world remain broadly unchanged when the United States increases LNG exports.

- **Rest of World Natural Gas Prices:** The increase in the availability of cheaper U.S. natural gas exports on the world market dampens natural gas price increases in Asia, though prices in Europe are little affected. The marginal decline in natural gas prices both boosts real income in the rest of the world—which boosts demand and is positive for U.S. exports—and boosts the competitiveness of Asian firms relative to U.S. companies, which is negative for U.S. exports. However, the small impact on gas prices and the relative unimportance of natural gas to total energy supply in Asia means that the impact on consumption in Asia is limited as is the competitiveness boost enjoyed by Asian firms from lower natural gas prices. As a result, the overall impact on U.S. GDP is limited.

Small declines in output at the margin for some energy-intensive, trade-exposed industries. The sectors that appear most exposed are cement, concrete, and glass, but the estimated impact on sector output is very small compared to expected sector growth to 2040.

Negative impacts in energy-intensive sectors are offset by positive impacts elsewhere. Other industries benefit from increasing U.S. LNG exports, especially those that supply the natural gas sector and/or benefit from the capital expenditures needed to increase production. This includes some energy-intensive sectors and helps offset some of the impact of higher energy prices.

VIII. **COMMENTS ON THE 2014 AND 2015 LNG EXPORT STUDIES AND DOE/FE ANALYSIS**

DOE/FE published the Notice of Availability of the 2014 and 2015 LNG Export Studies in the Federal Register on December 29, 2015, seeking public comment on both studies. DOE/FE specifically invited comment on:

[T]he potential impact of LNG exports on domestic energy consumption, production, and prices; the macroeconomic factors identified in the two studies, including Gross Domestic Product, consumption, U.S. economic sector analysis, and U.S. LNG export
feasibility analysis; and any other factors included in the analyses.194

DOE noted that, “[w]hile this invitation to comment covers a broad range of issues, the Department may disregard comments that are not germane to the present inquiry.”195

DOE/FE has reviewed the 38 comments submitted in response to the NOA. Of those, 14 comments opposed the two Studies and/or exports of LNG, 21 supported the Studies, and three took no position. Below, DOE/FE summarizes: (i) the pertinent arguments by topic, with reference to representative comments, and (ii) DOE/FE’s basis for the conclusions that it drew in reviewing those comments. In so doing, DOE/FE has responded to the relevant, significant issues raised by the commenters.196

A. Data Inputs and Estimates of Natural Gas Demand

1. Comments

Several commenters, including Sierra Club, the Industrial Energy Consumers of America (IECA), Cascadia Wildlands, Wim de Vriend, and Hair on Fire Oregon, challenge the data used as inputs to the LNG Export Studies.197 Specifically, these commenters assert that the 2015 LNG Export Study relies on inaccurate assumptions that fail to reflect “current conditions” adversely affecting the viability of exporting domestically produced LNG from the United States. Citing various articles and natural gas industry reports, these commenters point to the following conditions—some of which they acknowledge arose after the 2015 LNG Export Study was published:

194 80 Fed. Reg. at 81,302.
195 Id.
196 See, e.g., Public Citizen v. F.A.A., 988 F.2d 186, 197 (D.C. Cir. 1993).
197 Unless specifically noted, the comments address the 2015 LNG Export Study.
• An oversupplied global energy market due to the rapid expansion worldwide of LNG terminals ("supply glut"), which commenters allege will be the status quo for years to come;

• The drop in international oil prices, which allegedly has reduced or eliminated the price advantage for U.S. LNG exports;

• The difference in costs between greenfield and brownfield LNG projects and the associated risks to capital, given the alleged uncertainties associated with LNG exports;

• The declining costs of and advances in renewable energy sources, which allegedly will compete directly with U.S. LNG in end markets;

• Japan’s re-starting of some of its nuclear power plants;

• The increasing prevalence of carbon trading regimes internationally (e.g., China), making natural gas less of a viable energy source; and

• China’s slowing economy.

According to Sierra Club and other commenters, these conditions undermine the assumptions and constraints of the 2015 LNG Export Study, calling into question the Study’s conclusions that LNG exports will provide a slight benefit to GDP. Sierra Club further contends that, in light of these changing conditions, DOE should have revisited the 2012 LNG Export Study, rather than conducting new studies to analyze the marginal effects of higher LNG export volumes.

2. DOE/FE Analysis

We note that the 2015 LNG Export Study modeled a wide range of possible future supply and demand conditions, including alternative assumptions for domestic resource availability, domestic natural gas demand, and a range of international supply and demand conditions that generate different potential market pull for U.S. LNG exports. The 2015 Study scenarios were constructed so there was sufficient international demand to support commercially viable LNG export flows from the United States in accordance with the volumes indicated in each case. This approach allowed Rice-Oxford to assess the macroeconomic impacts of increased levels of U.S. LNG exports under global market conditions where that trade would occur. The 2015 LNG
Export Study found that “the overall macroeconomic impacts of higher LNG exports are marginally positive, a result that is robust to alternative assumptions for the U.S. natural gas market.”\(^{198}\) That is, the macroeconomic results are similar across the different scenarios examined. The energy market conditions noted by the commenters would, all else being equal, reduce international demand for U.S. LNG exports. The 2014 LNG Export Study included cases with levels of U.S. LNG exports below 20 Bcf/d, specifically 12 and 16 Bcf/d. The 2014 LNG Export Study found that “GDP gains from increasing LNG exports are positive across all cases, although relatively modest.”\(^ {199}\)

We also take note of EIA’s projections in the *Annual Energy Outlook* 2017 (AEO 2017), published on January 5, 2017,\(^{200}\) for natural gas supply, demand, and prices. The AEO 2017 Reference case incorporates the Clean Power Plan (CPP) final rule\(^ {201}\) and assumes that all states choose to meet a mass-based standard to cover both existing and new sources of carbon dioxide emissions. Although Reference case lower-48 domestic dry natural gas production for the year 2040 (the end of the forecast period in AEO 2014) increased by 2.9 Bcf/d between AEO 2014 and AEO 2017 (from 99.4 Bcf/d to 102.3 Bcf/d), the projected 2040 Henry Hub price declined from $8.15 per million British thermal units (MMBtu) to $5.07/MMBtu (both prices in constant 2016 dollars). While some of the increased lower-48 production goes to satisfy increased domestic consumption, the majority supports a 2.0 Bcf/d increase in the projected lower-48 Reference case 2040 net exports from 13.7 Bcf/d in AEO 2014 to 15.6 Bcf/d in AEO 2017. This

\(^{198}\) 2015 Study at 8.
\(^{199}\) 2014 Study at 25.
increase in net lower-48 exports reflects both a decrease in net pipeline exports of 3.0 Bcf/d and an increase in net LNG exports of 5.0 Bcf/d. As described here, the AEO 2017 Reference case, even more so than the AEO 2014, projects robust domestic supply conditions that are more than adequate to meet domestic needs and supply exports.

B. Distributional Impacts

1. Gross Domestic Product (GDP)

 a. Comments

 Several commenters, including IECA, allege that any macroeconomic benefits from the 2015 LNG Export Study are likely overstated. Cascadia Wildlands, Sierra Club, and Hair on Fire Oregon, among others, allege that, in concluding that LNG exports would create a net benefit to the economy, the 2015 Study relied too heavily on the fact that exports will increase GDP while failing to give adequate weight to projected domestic natural gas price increases, foreign natural gas price decreases, and deleterious socio-economic, sectoral, and regional impacts on consumers, households, and the middle class, including wage-earners. Additionally, Cascadia Wildlands notes that the 2015 Study concludes that economic benefits associated with LNG exports are only “marginally positive,” and asserts that this margin is so small as to be within the margin of error for the Study’s calculations. IECA argues that the 2015 Study fails to account for the lost capital investment opportunity that would have occurred in the absence of LNG exports, as well as for the significant jobs that would have been created in the United States had it not been for higher natural gas prices, thus eliminating any “marginally positive” benefits associated with LNG exports.

 Conversely, a number of other commenters, including American Petroleum Institute (API), Exxon Mobil Corporation, African American Environmentalist Association, William Shughart, Western Energy Alliance, and the City of Tulsa’s Office of the Mayor, assert that LNG
exports will create jobs and boost the economy. For example, the African American Environmentalist Association states that a report by ICF International shows that LNG exports will result in a net gain in employment in the United States, and that the job impacts of LNG exports will grow larger as export volumes rise.

b. DOE/FE Analysis

The 2015 LNG Export Study analyzed the macroeconomic impacts of LNG exports in five areas. These are U.S. natural gas production and investment, U.S. natural gas prices, recycling of extra profits from the U.S. natural gas sector, changes to natural gas production and investment in the rest of the world, and international natural gas prices. Although some commenters assert that the 2015 Study failed to give adequate weight to changes in natural gas prices, Rice-Oxford noted that the first two areas of impact—U.S. natural gas production and investment and U.S. natural gas prices—are the most significant for the United States and broadly offset each other.

The Studies found that increasing LNG exports from 12 Bcf/d to 20 Bcf/d could increase GDP by up to $20 billion. The 2015 Rice-Oxford Study found in its Reference domestic case (the 20 Bcf/d export case) that, in the long run, U.S. GDP was 0.03 percent higher on average ($7.7 billion annually in today’s prices) over 2026-2040 than in the 12 Bcf/d export case. The 2015 Study’s result of GDP gains is consistent with the results of the EIA 2014 LNG Export Study. The 2014 EIA Study found that GDP increases across all cases “range from 0.05% to 0.17% and generally increase with the amount of added LNG exports required to fulfill an export scenario for the applicable baseline.”

202 2015 Study at 14.
203 See id.
204 2014 Study at 12.
billion to $20 billion across the scenarios from the 2014 LNG Export Study. These increases are significant, and the Studies project higher levels of employment with increased LNG exports.

2. Sectoral Impacts

a. Comments

Some commenters debate whether LNG exports will impact the domestic energy-intensive, trade-exposed (EITE) sectors disproportionately, at too high a cost to the U.S. economy to justify exporting LNG. Specifically, IECA and Citizens Against LNG assert that increasing LNG exports reduces the cost of natural gas to our global competitors and simultaneously increases the domestic cost of natural gas and electricity—negatively impacting EITE industries. According to these commenters, exporting LNG will drive up the price of natural gas for American consumers and manufacturers, eliminate jobs, and create a financial burden in an already stressed American economy. IECA further contends that the 2015 Study fails to include the “relative cost impact” to EITE industries, i.e., “the combined impact of lower prices to our global competitors and higher prices domestically,” and thus overstates the macroeconomic results associated with LNG exports. Stating that the 2015 Study fails to cite any studies on the price sensitivity of EITE industries, IECA also questions whether any research on EITE industries was conducted as part of the Study.

Other commenters, including API and ExxonMobil, dispute these arguments. They challenge the notion that an LNG export industry cannot co-exist with a growing domestic manufacturing base. API, ExxonMobil, and Golden Pass Products, LLC emphasize the size and productivity of the U.S. natural gas resource base, contending that there is an abundance of natural gas to support both LNG export demand and continued growth in the EITE industries.

205 See id. at 32 (“Gross Domestic Product” in 2005 U.S. dollars).
These commenters note that the vast supply of natural gas in the United States will continue to support current gains in domestic manufacturing, even as LNG exports take place. They also state that LNG exports will both sustain and increase domestic production of natural gas, which, in turn, will provide EITE industries with a greater supply of natural gas at more stable prices, allowing them to stay globally competitive.

Other commenters, such as John L. Rafuse, LNG Allies, and American Council for Capital Formation, maintain that there would be serious consequences to hindering the export of LNG. They state that, if exports are prohibited or constrained, the United States will lose economic benefits that other countries will capture as those countries begin extracting their shale gas resources and competing in the global LNG export market. Many commenters, including Institute for 21st Century Energy, Western Energy Alliance, API, and Golden Pass Products, LLC, similarly assert that it would not be in the public interest for DOE to limit LNG exports in contravention of U.S. free trade principles.

b. DOE/FE Analysis

With respect to the argument that natural gas confers greater value on the U.S. economy when used in manufacturing than when produced for export, we begin with the observation that more natural gas is likely to be produced domestically if LNG exports are authorized than if they are prohibited. There is no one-for-one trade-off between natural gas used in manufacturing and gas diverted for export. The competition between the demand for natural gas for domestic consumption and the demand for natural gas for export is captured in the modelling for the 2014 and 2015 Studies. In scenarios with increased levels of U.S. LNG exports, both Studies found that greater economic benefits, in terms of GDP, accrued to the U.S. economy due to those exports.
The 2015 Study used the Oxford Economics Global Industry Model (GIM) to model the impact of increased LNG exports on activity at the sector level. The Global Industry Model covers 100 sectors in 67 countries. In that model, forecasts for individual industries are driven by the macroeconomic forecast—consumption, investment, and exports—combined with detailed modeling of industry interactions, such as supply-chain linkages. The 2015 Study presented sector-level impacts for energy-intensive sectors, including chemicals, basic metals and metal products, and non-metallic minerals (which, in turn, includes cement and glass). The 2015 Study projected that the overall impact across sectors is small compared with the expected growth in sector output through 2040.

The 2015 Study noted that higher natural gas prices have a negative impact for energy-intensive manufacturing sectors, and some sectors (glass, cement, and chemicals) will see small declines in output with increased levels of LNG exports. Rice-Oxford found that these declines are “outweighed by gains in manufacturing industries that benefit from increased investment in the natural gas sector and increased construction activity, such as metals, as well as industry gains attributable to the increase in overall demand (i.e., consumer products, food, etc.).” As a result, “the manufacturing sector in aggregate is little impacted.” The 2014 Study found that natural gas price increases would initially challenge EITE industries, “but adverse impacts [would be] ameliorated as energy prices return to base levels and GDP begins to increase.”

With respect to the argument that some industries derive greater economic value from natural gas than others, we continue to be guided by the long-standing principle established in

206 2015 Study at 22.
207 Id. at 68.
208 Id. at 67.
209 Id.
our Policy Guidelines that resource allocation decisions of this nature are better left to the market, rather than to DOE, to resolve.

3. Household and Distributional Impacts

a. Comments

Several commenters, including Sierra Club, IECA, Hair on Fire Oregon, Torrey Byles, Cascadia Wildlands, and Citizens Against LNG, maintain that, for most citizens, the macroeconomic benefits of LNG exports, if any, will be minimal. These commenters contend that the main beneficiaries of LNG exports will be a narrow band of the population, chiefly wealthy individuals in the natural gas industry, foreign investors, and those holding stock or having retirement plans invested in natural gas companies. They assert that, by contrast, a majority of Americans will experience negative economic impacts, such as higher gas and electric bills, without sharing in the benefits of the exports.

b. DOE/FE Analysis

The 2015 LNG Export Study analyzed the macroeconomic impacts of LNG exports in five areas. The 2015 Study projected that, for the economy as a whole, “the positive impacts of higher U.S. gas production, greater investment in the U.S. natural gas sector, and increased profitability of U.S. gas producers typically exceeds the negative impacts of higher domestic natural gas prices associated with increased LNG exports.”211

As noted previously, DOE believes that the public interest generally favors authorizing proposals to export natural gas that have been shown to lead to net benefits to the U.S. economy. While there may be circumstances in which the distributional consequences of an authorizing decision could be shown to be so negative as to outweigh net positive benefits to the U.S.

211 2015 Study at 16.
economy as a whole, we do not see sufficiently compelling evidence that those circumstances are present here. None of the commenters advancing this argument has performed a quantitative analysis of the distributional consequences of authorizing LNG exports at the household level. Given the findings in the 2014 and 2015 Studies that exports will benefit the U.S. economy as a whole in terms of increased GDP, and absent stronger record evidence on the distributional consequences of authorizing the proposed exports, we cannot say that those exports are inconsistent with the public interest on these grounds.

4. Regional Impacts

a. Comments

Many commenters, including Oregon Wild and Harriett Heywood, address the issue of negative and positive regional impacts potentially associated with LNG exports. For example, Ninette Jones and Paula Jones assert that shale gas development and production will have a negative impact on local industries that is incompatible with extraction-related activities, such as agriculture and tourism. These commenters, along with Oregon Wild, identify specific ways in which they allege local communities near shale gas production areas, pipelines, and/or LNG export terminals could be adversely affected by increases in natural gas production and LNG exports. They cite property devaluation, degradation of infrastructure, environmental and public health issues, harm to local economies, and safety risks, among other issues.

Other commenters seek to rebut these concerns by identifying the positive regional benefits associated with LNG exports, both in regions where shale development and production occur, and the regions in which LNG export terminals may be located. The African American Environmentalist Association, the Small Business & Entrepreneurship Council, Women Impacting Public Policy, Our Energy Movement, Center for Liquefied Natural Gas, Sempra LNG, and Western Energy Alliance cite regional economic benefits associated with each LNG
project, including the potential for new jobs, substantial direct and indirect business income, and millions of dollars in new tax revenue. Jordan Cove Energy Project, L.P., affirms the positive regional befits associated with LNG exports, but contends that the 2014 and 2015 LNG Export Studies fail to consider these positive regional impacts to the disadvantage of pending LNG projects subject to review by DOE/FE.

b. DOE/FE Analysis

We agree with the commenters who contend that a general consideration of regional impacts is outside of the scope of the 2014 and 2015 LNG Export Studies, and that regional impacts are appropriately considered by DOE/FE on a case-by-case basis during the review of each LNG export application. We have addressed these issues in the Discussion and Conclusions below.

C. Estimates of Domestic Natural Gas Supplies

1. Comments

Clarence Adams and other commenters assert that, in addition to underestimating the demand for domestically produced natural gas, the 2015 Study overestimates future domestic supplies of natural gas. Mr. Adams contends that several factors may limit domestic supplies of natural gas, including: (i) new sources of LNG coming online internationally, (ii) increasing resistance to hydraulic fracturing in the United States, and (iii) the shorter-than-expected productivity of shale gas wells. According to these commenters, lower than estimated supplies of natural gas will exacerbate the likely price increases due to exports.

Contrary to these arguments, many commenters, such as API, the City of Tulsa’s Office of the Mayor, Tara Shumata Lee, and Triana Energy, LLC, argue that the United States has abundant domestic natural gas reserves.

Other commenters, such as Oregon Wild, Torrey Byles, and Sierra Club, contend that, to
become energy independent, the United States must preserve its supplies of finite domestic energy resources, not export them. They argue that authorizing LNG exports will hasten the depletion of this country’s natural gas resource base. In their view, investment in LNG exports will take away from potential investment in renewable energy supplies, compounding this country’s dependency on fossil fuels.

2. DOE/FE Analysis

a. Measures of Supply

Before turning to a consideration of the specific comments, it is important to note the various measures of natural gas supply. DOE/FE notes that, by three measures of supply, there are adequate natural gas resources to meet demand associated with the requested authorization. Because these supply estimates have changed over time, however, DOE/FE will continue to monitor them to inform future decisions. These estimates include:

i) AEO natural gas estimates of production, price, and other domestic industry fundamentals. The AEO 2017 Reference case projection of dry natural gas production in 2035 increased significantly (by 27.9 Bcf/d) as compared with AEO 2011, while projections of domestic natural gas consumption in 2035 also increased in AEO 2017 compared with AEO 2011 (by 11.3 Bcf/d). Even with higher production and consumption, the 2035 projected natural gas market price in the Reference case declined from $7.87/MMBtu (2016$) in AEO 2011 to $5.09/MMBtu (2016$) in AEO 2017. The implication of the latest EIA projections in AEO 2017 is that a significantly greater quantity of natural gas is projected to be available at a lower cost than estimated six years ago.

ii) Proved reserves of natural gas. Proved reserves of natural gas have been increasing. Proved reserves are those volumes of oil and natural gas that geologic and engineering data demonstrate with reasonable certainty to be recoverable in future years from
known reservoirs under existing economic and operating conditions. The R/P ratio measures the number of years of production (P) that proved reserves (R) represent at current production rates. Typically industry maintains proved reserves at about 10 years of production, but as Table 5 below demonstrates, reserves have increased from 9.2 years of production in 2000 to 13.9 years of production in 2015, the latest year statistics are available. Of particular note is that, since 2000, proved reserves have increased 73 percent to 307,730 Bcf, while production has increased only 44 percent, demonstrating the growing supply of natural gas available under existing economic and operating conditions.

Table 5: U.S. Dry Natural Gas Proved Reserves

<table>
<thead>
<tr>
<th>Year</th>
<th>Proved Reserves (R) (Bcf)</th>
<th>Percent change versus year 2000</th>
<th>U.S. Dry Natural Gas Estimated Production (P) (Bcf)</th>
<th>Percent change versus year 2000</th>
<th>R/P Ratio - Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>177,427</td>
<td>--</td>
<td>19,219</td>
<td>--</td>
<td>9.2</td>
</tr>
<tr>
<td>2005</td>
<td>204,385</td>
<td>15</td>
<td>18,458</td>
<td>-4</td>
<td>11.1</td>
</tr>
<tr>
<td>2010</td>
<td>304,625</td>
<td>72</td>
<td>22,239</td>
<td>16</td>
<td>13.7</td>
</tr>
<tr>
<td>2014</td>
<td>368,704</td>
<td>108</td>
<td>26,611</td>
<td>38</td>
<td>13.9</td>
</tr>
<tr>
<td>2015</td>
<td>307,730</td>
<td>73</td>
<td>27,818</td>
<td>44</td>
<td>11.1</td>
</tr>
</tbody>
</table>

iii) Technically recoverable resources (TRR). Technically recoverable resources have also increased significantly. Technically recoverable resources are resources in accumulations producible using current recovery technology but without reference to economic profitability. They include both proved reserves and unproved resources.213

213 Unproved resources are generally less well known and therefore less precisely quantifiable than proved reserves, and their eventual recovery is less assured.
DOE/FE notes that in its most recent estimates of TRR, published in the assumptions to the *Annual Energy Outlook* 2016 (AEO 2016), EIA’s estimates of lower-48 natural gas TRR have increased from 1,816 Tcf in AEO 2010 to 2,196 Tcf in AEO 2016.\(^{214}\) EIA notes that these levels represent the starting values for the model, and that assumed future technological improvements in the model add to the TRR while production subtracts from the TRR.

b. Supply Impacts

The 2014 and 2015 Studies each conclude that, for the period of the analysis, the United States is projected to have ample supplies of natural gas resources that can meet domestic needs for natural gas and the LNG export market. Additionally, most projections of domestic natural gas resources extend beyond 20 to 40 years. While not all TRR is currently economical to produce, it is instructive to note that EIA’s recent estimate of TRR equates to more than 81 years of natural gas supply at the 2015 lower-48 domestic consumption level of 27.0 Tcf.\(^{215}\) Moreover, given the supply projections under each of the above measures, we find that granting the requested authorization is unlikely to affect adversely the availability of natural gas supplies to domestic consumers such as would negate the net economic benefits to the United States.

We further find that, given these estimates of supply, the projected price increases and increased price volatility that could develop in response to a grant of the requested LNG export authorization are not likely to negate the net economic benefits of the exports. This issue is discussed below. With regard to the adequacy of supply, however, it bears noting that while

certain commenters contend that U.S. natural gas production would not be able to meet unlimited LNG exports and domestic demand, the 2015 Study supports a different conclusion. The 2015 Study included scenarios in which LNG exports were unconstrained. Should the U.S. resource base be less robust and more expensive than anticipated, U.S. LNG exports would be less competitive in the world market, thereby resulting in lower export levels from the United States. By way of example, the 2015 Study modeled a number of low resource recovery scenarios, which had U.S. resources that were less robust and more expensive than other cases. In these low resource recovery scenarios, U.S. wellhead natural gas prices were driven up by higher production costs, and prices increased to a level that lowered demand for exports compared to the Reference case. In other unconstrained cases evaluated with the high resource recovery scenarios, domestic natural gas production was able to keep up with the increased demand for U.S. LNG exports compared to the Reference case. In all of these cases, the supply and price response to LNG exports did not negate the net economic benefit to the economy from the exports.

c. Supply Impacts Related to Renewable Energy Sources

To the degree that natural gas prices may increase, alternative sources of energy will become more attractive to consumers and investors. Accordingly, the 2014 Study forecasts increases in electricity from renewable energy resources across the LNG export cases over the 2015-2040 timeframe. Therefore, we do not agree with the suggestion that LNG exports would diminish investment in renewable energy.

Further, the 2014 and 2015 Studies did not evaluate the steps to become energy independent, as that was not part of the criteria evaluated. However, both Studies concluded that the United States has ample supplies of natural gas resources that can both meet domestic needs
for natural gas and allow for participation in the LNG export market, without a significant impact on supplies or prices for the period of the analysis under the assumptions made.

D. Modeling the LNG Export Business

1. Comments

Several commenters, including Hair on Fire Oregon, Torrey Byles, Sierra Club, and Citizens Against LNG, contend that the 2015 LNG Export Study incorrectly assumed that the financing of investments in natural gas supplies for export and in the LNG export projects that will be used for export operations would originate from U.S. sources. These commenters assert that, in fact, a substantial portion of the investment is being made by foreign entities, and these foreign entities—not domestic corporations—will reap the benefits of export activity in the form of royalties, tolling fees, income, and tax proceeds from the resale of LNG overseas.

In addition, Clarence Adams contends that the 2015 Study misrepresents the amount of natural gas used by LNG terminals in the liquefaction process, which understates the demand associated with exports. He contends that any volumes used in the liquefaction process (approximately 10 percent of the export volume) should be considered domestic consumption.

2. DOE/FE Analysis

The 2014 and 2015 Studies did not discuss the impact of foreign investment. The 2015 Study concluded that the main path for positive impacts to GDP from increased U.S. LNG exports is through higher production and greater investment in the natural gas sector in the United States. These positive impacts are “due to the fact that most of any U.S. LNG exports would be made possible by increased extraction rather than the diversion of natural gas supplies.”216 The 2015 Study also noted that the model assumes U.S. producers receive the U.S.

216 2015 Study at 83.
benchmark Henry Hub price on LNG exports rather than the price in the international destination market. The 2014 Study stated that “increased energy production spurs investment, which more than offsets the adverse impact of somewhat higher energy prices when export scenarios are applied.”

As for consideration of the natural gas consumed in the liquefaction process, both the 2014 and 2015 Studies assumed a consumption level equal to 10 percent of the natural gas feedstock, which is included in the models.

E. Cost of Environmental Externalities

1. Comments

Sierra Club, along with Citizens Against LNG, Hair on Fire Oregon, Cascadia Wildlands, Oregon Wild, Torrey Byles, MA Rohrer, and Harriet Heywood, maintain that LNG exports will increase demand for natural gas, thereby increasing negative environmental and economic consequences associated with natural gas production. These and other commenters assert that the 2015 Study failed to consider the cost of environmental externalities that would follow such exports. The externalities identified by these commenters include:

- Environmental costs associated with producing more natural gas to support LNG exports, including the costs, risks, and impacts associated with hydraulic fracturing and drilling to produce natural gas; and costs associated with increased water scarcity to support hydraulic fracturing, especially in the drought-stricken regions of the West Coast;

- Environmental costs associated with the life cycle of U.S. LNG (hydraulic fracturing of shale gas, liquefaction, and export) in the form of increased emissions of GHGs and other air pollutants, climate change, and local impacts such as ocean acidification;

- Local and regional costs associated with LNG exports, including impacts on local communities and industries;

217 Id. at 64.
218 2014 Study at 12.
• The costs associated with eminent domain, which may be necessary to build new pipelines to transport natural gas;

• The costs of hazards associated with LNG developments, such as costs for police, fire, and security personnel overseeing LNG tanker deliveries; risks associated with LNG-related explosions; and threats related to natural disasters, terrorism, and disruption of LNG facilities, storage tanks, and related systems;

• The potential regulatory costs and impacts of environmental regulations governing hydraulic fracturing and natural gas drilling; and

• The social costs of carbon and methane associated with natural gas emissions.

2. DOE/FE Analysis

All environmental issues are discussed below. See infra §§ VIII, IX, X, XII.

F. Prices and Volatility

1. Natural Gas Price Volatility

a. Comments

Several commenters, such as IECA, Sierra Club, MA Rohrer, and Citizens Against LNG, address potential natural gas price volatility associated with LNG exports. They contend that there is little evidence that domestic natural gas price volatility will be reduced by LNG exports. Rather, they argue that increases in LNG exports will increase demand for natural gas, driving up prices in the United States and adversely affecting electric and natural gas utility consumers, EITE industries, and residential consumers.

Sierra Club, Citizens Against LNG, and Torrey Byles also assert that, as domestic natural gas prices rise due to LNG exports, some electric power companies will want to switch from gas-based to coal-based electric generation. However, because there is less coal-fired capacity to switch to, coal-fired options could be limited, which will drive natural gas prices higher than expected. In this regard, they state that the 2014 EIA Study indicates that increasing exports of
LNG will cause increased domestic coal use in all export scenarios, but fails to address or quantify the environmental impacts of this switch.

b. DOE/FE Analysis

Natural gas price volatility can be measured in terms of short term changes—daily or monthly volatility—or over longer periods. Short term volatility is largely determined by weather patterns, localized service outages, and other factors that appear unlikely to be affected substantially by DOE export authorization decisions. Moreover, the 2014 and 2015 Studies were long-term analyses covering a 25-year period, and thus were not intended to focus on short term shocks or volatility.

To the extent commenters are concerned about the risk of large upward price spikes sustained over longer periods, such as those that occurred in 2005 and 2008, we do not agree that LNG exports will necessarily exacerbate this risk. First, as noted above, when domestic wholesale gas prices rise above the LNG netback price, LNG export demand is likely to diminish, if not disappear altogether. Therefore, under some international market conditions, LNG export facilities are likely to make natural gas demand in the United States more price-elastic and less conducive to sustained upward spikes. Second, in light of our findings regarding domestic natural gas reserves explained above, we see no reason why LNG exports would interfere with the market’s supply response to increased prices. In any capital intensive industry, investments are made based on observed and anticipated market signals. In natural gas markets, if prices or expected prices rise above the level required to provide an attractive return on investment for new reserves and production, industry will make that investment to capture the anticipated profit. These investments spur development of reserves and production and increase availability of natural gas, exerting downward pressure on prices. This is part of the normal business cycle that was captured in the 2014 and 2015 Studies. On balance, we are not
persuaded that LNG exports are likely to increase substantially the volatility of domestic natural gas prices.

2. Linking the Domestic Price of Natural Gas to World Prices

a. Comments

Commenters, including IECA and Citizens Against LNG, argue that LNG exports could link domestic natural gas prices to the price of natural gas in the world market, and that this could exacerbate the potential increase in domestic natural gas prices as well as increase price volatility.

By contrast, API argues that natural gas prices will not rise to global prices because the market will limit the amount of U.S. natural gas that will be exported, since liquefaction, transportation, and regasification costs act as a cushion. API argues that, if this cushion disappears and the U.S. export price rises to the global LNG price, market forces will bring U.S. exports to a halt.

b. DOE/FE Analysis

The 2015 Study examined changes in three benchmark prices across the export scenarios: the Henry Hub price in the United States, the National Balancing Point (NBP) price in the United Kingdom, and the Japan Korea Marker (JKM) price. In general, the Henry Hub price rises as LNG exports increase, while the other benchmark prices decline. The 2015 Study stated that this is the result of allowing increased trade from the United States, thereby serving to relax the highly constrained supply situation internationally in the scenarios. The 2015 Study presented the price spreads among JKM and Henry Hub and NBP and Henry Hub for all of the cases considered from 2015-2040. The JKM-Henry Hub price spread in 2040 ranges from $5 to over

219 2015 Study at 58.
$15 across the scenarios; the spread for NBP-Henry Hub in 2040 is roughly $3 to nearly $8.220

The 2015 Study noted that the impact of LNG exports on the Henry Hub price depends on both domestic and international market considerations. For example, Henry Hub prices would rise with increased domestic demand for natural gas.

Additionally, prices for U.S. LNG would include the cost of inland transportation, liquefaction, shipping, and regasification. The 2015 Study’s model assumed competition among different suppliers, such that buyers would have no incentive to buy natural gas from the United States if the delivered price after liquefaction and transportation is higher than the alternative delivered LNG price from other sources. DOE/FE agrees that a competitive market would behave in this manner and U.S. natural gas prices would be lower than international LNG prices in such a market by at least the costs previously described. Further, the introduction of LNG exported from the United States into the international market would tend to exert downward pressure on the prevailing higher delivered price for LNG in those foreign markets and could weaken the “oil-indexed” pricing terms.

For these reasons, we agree with those commenters who maintain that LNG exports from the United States will have difficulty competing with LNG exports from other countries unless domestic U.S. natural gas can be produced much cheaper. There is no evidence before us demonstrating that the prices of natural gas or LNG in the international market are more volatile than the prices in the U.S. domestic market.

\textbf{IX. DOE/FE ADDENDUM TO ENVIRONMENTAL REVIEW DOCUMENTS CONCERNING EXPORTS OF NATURAL GAS FROM THE UNITED STATES}

On June 4, 2014, DOE/FE published the Draft Addendum for public comment. The purpose of the Addendum, DOE/FE explained, was to provide information to the public regarding

220 \textit{Id.} at 52.
the potential environmental impacts of unconventional natural gas production. Although not required by NEPA, DOE/FE prepared the Addendum in an effort to be responsive to the public and to provide the best information available on a subject that had been raised by commenters in this and other LNG export proceedings. The 45-day comment period on the Draft Addendum closed on July 21, 2014. DOE/FE received 40,745 comments in 18 separate submissions, and considered those comments in issuing the Addendum on August 15, 2014. DOE provided a summary of the comments received and responses to substantive comments in Appendix B of the Addendum. DOE/FE has incorporated the Draft Addendum, comments, and final Addendum into the record in this proceeding.

The Addendum focuses on the environmental impacts of unconventional natural gas production, which primarily includes production from shale formations, but also includes tight gas and coalbed methane production. DOE/FE elected to focus the Addendum on unconventional production because such production is considered more likely than other forms of production to increase in response to LNG export demand. EIA’s 2012 Study, published as part of the LNG Export Study, projected that more than 90 percent of the incremental natural gas produced to supply LNG exports would come from these unconventional sources.

Although the 2012 EIA Study made broad projections about the types of resources from which additional production may come, the Addendum stated that DOE cannot meaningfully estimate where, when, or by what particular method additional natural gas would be produced in response to non-FTA export demand. Therefore, the Addendum focuses broadly on

221 Addendum at 3.
222 Id. at 79-151.
unconventional production in the United States as a whole, making observations about regional differences where appropriate.

The Addendum discusses several categories of environmental considerations—Water Resources, Air Quality, Greenhouse Gas, Induced Seismicity, and Land Use Impacts—each of which is summarized briefly below.

A. Water Resources

1. Water Quantity

Natural gas production from shale resources requires water at various stages of development, approximately 89 percent of which is consumed through the process of hydraulic fracturing.224 The Addendum presents information regarding water usage for shale gas production both in comparison to other energy sources and other regional uses. Although production of natural gas from shale resources is more water-intensive than conventional natural gas production, it is substantially less water-intensive than many other energy sources over the long term after the well has been put into production. As shown in the Addendum, Table 6 below captures differences in water intensity across energy sources.

224 Addendum at 10.
The Addendum also explains that, despite its relatively low long-term water intensity, shale gas production could impact water supply in specific areas, particularly arid regions such as the Eagle Ford Shale play in Texas. The Addendum notes that the relationship between shale gas production and water quantity is principally a local issue, and that the degree of impact depends on “the local climate, recent weather patterns, existing water use rates, seasonal fluctuations, and other factors.” The following Table 7 shows the variation in the proportion of water usage by activity in shale gas regions:

Table 6: Water Intensity

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Range in Water Intensity (gallons/mmBtu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Natural Gas</td>
<td>~0</td>
</tr>
<tr>
<td>Shale Gas</td>
<td>0.6 – 1.8</td>
</tr>
<tr>
<td>Coal (no slurry transport)</td>
<td>2 – 8</td>
</tr>
<tr>
<td>Nuclear (uranium at plant)</td>
<td>8 – 14</td>
</tr>
<tr>
<td>Conventional oil</td>
<td>1.4 – 62</td>
</tr>
<tr>
<td>Oil Shale Petroleum (mining)</td>
<td>7.2 – 38</td>
</tr>
<tr>
<td>Oil Sands Petroleum (in situ)</td>
<td>9.4 – 16</td>
</tr>
<tr>
<td>Synfuel (coal gasification)</td>
<td>11 – 26</td>
</tr>
<tr>
<td>Coal (slurry transport)</td>
<td>13 – 32</td>
</tr>
<tr>
<td>Oil Sands Petroleum (mining)</td>
<td>14 – 33</td>
</tr>
<tr>
<td>Syn Fuel (coal Fischer-Tropsch)</td>
<td>41 – 60</td>
</tr>
<tr>
<td>Enhanced Oil Recovery</td>
<td>21 – 2,500</td>
</tr>
<tr>
<td>Fuel ethanol (irrigated corn)</td>
<td>2,500 – 29,000</td>
</tr>
<tr>
<td>Biodiesel (irrigated soy)</td>
<td>13,800 – 60,000</td>
</tr>
</tbody>
</table>

225 *Id.* at 11 (Table 2).

226 *Id.* at 12.
Table 7: Water Usage in Shale Gas Regions227

<table>
<thead>
<tr>
<th>Play</th>
<th>Public Supply (%)</th>
<th>Industry & Mining (%)</th>
<th>Power Generation (%)</th>
<th>Irrigation (%)</th>
<th>Livestock (%)</th>
<th>Shale Gas (%)</th>
<th>Total Water Use (Bgal/yr) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnett 1</td>
<td>82.7</td>
<td>4.5</td>
<td>3.7</td>
<td>6.3</td>
<td>2.3</td>
<td>0.4</td>
<td>133.8</td>
</tr>
<tr>
<td>Eagle Ford2</td>
<td>17</td>
<td>4</td>
<td>5</td>
<td>66</td>
<td>4</td>
<td>3 – 6</td>
<td>64.8</td>
</tr>
<tr>
<td>Fayetteville1</td>
<td>2.3</td>
<td>1.1</td>
<td>33.3</td>
<td>62.9</td>
<td>0.3</td>
<td>0.1</td>
<td>378</td>
</tr>
<tr>
<td>Haynesville1</td>
<td>45.9</td>
<td>27.2</td>
<td>13.5</td>
<td>8.5</td>
<td>4.0</td>
<td>0.8</td>
<td>90.3</td>
</tr>
<tr>
<td>Marcellus1</td>
<td>12.0</td>
<td>16.1</td>
<td>71.7</td>
<td>0.1</td>
<td>0.01</td>
<td>0.06</td>
<td>3,570</td>
</tr>
<tr>
<td>Niobrara3</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>82</td>
<td>0.01</td>
<td>1,280</td>
<td></td>
</tr>
</tbody>
</table>

[*Bgal/yr = billion gallons per year*]

2. Water Quality

Observing that water quality concerns may have received more attention than any other aspect of unconventional natural gas production, the Addendum addresses water quality issues arising from four aspects of unconventional natural gas production: construction, drilling, use of hydraulic fracturing fluids, and handling of flowback and produced waters.

Runoff from the construction of access roads and other earth-disturbing activities can lead to temporary increases in turbidity and sedimentation in surface waters when well sites are being developed. However, the Addendum states that “when standard industry practices and preventative measures are deployed, only minor impacts are likely to result.”228

Drilling in unconventional natural gas production requires penetrating shallower fresh water aquifers. Referring to NETL’s *Modern Shale Gas Development in the United States: A Primer*, the Addendum briefly explains the manner in which such drilling can be undertaken to protect fresh water aquifers.229 The Addendum acknowledges, however, that while unconventional natural gas formations are thousands of feet below aquifers associated with public

227 Id. at 12 (Table 3) (citations omitted).

228 Id. at 13.

water supply or surface hydrological connection, poor construction practices may cause failure of a casing or cement bond. This failure, in turn, could lead to potential contamination of an aquifer. The Addendum also observes that drilling may create connections with existing fractures or faults, or improperly plugged or abandoned wells, allowing contaminants to migrate through the subsurface.230

The fluid used for hydraulic fracturing consists of over 98 percent water, but also may include several different chemical compounds.231 These compounds can vary from well to well based on site specific geological information. The Addendum describes federal and state efforts to gather information and require disclosure of the types of chemical additives being used in hydraulic fracturing. The risks posed by the use of these fluids may come from spills and leakages during transport to the well, storage on the well pad, or during the chemical mixing process.232 Further, chemical additives may contaminate groundwater should the integrity of the casing or cement seal of the well be compromised.233

The Addendum considers the potential environmental impacts associated with produced water recovered during flowback operations. Produced water may contain elevated levels of total dissolved solids, salts, metals, organics, and natural occurring radioactive materials, as well as the chemicals included in the fracturing fluid noted above. The Addendum discusses the three principal ways of mitigating the impacts associated with produced water: minimization of the quantity of water used, recycling and re-use of produced water, and disposal.

Concluding its discussion of water resources, the Addendum observes that

```
[u]nconventional natural gas production, when conforming to regulatory requirements,
```

230 Id. at 14.
231 Id. at 14-15.
232 Id. at 18.
233 Id.
implementing best management practices, and administering pollution prevention concepts, may have temporary, minor impacts to water resources. “234 Further, risks may arise when best practices are not employed: “[I]mproper techniques, irresponsible management, inadequately trained staff, or site-specific events outside of an operator’s control could lead to significant impacts on local water resources.”235

B. Air Quality

The Addendum discusses air pollutants emitted at different stages of the natural gas production process. These emissions and their sources are captured in Table 8 below:

Table 8: Source Categories of Airborne Emissions from Upstream Natural Gas Activities (EPA, 2013)236

<table>
<thead>
<tr>
<th>Type of Emissions</th>
<th>Sources of Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Emissions</td>
<td>NOₓ and carbon monoxide (CO) resulting from the burning of hydrocarbon (fossil) fuels. Air toxics, PM, un-combusted VOCs, and CH₄ are also emitted. Engines, heaters, flares, incinerators, and turbines.</td>
</tr>
<tr>
<td>Vented Emissions</td>
<td>VOCs, air toxics, and CH₄ resulting from direct releases to the atmosphere.</td>
</tr>
<tr>
<td></td>
<td>Pneumatic devices, dehydration processes, gas sweetening processes, chemical injection pumps, compressors, tanks, well testing, completions, and workovers.</td>
</tr>
<tr>
<td>Fugitive Emissions</td>
<td>VOCs, air toxics, and CH₄ resulting from uncontrolled and under-controlled emissions.</td>
</tr>
<tr>
<td></td>
<td>Equipment leaks through valves, connectors, flanges, compressor seals, and related equipment and evaporative sources including wastewater treatment, pits, and impoundments.</td>
</tr>
</tbody>
</table>

234 Addendum at 19.
235 Id.
236 Id. at 23 (Table 6).
The Addendum describes the existing regulatory framework relating to such emissions, as well as the U.S. Environmental Protection Agency’s (EPA) 2012 New Sources Performances Standards for hydraulically fractured natural gas wells237 and EPA’s 2013 update to those standards covering storage tanks.238 The Addendum also summarizes the existing literature on each significant category of air pollutant and describes the potential contribution of oil and gas production activities to ground-level ozone pollution and reduced visibility in sensitive areas.

The Addendum concludes its discussion of air quality by stating that natural gas development leads to both short- and long-term increases in local and regional air emissions, especially methane, VOCs, and hazardous air pollutants. According to the Addendum, the intermittent nature of air emissions from sources such as wells makes it difficult to analyze impacts at the regional level. As more data become available, a better understanding of trends in local and regional air quality and potential impacts may emerge.239

C. GHG Emissions

Separate from the LCA GHG Report described below, the Addendum includes a discussion of GHG emissions associated with unconventional natural gas production— principally methane and carbon dioxide. The Addendum describes the nature of GHG emissions from each phase of the production process, including: well drilling and completion; gas production; well re-completions, workovers, and maintenance; gas processing; and gas transmission and storage.

The Addendum also summarizes regulations affecting GHG emissions from upstream natural gas activity. As in the air quality section, the Addendum discusses EPA’s 2012 New

237 Id. at 20-22.
238 Id. at 22.
239 Id. at 32.
Source Performance Standards regulations. The Addendum also describes EPA’s publication in April 2014 of five technical white papers on potentially significant sources of emissions in the oil and gas sector, including completions and ongoing production of hydraulically fractured oil wells, compressors, pneumatic valves, liquids unloading, and leaks. EPA stated that it will use these white papers, along with input from peer reviewers and the public to determine how best to pursue emissions reductions from these sources, possibly including the development of additional regulations.

Finally, the Addendum summarizes the existing literature estimating GHG emissions and methane leakage rates from the upstream natural gas industry, noting that most studies suggest that “emissions of GHGs from the upstream industry are of similar magnitude for both conventional and unconventional sources.”

D. Induced Seismicity

The Addendum provides information on induced seismicity across various types of energy resource activities, namely the production of natural gas, gas condensates, and oil from currently targeted unconventional plays. More specifically, it provides greater detail about the potential for induced seismicity from hydraulic fracturing and wastewater disposal via injection, which is one method of disposing of produced water. Because the duration of injection of hydraulic fracturing fluids is generally minutes or hours and the quantity of injected fluid is relatively low, the Addendum states that “the probability of injecting enough fluid into a natural fault to trigger a felt earthquake is low.” By contrast, the Addendum states that the “incidence of felt earthquakes is

241 Id. at 44.
242 Id. at 40.
243 Id. at 51.
higher for wastewater disposal via wastewater injection wells because a large volume of water is injected over a longer period of time without any withdrawal of fluids, with the result that fluid pressures can be increased within a large area surrounding the injection well.” 244 The Addendum identifies seismic events thought to have been triggered by wastewater disposal into injection wells in Oklahoma, Colorado, Arkansas, and Ohio.

Addressing the severity of seismic events induced by natural gas activities, the Addendum cites a 2013 National Research Council report characterizing the risk of induced seismicity as principally one of alarm to the public and minor property damage, as opposed to significant disruption.245

E. Land Use

The Addendum addresses potential land use impacts resulting from unconventional natural gas production. Land use impacts arise from the construction and development of new access roads, heavy truck traffic on existing local roadways, well pads, pipeline rights of way, and other structures such as compressor stations. The Addendum includes discussions of increased vehicle traffic, habitat fragmentation, reflective light pollution, noise, and other impacts associated with these land use changes. According to the Addendum, “[t]he real issue with land use impacts is not the minor impacts related to each well pad, access road, or pipeline.” 246 Rather, “[w]hen the impacts from these individual components of shale gas development are considered in aggregate, or cumulatively, the impacts become magnified on an ecosystem or regional scale.” 247 The Addendum identifies siting and design considerations that may minimize land use impacts, as well

244 Id. at 52.
246 Addendum at 62.
247 Id.
as traffic and road way impacts associated with large vehicles and concerns for vehicular safety for the motoring public.

X. DOE/FE LIFE CYCLE GREENHOUSE GAS PERSPECTIVE ON EXPORTING LIQUEFIED NATURAL GAS FROM THE UNITED STATES

A. Description of LCA GHG Report

In January 2014, DOE/FE commissioned NETL to undertake a study analyzing the life cycle emissions of greenhouse gases (GHG), including carbon dioxide (CO₂) and methane (CH₄), associated with natural gas produced in the United States and exported as LNG to other countries for use in electric power generation. The study was intended to inform DOE/FE’s decision-making under NGA section 3(a) and to provide additional information to the public. The study—entitled Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States (LCA GHG Report)—estimated the life cycle GHG emissions of domestically produced LNG (also referred to as U.S. LNG) exports to Europe and Asia, compared with alternative fuel supplies (such as regional coal and other imported natural gas), for electric power generation in the destination countries.

summarize the scope of the LCA GHG Report, as well as its methods, limitations, and conclusions. Below, we summarize the public comments on the Report and respond to those comments. See infra § X.B.

1. Purpose of the LCA GHG Report

The LCA GHG Report was designed to answer two principal questions:

- How does LNG exported from the United States compare with regional coal (or other LNG sources) used for electric power generation in Europe and Asia, from a life cycle GHG perspective?
- How do those results compare with natural gas sourced from Russia and delivered to the same European and Asian markets via pipeline?

In establishing this framework, NETL considered the following:

- In what countries will the natural gas produced in the United States and exported as LNG be used?
- How will the U.S. LNG be used in those countries, i.e., for what purpose?
- What are the alternatives to using U.S. LNG for electric power generation in those countries?

Because the exact destination country (or countries) of U.S. LNG cannot be predicted for this study, NETL considered one medium-distance destination (a location in Europe) and one long-distance destination (a location in Asia). NETL chose Rotterdam, Netherlands, as the European destination and power plant location, and Shanghai, China, as the Asian location. NETL used other locations for the alternative sources of natural gas and coal, as specified in the Report.

NETL also determined that one of the most likely uses of U.S. LNG is to generate electric power in the destination countries. In considering sources of fuel other than U.S. LNG, NETL assumed that producers in Europe and Asia could generate electricity in the following ways: (1) by
obtaining natural gas from a local or regional pipeline, (2) by obtaining LNG from a LNG producer located closer geographically than the United States, or (3) by using regional coal supplies, foregoing natural gas altogether.

Using this framework, NETL developed four study scenarios, identified below. To compare scenarios, NETL used a common denominator as the end result for each scenario: one megawatt-hour (MWh) of electricity delivered to the consumer, representing the final consumption of electricity. Additionally, NETL considered GHG emissions from all processes in the LNG supply chains—from the “cradle” when natural gas or coal is extracted from the ground, to the “grave” when electricity is used by the consumer. This method of accounting for cradle-to-grave emissions over a single common denominator is known as a life cycle analysis, or LCA.250

Using this LCA approach, NETL’s objective was to model realistic LNG export scenarios, encompassing locations at both a medium and long distance from the United States, while also considering local fuel alternatives. The purpose of the medium and long distance scenarios was to establish likely results for both extremes (i.e., both low and high bounds).

2. Study Scenarios

NETL identified four modeling scenarios to capture the cradle-to-grave process for both the European and Asian cases. The scenarios vary based on where the fuel (natural gas or coal) comes from and how it is transported to the power plant. For this reason, the beginning “cradle” of each scenario varies, whereas the end, or “grave,” of each scenario is the same because the uniform goal is to produce 1 MWh of electricity. The first three scenarios explore different ways

250 The data used in the LCA GHG Report were originally developed to represent U.S. energy systems. To apply the data to this study, NETL adapted its natural gas and coal LCA models. The five life cycle stages used by NETL, ranging from Raw Material Acquisition to End Use, are identified in the LCA GHG Report at 1-2.
to transport natural gas; the fourth provides an example of how regional coal may be used to generate electricity, as summarized in Table 9 below:

Table 9: LCA GHG Scenarios Analyzed by NETL

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
<th>Key Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Natural gas is extracted in the United States from the Marcellus Shale. It is transported by pipeline to an LNG facility, where it is cooled to liquid form, loaded onto an LNG tanker, and transported to an LNG port in the receiving country (Rotterdam, Netherlands, for the European case and Shanghai, China, for the Asian case). Upon reaching its destination, the LNG is re-gasified, then transported to a natural gas power plant.</td>
<td>The power plant is located near the LNG import site.</td>
</tr>
<tr>
<td>2</td>
<td>Same as Scenario 1, except that the natural gas comes from a regional source closer to the destination. In the European case, the regional source is Oran, Algeria, with a destination of Rotterdam. In the Asian case, the regional source is Darwin, Australia, with a destination of Osaka, Japan.</td>
<td>Unlike Scenario 1, the regional gas is produced using conventional extraction methods, such as vertical wells that do not use hydraulic fracturing. The LNG tanker transport distance is adjusted accordingly.</td>
</tr>
<tr>
<td>3</td>
<td>Natural gas is produced in the Yamal region of Siberia, Russia, using conventional extraction methods. It is transported by pipeline directly to a natural gas power plant in either Europe or Asia.</td>
<td>The pipeline distance was calculated based on a “great circle distance” (the shortest possible distance between two points on a sphere) between the Yamal district in Siberia and a power plant located in either Rotterdam or Shanghai.</td>
</tr>
<tr>
<td>4</td>
<td>Coal is extracted in either Europe or Asia. It is transported by rail to a domestic coal-</td>
<td>This scenario models two types of coal widely used to generate</td>
</tr>
</tbody>
</table>

251 The four scenarios are set forth in the LCA GHG Report at 2.
252 Yamal, Siberia, was chosen as the extraction site because that region accounted for 82.6% of natural gas production in Russia in 2012.
In all four scenarios, the 1 MWh of electricity delivered to the end consumer is assumed to be distributed using existing transmission infrastructure.

3. **GHGs Reported as Carbon Dioxide Equivalents**

Recognizing that there are several types of GHGs, each having a different potential impact on the climate, NETL normalized GHGs for the study. NETL chose carbon dioxide equivalents (CO2e), which convert GHG gases to the same basis: an equivalent mass of CO2. CO2e is a metric commonly used to estimate the amount of global warming that GHGs may cause, relative to the same mass of CO2 released to the atmosphere. NETL chose CO2e using the global warming potential (GWP) of each gas from the 2013 Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) (IPCC, 2013). The LCA GHG Report applied the respective GWPs to a 100-year and a 20-year time frame.

4. **Natural Gas Modeling Approach**

NETL states that its natural gas model is flexible, allowing for the modeling of different methods of producing natural gas. For Scenario 1, all natural gas was modeled as unconventional gas from the Marcellus Shale, since that shale play reasonably represents new marginal gas production in the United States. For Scenarios 2 and 3, the extraction process was modeled after conventional onshore natural gas production in the United States. This includes both the regional LNG supply options that were chosen for this study (Algeria for Europe and...
Australia for Asia) and extraction in Yamal, Siberia, for pipeline transport to the power plants in Europe and Asia.

In the above three natural gas scenarios, the natural gas is transported through a pipeline, either to an area that processes LNG (Scenarios 1 and 2) or directly to a power plant (Scenario 3). NETL’s model also includes an option for all LNG steps—from extraction to consumption—known as an LNG supply chain. After extraction and processing, natural gas is transported through a pipeline to a liquefaction facility. The LNG is loaded onto an ocean tanker, transported to an LNG terminal, re-gasified, and fed to a pipeline that transports it to a power plant. NETL assumed that the natural gas power plant in each of the import destinations already exists and is located close to the LNG port.

The amount of natural gas ultimately used to make electricity is affected by power plant efficiency. Therefore, the efficiency of the destination power plant is an important parameter required for determining the life cycle emissions for natural gas power. The less efficient a power plant, the more gas it consumes and the more GHG emissions it produces per unit of electricity generated. For this study, NETL used a range of efficiencies that is consistent with NETL’s modeling of natural gas power in the United States.\(^{253}\) NETL also assumed that the efficiencies used at the destination power plants (in Rotterdam and Shanghai) were the same as those used in the U.S. model.

5. **Coal Modeling Approach**

NETL modeled Scenario 4, the regional coal scenario, based on two types of coal: bituminous and sub-bituminous. Bituminous coal is a soft coal known for its bright bands. Sub-bituminous coal is a form of bituminous coal with a lower heating value. Both types are widely

\(^{253}\) See LCA GHG Report at 4 (citing NETL, *Life Cycle Analysis of Natural Gas Extraction and Power Generation*).
used as fuel to generate steam-electric power. NETL used its existing LCA model for the extraction and transport of sub-bituminous and bituminous coal in the United States as a proxy for foreign extraction in Germany and China. Likewise, NETL modeled foreign coal production as having emissions characteristics equivalent to average U.S. coal production. No ocean transport of coal was included to represent the most conservative coal profile (whether regionally sourced or imported).

The heating value of coal is the amount of energy released when coal is combusted, whereas the heat rate is the rate at which coal is converted to electricity by a power plant. Both factors were used in the model to determine the feed rate of coal to the destination power plant (or the speed at which the coal would be used). For consistency, this study used the range of efficiencies that NETL modeled for coal power in the United States. The study also assumed the same range of power plant efficiencies for Europe and Asia as the U.S. model.

6. Key Modeling Parameters

NETL modeled variability among each scenario by adjusting numerous parameters, giving rise to hundreds of variables. Key modeling parameters described in the LCA GHG Report include: (1) the method of extraction for natural gas in the United States, (2) methane leakage for natural gas production,254 (3) coal type (sub-bituminous or bituminous),255 (4) the flaring rate for natural gas,256 (5) transport distance (ocean tanker for LNG transport, and rail for

254 The key modeling parameters for the natural gas scenarios are provided in Table 5-1 (LNG) and Table 5-2 (Russian natural gas). See LCA GHG Report at 6. The key parameters for natural gas extraction, natural gas processing, and natural gas transmission by pipeline are set forth in Tables 5-4, 5-5, and 5-6, respectively. See id. at 7-8.

255 The modeling parameters and values for the coal scenarios are provided in Table 5-3. See LCA GHG Report at 6.

256 Flaring rate is a modeling parameter because the global warming potential of vented natural gas, composed mostly of methane, can be reduced if it is flared, or burned, to create CO₂. See id. at 7.
coal transport),257 and (6) the efficiency of the destination power plant.

For example, as shown in Table 5-1 of the LCA GHG Report, NETL used two different ranges for methane leakage rates for Scenarios 1 and 2: from 1.2 to 1.6\% for natural gas extracted from the Marcellus Shale, and from 1.1 to 1.6\% from gas extracted using conventional extraction methods. For Scenario 3 (the Russian cases), however, NETL used a higher range for methane leakage rates for both the European and Asian locations, in light of the greater pipeline distance from Russia.258 As the pipeline distance increases, the total methane leakage from pipeline transmission also increases, as does the amount of natural gas that is extracted to meet the same demand for delivered natural gas. Notably, as part of the study, NETL conducted a methane leakage breakeven analysis to determine the “breakeven leakage” at which the life cycle GHG emissions for natural gas generated power would equal those for the coal Reference case (Scenario 3).259

In sum, NETL noted that the LCA study results are sensitive to these key modeling parameters, particularly changes to natural gas and coal extraction characteristics, transport distances, and power plant performance.260 NETL also identified several study limitations based on the modeling parameters, including: (1) NETL’s LCA models are U.S.-based models adapted for foreign natural gas and coal production and power generation, and (2) the specific LNG export and import locations used in the study represent an estimate for an entire region (\textit{e.g.}, New Orleans representing the U.S. Gulf Coast).261

257 The distances used for pipeline transport of Russian gas are provided in Table 5-2. \textit{See id.} at 6.
258 \textit{See} LCA GHG Report at 5.
259 The methane leakage breakeven analysis is described in the LCA GHG Report at 14 and 15.
260 \textit{See} LCA GHG Report at 5. To ensure that the study results were robust, NETL conducted several side analyses and sensitivity calculations, as discussed in the LCA GHG Report.
261 The study limitations are described in the LCA GHG Report at 18.
7. Results of the LCA GHG Report

NETL states that two primary conclusions may be drawn from the LCA GHG Report.\footnote{NETL’s detailed study results, with corresponding figures, are set forth on pages 8 through 18 of the LCA GHG Report.} First, use of U.S. LNG exports to produce electricity in European and Asian markets will not increase GHG emissions on a life cycle perspective, when compared to regional coal extraction and consumption for power production. As shown below in Figures 1 and 2, NETL’s analysis indicates that, for most scenarios in both the European and Asian regions, the generation of power from imported natural gas has lower life cycle GHG emissions than power generation from regional coal.\footnote{Although these figures present an expected value for each of the four scenarios, NETL states that the figures should not be interpreted as the most likely values due to scenario variability and data uncertainty. Rather, the values allow an evaluation of trends only—specifically, how each of the major processes (e.g., extraction, transport, combustion) contribute to the total life cycle GHG emissions. See LCA GHG Report at 8-9.} Given the uncertainty in the underlying model data, however, NETL states that it is not clear if there are significant differences between the corresponding European and Asian cases other than the LNG transport distance from the United States and the pipeline distance from Russia.
Figure 1: Life Cycle GHG Emissions for Natural Gas and Coal Power in Europe264

264 LCA GHG Report at 9 (Figure 6-1).
Second, there is an overlap between the ranges in the life cycle GHG emissions of U.S. LNG, regional alternative sources of LNG, and natural gas from Russia delivered to the European or Asian markets. Any differences are considered indeterminate due to the underlying uncertainty in the modeling data. Therefore, the life cycle GHG emissions among these sources of natural gas are considered similar, and no significant increase or decrease in net climate impact is anticipated from any of these three scenarios.

265 LCA GHG Report at 10 (Figure 6-2).
B. Comments on the LCA GHG Report and DOE/FE Analysis

As discussed above, the LCA GHG Report compares life cycle GHG emissions from U.S. LNG exports to regional coal and other imported natural gas for electric power generation in Europe and Asia. Following the close of the public comment period on the LCA GHG Report, DOE/FE identified 18 unique submissions received from the general public, interest groups, industry, and academia/research institutions, which DOE/FE categorized into seven distinct comments. 266

DOE/FE identifies below: (i) the pertinent arguments by topic, with reference to representative comments, and (ii) DOE/FE’s basis for the conclusions that it drew in reviewing those comments. In so doing, DOE/FE will respond to the relevant, significant issues raised by the commenters.

1. Study Conclusions

a. Comments

Several commenters, including Citizens Against LNG and Oregon Wild, claim that the life cycle GHG emissions from natural gas are higher than those from coal.

b. DOE/FE Analysis

These comments assert that natural gas has higher GHGs than coal, but they do not cite data sources applicable to the comparison of U.S.-exported LNG to regional coal, nor do they acknowledge that the different end uses of coal and natural gas (i.e., heating, power, or transportation) affect their relative life cycle GHG performance. If the characteristics of each fuel (most critically, the carbon content per unit of the fuel’s energy) and power plant

266 In some instances, single letters were sent on behalf of a group of people. In one case, multiple copies of a form letter were received from 149 individuals, hereinafter referred to as “Concerned Citizens.” Most of the individuals in the Concerned Citizens group live in New York, but other states and countries are also represented.
Efficiencies are considered, the lower per-MWh CO₂ emissions from natural gas power plants in comparison to coal power plants make natural gas lower than coal in the context of power plant operations by 61% (see Table 10 below, \(\frac{(415 - 1,063)}{1,063} \times 100\)). The life cycle of baseload electricity generation is a reasonable basis for comparing natural gas and coal because both types of fuels are currently used on a large scale by baseload power plants.

Table 10 shows the life cycle GHG emissions CO₂, methane (CH₄), nitrous oxide (N₂O), and sulfur hexafluoride (SF₆) from natural gas and coal systems and demonstrates the importance of power plant operations to total life cycle GHG emissions over 100- and 20-year GWP timeframes. This table is representative of European end-use scenarios, which consume natural gas exported from the United States and coal extracted in Europe. (This table is based on the same data as used by Figure 6-1 of the LCA GHG Report.)

Table 10: Life Cycle GHG Emissions from Natural Gas and Coal Systems

(㎏ CO₂e/MWh)

<table>
<thead>
<tr>
<th>Life Cycle Process</th>
<th>100-yr GWP Natural Gas: New Orleans to Rotterdam, Netherlands</th>
<th>20-yr GWP Natural Gas: New Orleans to Rotterdam, Netherlands</th>
<th>100-yr GWP Coal: European Regional</th>
<th>20-yr GWP Coal: European Regional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas/Coal Extraction</td>
<td>33.9</td>
<td>7.8</td>
<td>88.7</td>
<td>13.6</td>
</tr>
<tr>
<td>Natural Gas Processing</td>
<td>34.5</td>
<td>-</td>
<td>60.4</td>
<td>-</td>
</tr>
<tr>
<td>Domestic Pipeline Transport</td>
<td>32.3</td>
<td>-</td>
<td>81.4</td>
<td>-</td>
</tr>
<tr>
<td>Liquefaction</td>
<td>63.6</td>
<td>-</td>
<td>63.6</td>
<td>-</td>
</tr>
<tr>
<td>Tanker/Rail Transport</td>
<td>25.0</td>
<td>14.4</td>
<td>28.4</td>
<td>15.3</td>
</tr>
<tr>
<td>Tanker Berthing & Deberthing</td>
<td>1.5</td>
<td>-</td>
<td>1.6</td>
<td>-</td>
</tr>
<tr>
<td>LNG Regasification</td>
<td>20.0</td>
<td>-</td>
<td>45.3</td>
<td>-</td>
</tr>
<tr>
<td>Power Plant Operations</td>
<td>415</td>
<td>1,063</td>
<td>415</td>
<td>1,064</td>
</tr>
<tr>
<td>Electricity T&D</td>
<td>3.4</td>
<td>3.4</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>629</td>
<td>1,089</td>
<td>787</td>
<td>1,095</td>
</tr>
</tbody>
</table>
2. Boundaries of the LCA GHG Report

a. Comments

 Sierra Club,267 Food & Water Watch,268 Americans Against Fracking et al., Susan Sakmar, and Concerned Citizens, among others, contend that the LCA GHG Report has flawed boundaries and scenarios. In particular, these commenters contend that the LCA GHG Report assumes that LNG will displace coal power without also accounting for the displacement of renewable energy.

 b. DOE/FE Analysis

 The boundaries of the LCA were developed with respect to questions about two fossil fuels, coal and natural gas, and where they come from. The scenarios in the LCA do not model displacement of any kind. These two scenarios are purely attributional, meaning that they focus on independent supply chains for each scenario and do not account for supply or demand shifts caused by the use of one fuel instead of another fuel.

3. Natural Gas Transport between Regasification and Power Plants

a. Comments

 Sierra Club and Concerned Citizens, among others, assert that the LCA GHG Report does not account for natural gas transport between LNG regasification facilities and power plants in the importing countries.

 b. DOE/FE Analysis

 The choice to exclude transportation between regasification and the power plant was a modeling simplification. The sensitivity analysis of GHG emissions with changes to pipeline transport.
transport distance, as illustrated by Figures 4-7 and 4-8 of NETL’s *Life Cycle Analysis of Natural Gas Extraction and Power Generation*, shows that the doubling (i.e., a 100% increase) of natural gas pipeline transport distance increases the *upstream* GHG emissions from natural gas by 30%. When this upstream sensitivity is applied to the life cycle boundary of the LCA GHG Report, an additional 100 miles beyond the LNG import terminal increases the life cycle GHG emissions for the LNG export scenarios by 0.8%, and an additional 500 miles beyond the LNG import terminal increases the life cycle GHG emissions for the LNG export scenarios by 4% (using 100-year GWPs as specified by the IPCC Fifth Assessment Report). Although this parameter modification changes the results of the LCA slightly, it does not change the conclusions of the LCA GHG Report.

4. Data Quality for LNG Infrastructure, Natural Gas Extraction, and Coal Mining

a. Comments

Several commenters, including API, Concerned Citizens, and Sierra Club, commented on whether the data used in the LCA GHG Report is current and fully representative of the natural gas industry. In particular, API asserts that NETL’s model is representative of inefficient liquefaction technologies that overstate the GHG emissions from the LNG supply chain, coal data that understates the methane emissions from coal mines, and natural gas extraction data that mischaracterizes “liquids unloading” practices.269 API proposes the use of newer data for both

269 For purposes of this term, we refer to EPA’s description of “liquids unloading” as follows: “In new gas wells, there is generally sufficient reservoir pressure to facilitate the flow of water and hydrocarbon liquids to the surface along with produced gas. In mature gas wells, the accumulation of liquids in the well can occur when the bottom well pressure approaches reservoir shut-in pressure. This accumulation of liquids can impede and sometimes halt gas production. When the accumulation of liquid results in the slowing or cessation of gas production (i.e., liquids loading), removal of fluids (i.e., liquids unloading) is required in order to maintain production. Emissions to the atmosphere during liquids unloading events are a potentially significant source of VOC and methane emissions.” U.S. Envtl. Prot. Agency, Office of Air Quality Planning & Standards, *Oil & Natural Gas Sector Liquids Unloading*
liquefaction terminals in the United States and methane emission factors from unconventional natural gas extraction and coal mining. Concerned Citizens argue that the LCA GHG Report does not clearly identify its source of data for estimates of loss related to LNG production, shipping, and regasification, as well as the basis for estimates of pipeline losses from Russia. Sierra Club points to inaccurate referencing of EPA’s Subpart W report, which was the basis for many of NETL’s emission factors for natural gas extraction.

b. DOE/FE Analysis

(1) Liquefaction Data

API points to newer data for liquefaction facilities that have higher efficiencies than the liquefaction process in the LCA GHG Report. API points to the GHG intensities of the liquefaction facilities proposed by Sabine Pass, Cameron LNG, and FLEX, each of which has been granted one or more non-FTA LNG export orders by DOE/FE (see infra § XII.D). According to API, these proposed facilities will produce 0.26, 0.29, and 0.12 tonnes of CO₂e per tonne of LNG, respectively. The majority of a liquefaction facility’s energy is generated by combusting incoming natural gas, so the GHG intensity of a liquefaction facility is directly related to its efficiency. As API correctly points out, the LCA model assumes a GHG intensity of 0.44 tonnes of CO₂e per tonne of LNG; this GHG intensity is representative of a facility that consumes 12% of incoming natural gas as plant fuel.270

The above GHG intensities and liquefaction efficiencies are not life cycle numbers, but represent only the gate-to-gate operations of liquefaction facilities, beginning with the receipt of

processed natural gas from a transmission pipeline and ending with liquefied natural gas ready for ocean transport. As illustrated by Figures 6-1 and 6-2 in the LCA GHG Report (reproduced as tables herein), liquefaction accounts for approximately 10% of the life cycle GHG emissions of U.S. LNG used for electric power generation in Europe and Asia. A doubling of liquefaction efficiency (thus achieving a GHG intensity comparable to the average of the Sabine Pass, Cameron, and Freeport facilities) would lead to a 6% reduction in the feed rate of natural gas to the liquefaction plant.271 This feed rate reduction would also reduce natural gas extraction, processing, and transmission emissions by 6%, but would not affect the processes downstream from liquefaction (ocean tankers, power plants, and electricity transmission networks). Applying the increased liquefaction efficiency and the 6% reduction in feed rate to the results of the LCA GHG Report would reduce the life cycle GHG emissions for LNG export scenarios by only 1.5% (using 100-year GWPs as stated in the IPCC Fifth Assessment Report). Increasing liquefaction efficiency may significantly reduce the emissions from one point in the supply chain, but it does not change the conclusions of the LCA.

(2) Natural Gas Methane Data

API and Concerned Citizens criticize the quality of data that DOE/NETL uses for natural gas extraction. API’s concern is that NETL overstates the GHG emissions from unconventional well completion. API compares NETL’s emission factor for unconventional well completions (9,000 Mcf of natural gas/episode) to the emission factor that EPA states in its 2014 GHG inventory (approximately 2,500 Mcf of natural gas/episode). EPA revised its unconventional completion emission factor between its 2013 and 2014 inventory reports,272 after NETL’s model

271 See id.
had been finalized and during the time that NETL was completing the LCA GHG Report. These factors are referred to as “potential emission factors” because they do not represent natural gas that is directly released to the atmosphere, but they represent the volume of natural gas that can be sent to flares and other environmental control equipment. NETL uses a potential emission factor of 9,000 Mcf of natural gas per each episode of shale gas hydraulic fracturing, and a potential emission factor of 3.6 Mcf of natural gas per each episode of liquids unloading (with 31 liquids unloading episodes per well-year). NETL’s model augments potential emission factors with flaring, thereby reducing the amount of methane that is released to the atmosphere. These emission factors are consistent with the findings of a survey jointly conducted by API and America’s Natural Gas Alliance and released in September 2012. They also match the factors used by EPA’s 2013 GHG inventory.

NETL’s current model accounts for liquids unloading emissions from conventional wells, but does not account for liquids unloading from unconventional wells. Applying liquids unloading to the unconventional wells in this analysis increases the life cycle GHGs by 0.6% for LNG export scenarios (using 100-year GWPs as stated in the IPCC Fifth Assessment Report). This 0.6% was estimated by assigning the liquid unloading emissions from onshore conventional natural gas to the upstream results for Marcellus Shale natural gas, followed by an expansion of the boundaries to a life cycle context. Simply put, liquids unloading accounts for 11% of the upstream GHG emissions from conventional onshore natural gas. When liquids unloading is added to unconventional natural gas in the LCA model, it is scaled according to the unique production rates and flaring practices of unconventional wells in addition to the subsequent flows

275 See NETL, Life Cycle Analysis of Natural Gas Extraction and Power Generation.
of natural gas processing, liquefaction, ocean transport, regasification, power plant operations, and electricity transmission. Thus, while liquids unloading may account for a significant share of *upstream* GHG emissions, none of the LCA GHG Report’s conclusions would change with the addition of liquids unloading to unconventional natural gas extraction.

The potential emissions from unconventional well completions are modeled as 9,000 Mcf of natural gas per episode. It is important to remember that this factor does not represent methane emissions directly released to the atmosphere, but the flow of natural gas prior to environmental controls. For unconventional natural gas, NETL’s model flares 15% of these potential emissions (flaring converts methane to CO₂, thus reducing the GWP of the gas) and apportions all completion emissions to a unit of natural gas by dividing them by lifetime well production (completion emissions occur as one-time episode that must be converted to a life cycle basis by amortizing them over total lifetime production of a well). Further, the life cycle GHG contributions from well completions are diluted when scaled to the subsequent flows of natural gas processing, liquefaction, ocean transport, regasification, power plant operations, and electricity transmission. However, in NETL’s model, life cycle completion emissions are directly affected by the estimated ultimate recovery (EUR) of a well because the total amount of natural gas produced by a well is used as a basis for apportioning completion and other one-time emissions to a unit of natural gas produced. From an engineering perspective, wells with high EURs are more likely to have a high initial reservoir pressure that increases the potential completion emissions. A reasonable uncertainty range around the potential emissions from unconventional completion emissions (9,000 Mcf/episode) is -30% to +50% (6,100 to 13,600 Mcf/episode). This uncertainty range matches the scale of uncertainty around the Marcellus Shale EUR used in the LCA GHG Report (see Table 5-4 of the LCA GHG Report). This -30%
to +50% uncertainty around potential emissions from unconventional completions causes a -2% to 3% uncertainty around life cycle GHG emissions for the export scenarios of this analysis.

The New Source Performance Standards (NSPS) rules for the oil and natural gas sector, which EPA amended in a final rule published on June 3, 2016, will achieve significant methane emission reductions primarily by requiring all new or modified wells to capture and control potential emissions of VOCs during natural gas well completion. In addition to well completion emissions, the NSPS rules target other point sources of VOC emissions from new and modified sources at natural gas extraction and processing sites, but they do not address liquids unloading. The LCA GHG Report does not account for the potential effects of the NSPS rules on natural gas emissions because the scope of the LCA accounts for GHG emissions from natural gas being produced today. EPA’s Regulatory Impact Analysis estimated that the final NSPS rule would reduce annual methane emissions in 2015 by 18 million metric tons, meaning that this rule will have the effect of reducing life cycle emissions from natural gas systems as new wells are developed and existing wells are modified. The likely effects of the NSPS rule therefore suggest that the conclusions of the LCA GHG Report are conservative with respect to the life cycle GHG emissions of natural gas produced in the United States.

Sierra Club contends that NETL’s documentation, including the 200-page supporting LCA document, does not clearly cite EPA’s Subpart W document. NETL’s Report has three references to Subpart W, cited as EPA 2011a, 2011b, and 2011c. These three references should

refer to the same document. Future versions of the Report will correct these duplicate citations. Sierra Club also calls out the citation for EPA, 2012c, although this is a correct reference that points to EPA’s documentation of New Source Performance Standards.

(3) Coal Methane Data

API and Concerned Citizens criticize the quality of data that DOE/NREL uses for coal extraction. In particular, API claims that coal mine methane emissions may be higher than the factors used by NETL. Concerned Citizens simply claim that NETL used a limited set of references to characterize coal mine emissions.

Methane emissions from coal mines are based on data collected by EPA’s Coalbed Methane Outreach Program and have been organized by coal type and geography. Due to data limitations, the LCA GHG Report used this data as a proxy for emissions from foreign coal. This limitation is noted in the LCA GHG Report and is accounted for by uncertainty.\(^{279}\) The bounds on coal methane uncertainty were informed by the variability in coal mine methane emissions between surface mines (subbituminous coal) and underground mines (bituminous coal) in the United States. The default parameters in NETL’s model represent subbituminous coal, which has lower coal mine methane emissions than bituminous coal (these parameters are specified in Table 5-3 of the LCA GHG Report). If coal mines in Europe and Asia emit methane at rates similar to the underground, bituminous coal mines in the United States, then the life cycle GHG emissions from coal power would increase. This increase in coal mine methane emissions would increase the life cycle GHG emissions of coal power by 8 percent (from 1,089 to 1,180 kg CO\(_2\)e/MWh, using 100-year GWPs as stated in the IPCC Fifth Assessment Report).

\(^{279}\) See, e.g., NETL, Life Cycle Analysis of Natural Gas Extraction and Power Generation.
This uncertainty is illustrated by Figure 6-16 in the LCA GHG Report. Again, even though changes to coal mine methane emissions change the GHG results of the LCA, they do not change the conclusions of the LCA.

5. Methane Leakage Rate Used in the LCA GHG Report

a. Comments

A number of commenters, including Sierra Club, Food & Water Watch, Americans Against Fracking et al., and Zimmerman and Associates, claim that the methane leakage rate used by NETL is too low. They assert that it does not match top-down (or aerial) measurements recently conducted in regions with natural gas activity, nor does it match the leakage rate in a recent analysis of wellhead casings in Pennsylvania.

b. DOE/FE Analysis

Recent studies lack consensus concerning the extent and rates of leakage from the upstream natural gas supply chain, with the leakage rates reported by these studies ranging from less than 1% to as high as 10%.280 One reason for this broad range of leakage rates is the fact that different analysts use different boundaries (e.g., extraction only, extraction through processing, extraction through transmission, and extraction through distribution). Further, top-down measurements are taken over narrow time frames and limited geographic scopes that represent only a snapshot of operations. They do not necessarily represent long-term operations over a broad area.

Another reason for this range of leakage rates is confusion between leaks and losses. Natural gas leaks include emissions from pneumatically controlled devices, valves, compressor seals, acid gas removal units, dehydrators, and flanges. These leaks are a mix of methane and

280 See NETL, Life Cycle Analysis of Natural Gas Extraction and Power Generation (Section 6.2.1) (identifying reports that include various leakage rates).
other hydrocarbons, and are a subset of total natural gas losses. Another type of loss includes flaring, which converts methane to CO₂ and thus reduces methane venting to the atmosphere. Similarly, the combustion of natural gas by reboilers in a natural gas processing plant or by compressors on a pipeline represents the loss of natural gas that is used to improve the purity of the gas itself and move it along the transmission network.

NETL’s expected cradle-through-transmission leakage rate is 1.2%. In other words, the extraction, processing, and transmission of 1 kg of natural gas releases 0.012 kg of CH₄ to the atmosphere. In contrast, NETL’s expected loss rate from the same boundary is approximately 8%: for the delivery of 1 kg of natural gas via a transmission pipeline, 0.012 kg of CH₄ is released to the atmosphere, and 0.068 kg is flared by environmental controls or combusted for processing and transmission energy.

Sierra Club compares NETL’s leakage rate to a 1.54% leakage rate derived from EPA’s 2013 GHG inventory. The two types of leakage rates (the 1.2% calculated by NETL’s life cycle model and the 1.54% implied by EPA’s 2013 inventory) are not directly comparable. LCAs and national inventories have different temporal boundaries. NETL’s leakage rate is a life cycle number based on a 30-year time frame; it levelizes the emissions from one-time well completion activities over a 30-year time frame of steady-state production. The leakage rate implied by EPA’s inventory represents 2011 industry activity; it captures the spike in completion emissions due to the atypically high number of wells that were completed that year. In other words, national inventories calculate all emissions that occur in a given year, while LCAs apportion all emissions that occur during a study period (e.g., 30 years) to a unit of production (e.g., 1 MWh of electricity generated). Both approaches are legitimate with respect to the unique goals of each type of analysis.
Sierra Club also compares NETL’s 1.2% leakage rate to the 2.01% leakage rate calculated by Burnham et al.281 Again, a boundary difference explains why the two leakage rates are not directly comparable. Burnham et al.’s leakage rate includes natural gas distribution, which is an additional transport step beyond transmission. Natural gas distribution moves natural gas from the “city gate” to small scale end users (commercial and residential consumers). NETL’s leakage rate ends after natural gas transmission, the point at which natural gas is available for large scale end users such as power plants. The natural gas distribution system is a highly-branched network that uses vent-controlled devices to regulate pressure. This boundary difference explains why Burnham et al.’s leakage rate is higher than NETL’s rate. Sierra Club also compares NETL’s leakage rate to a shale gas analysis conducted by Weber et al.282 We have reviewed Weber et al.’s work and do not see any mention of leakage rate.

It is also important to note that leakage rate is not an input to NETL’s life cycle model. Rather, it is calculated from the outputs of NETL’s life cycle model. NETL uses an approach that assembles all activities in the natural gas supply chain into a network of interconnected processes. The emissions from each process in this model are based on engineering relationships and emission factors from the EPA and other sources. This method is known as a “bottom-up” approach. Researchers are trying to discern why “top-down” studies such as Pétron’s measurements in northeast Colorado283 do not match the bottom-up calculations by NETL and other analysts. We believe that inconsistent boundaries (i.e., bottom-up models that account for long term emissions at the equipment level in comparison to top-down measurements that

\begin{thebibliography}{9}
\end{thebibliography}
encompass an entire region with more than one type of industrial activity over a narrow time frame) partly explain the differences between bottom-up and top-down results. As research continues, however, we expect to learn more about the differences between bottom-up and top-down methods.

Zimmerman and Associates references a recent study by Ingraffea et al. that assessed failure rates of well casings for oil and gas wells in Pennsylvania.284 However, Ingraffea et al. do not calculate a methane leakage rate in their analysis; rather, they calculate the rate at which wells develop leaks. The rate at which leaks develop in well casings is a different phenomenon than the rate at which methane leaks from the natural gas supply chain. The former is a measurement of failure rates (the number of wells in a group that have leaks) and the latter is a measurement of the magnitude of total leakage (the amount of methane in extracted natural gas that is released to the atmosphere).

The breakeven analysis shown in Section 6 of the LCA GHG Report models hypothetical scenarios that increase the natural gas leakage rate to the point where the life cycle emissions from natural gas power are the same as those from coal power. The breakeven points between natural gas and coal systems are illustrated in Figures 6-8 and 6-9 of the Report. These results are based on the most conservative breakeven point, which occurs between the high natural gas cases (i.e., lowest power plant efficiency, longest transport distance, and highest methane leakage) with the low coal case (i.e., highest power plant efficiency and shortest transport distance). These graphs show that on a 100-year GWP basis, methane leakage would have to increase by a factor of 1.7 to 3.6, depending on the scenario, before the breakeven occurs. The

breakeven methane leakage is lower for the 20-year GWP basis and, for some scenarios, is lower than the modeled leakage rate.

6. The Uncertainty Bounds of the LCA GHG Report
 a. Comments
 Concerned Citizens claim that the LCA GHG Report has significant uncertainty, and contend that “poor modeling is not a reason to dismiss impacts.”

 b. DOE/FE Analysis
 The results of the LCA GHG Report are based on a flexible model with parameters for natural gas extraction, processing, and transport. Uncertainty bounds are assigned to three key parameters: well production rates, flaring rates, and transport distances. These uncertainty bars are not an indication of poor modeling. To the contrary, they are used to account for variability in natural gas systems. If the analysis did not account for uncertainty, the results would imply that the GHG emissions from natural gas systems are consistently a single, point value, which would be inaccurate. We therefore believe the chosen uncertainty bounds strengthen the LCA model, as opposed to indicating any weakness in modeling.

7. The LCA GHG Report and the NEPA Approval Process
 a. Comments
 Several commenters, including Citizens Against LNG, Dominion Cove Point LNG, Susan Sakmar, and Americans Against Fracking et al., note that the LCA GHG Report does not fulfill the requirements of an EIS as defined by NEPA. These commenters maintain that the LCA GHG Report should not be used as a basis for approving proposed LNG export terminals.

 b. DOE/FE Analysis
 We agree that the LCA GHG Report does not fulfill any NEPA requirements in this proceeding, nor has DOE/FE made any suggestion to that effect. The LCA GHG Report
addresses foreign GHG emissions and thus goes beyond the scope of what must be reviewed under NEPA.

XI. FERC PROCEEDING AND GRANT OF AUTHORIZATION

A. FERC’s Pre-Filing Procedures

Authorizations issued by FERC permitting the siting, construction, and operation of LNG export terminals are reviewed under NGA section 3(a) and (e), 15 U.S.C. § 717b(a), (e). FERC’s approval process for such an application consists of a mandatory pre-filing process during which the environmental review required by NEPA commences, and a formal application process that starts no sooner than 180 days after issuance of a notice that the pre-filing process has commenced.

On May 30, 2013, FERC began its pre-filing review of GPP’s Export Project and GPPL’s Pipeline Expansion Project. FERC established pre-filing Docket No. PF13-14-000 to place information related to the two Projects into the public record. On September 19, 2013, FERC issued a Notice of Intent to Prepare an Environmental Assessment (NOI) for the proposed Projects.

DOE agreed to participate as a cooperating agency in FERC’s environmental review.

Consistent with its practice, FERC published the NOI in the Federal Register on October 16, 2013, and mailed it to federal, state, and local government representatives and agencies, elected officials, environmental and public interest groups, Native American Tribes, property owners in the vicinity of the proposed facilities, other interested parties, and local libraries and

287 FERC Order at P 53.
288 Id.
289 See id. at P 55. See also 40 C.F.R. §1501.6 (“In addition, any other Federal agency which has special expertise with respect to any environmental issue, which should be addressed in the statement may be a cooperating agency upon request of the lead agency.”); § 1501.6(b) (responsibilities of a cooperating agency).
As part of FERC’s public scoping process under NEPA, FERC held open houses and received comments from a variety of stakeholders, which served to identify issues for FERC staff to address in the EIS.

B. FERC’s Environmental Review

On July 7, 2014, GPP began the second part of FERC’s approval process by filing its formal application in FERC Docket No. CP14-517-000 for authorization to site, construct, and operate the GPP Export Project under NGA section 3. On the same day, GPPL filed an application in FERC Docket No. CP14-518-000 for a certificate of public convenience and necessity to construct and operate compression and looping facilities in Texas and Louisiana pursuant to NGA section 7(c). According to FERC, the Pipeline Expansion will make GPPL’s existing pipeline facilities bi-directional, enabling it to transport up to 2.5 Bcf/d of domestically-sourced natural gas to the Export Project for liquefaction and export.

FERC issued a Draft Environmental Impact Statement (DEIS) for the two Projects on March 25, 2016, and placed the DEIS into the public record. Based on the FERC staff’s analysis, public scoping, and agency consultation, FERC addressed numerous potential impacts of the GPP Export Project in the DEIS, including (but not limited to) wetlands, geological conditions, water resources, air quality, and cumulative impacts.

291 See FERC Order at PP 53-54.
293 Golden Pass Pipeline LLC, Application of Golden Pass Pipeline LLC for Authorization under Section 7(c) of the Natural Gas Act, FERC Docket No. CP14-518-000 (July 7, 2014); see also 79 Fed. Reg. 44,020 (July 29, 2014).
294 FERC Order at P 2.
295 Id. at P 56 (citation omitted).
296 See Draft EIS at ES-3.
In accordance with CEQ’s NEPA regulations, FERC provided a 45-day public comment period on the DEIS. During this time, FERC held two public meetings and accepted written comments on the draft EIS from federal and state agencies, as well as other interested parties, including the applicants. In total, FERC received 22 written comments on the draft EIS.\(^{297}\)

On July 29, 2016, the FERC staff issued the final EIS for the GPP Export Project. The final EIS responds to comments received on the draft EIS. It addresses the potential impacts of the GPP Export Project on geology; soils; water resources; wetlands; vegetation; wildlife and fisheries; special status species; land use, recreation, and visual resources; socioeconomics; cultural resources; air quality and noise; reliability and safety; and cumulative impacts.\(^{298}\) The final EIS also reviewed alternatives to the proposed action.\(^{299}\)

Based on its environmental analysis, FERC staff concluded that, “if constructed and operated in accordance with applicable laws and regulations, Golden Pass’ proposed mitigation, and our recommendations …, the [GPP Export Project] would result in some adverse environmental impact; however, those impacts would not be significant.”\(^{300}\) FERC staff developed 85 site-specific environmental mitigation measures, which it recommended that FERC attach as conditions to any authorization of the GPP Export Project.\(^{301}\)

\(^{297}\) FERC Order at P 56.
\(^{298}\) Final EIS at ES-3 to ES-4; FERC Order at P 57.
\(^{299}\) Final EIS at ES-6 to ES-7; FERC Order at P 57.
\(^{300}\) Final EIS-7.
\(^{301}\) See id. at ES-8; see also id. at 5-10 through 5-22.
C. FERC’s Order Granting Authorization

1. Overview

On December 21, 2016, FERC issued its Order authorizing GPP to site, construct, and operate the GPP Export Project (or Export Terminal) with a liquefaction capacity of up to 15.6 mtpa of LNG, pursuant to NGA section 3. The FERC Order also authorized GPPL to construct and operate the Pipeline Expansion Project, pursuant to NGA section 7(c).\footnote{See FERC Order at P 3.}

In granting this authorization, FERC observed that the proposed site for the GPP Export Project is “located on and adjacent to the footprint of the previously approved and currently operating import terminal site.”\footnote{Id. at P 9, 24} FERC further found that because “much of the land in the area was previously disturbed during construction of the terminal, … the environmental impacts of the Export Terminal Project are not expected to be significant and can be further mitigated with appropriate measures, recommended in the EIS and adopted in this order.”\footnote{Id. at P 24.} Based on its review of the record, including the final EIS, FERC determined that, “with the conditions we require, the Export Terminal Project results in only minimal environmental impacts and can be constructed and operated safely.”\footnote{Id.; see also id. at P 100 (FERC concluding that “approval of the projects, if constructed and operated as described in the final EIS, is an environmentally acceptable action”).} On this basis, FERC adopted 83 of the 85 environmental mitigation measures (or conditions) recommended in the EIS, as explained below.

2. Indirect Impacts/Greenhouse Gas (GHG) Emissions

FERC noted that Sierra Club had filed comments on the draft EIS—and again in response to the final EIS—asserting the draft EIS failed “to provide an analysis of the indirect effects of the Export Terminal Project including upstream natural gas production, domestic gas-to-coal
switching, in response to increased natural gas prices related to natural gas exports, as well [as] the downstream effects of the exported LNG’s transportation, re-gasification and ultimate combustion in end-use markets.”306 FERC further noted the EPA had filed similar comments on both the draft and final EIS, recommending that FERC “discuss the potential indirect effects of the projects in regards to future natural gas production and development activities” and “include a discussion of GHG emissions associated with the production, transportation, and combustion of the natural gas proposed to be exported from the Export Terminal Project” in FERC’s EIS.307 As suggested guidance for discussing GHG emissions, EPA cited DOE’s Addendum and LCA GHG Report discussed herein, as well as the Council on Environmental Quality’s August 1, 2016 Final Guidance on the Consideration of Greenhouse Gas Emissions and the Effects of Climate Change.308

FERC responded that, “as we have found in previous proceedings, the environmental effects resulting from the export of LNG as a commodity … are neither caused by the Commission’s approval of Golden Pass’s LNG export facilities, nor reasonably foreseeable consequences of the Commission’s approval of these facilities.”309 FERC noted that the United States Court of Appeals for the District of Columbia (D.C. Circuit) recently determined in Sierra Club v. FERC—a petition for review challenging FERC’s grant of authorization for the Freeport LNG Terminal—that FERC’s “‘NEPA analysis did not have to address the indirect effects of the anticipated export of natural gas,’” because FERC had no ability to prevent such effects given its “‘limited statutory authority’” to approve the export of natural gas.”310 The Court concluded that

306 Id. at P 78.
307 Id. at P 79.
308 FERC Order at PP 79-80.
309 Id. at P 81.
310 Id. at P 82 (quoting Sierra Club v. FERC, 827 F.3d 36, 46 (D.C. Cir. 2016)).
“the Department of Energy, not [FERC], has sole authority to license the export of any natural gas going through the Freeport facilities.”311

Additionally, FERC staff explained that “these effects, even if causally related, are not reasonably foreseeable.”312 FERC noted that it could only speculate as to how exports from the GPP Export Project might impact the location, timing, and extent of future upstream natural gas production and development activities as well as domestic gas-to-coal switching.313 With respect to downstream effects of LNG imports, FERC staff observed that such impacts “are not reasonably foreseeable given unknown factors including specifically where the natural gas to be exported from the projects’ facilities will be ultimately used, or what fuels it will displace.”314 FERC concluded that “without such information, it is impossible for [FERC] to study the particular indirect impacts raised by Sierra Club and EPA.”315

Next, FERC rejected EPA’s claim that it should have considered the two DOE studies EPA cited. FERC stated that “both [studies] provide general estimates about the environmental impacts associated with natural gas production and end use,” but those impacts “are not specific to the proposals before us.”316 Quoting DOE’s Addendum, FERC maintained that “in the absence of information regarding where and when additional [natural] gas production will arise, the environmental impacts of such production ‘are not reasonably foreseeable within the meaning of the CEQ’s NEPA regulations,’ and ‘cannot [be] meaningfully analyze[d].’”317

FERC recognized that DOE’s Addendum concluded that “natural gas development leads to both short- and long-term increases in local and regional air emissions,” and that “such

311 Id.
312 Id. at P 83.
313 Id.
314 FERC Order at P 83.
315 Id.
316 See id. at P 84.
317 Id. (quoting Addendum at 2).
emissions may contribute to climate change.”318 However, FERC observed that DOE’s Addendum also concluded that “to the extent that natural gas production replaces the use of other carbon-based energy sources, DOE found there may be a net positive impact in terms of climate change.”319

3. Cumulative Impacts

FERC noted that “the final EIS considered the impacts of the proposed projects combined with the impacts of other cumulative projects on resources within all or part of the same area and timeframe,” including “existing projects, projects under construction, projects that are proposed or planned, and reasonably foreseeable projects ….”320 FERC agreed with the conclusion of the final EIS that the GPP Export Project’s and Pipeline Expansion Project’s “contribution to cumulative impacts on affected resources will not result in significant impacts.”321

4. Environmental Conditions

In granting the authorization, FERC “agree[d] with the conclusions presented in the final EIS and [found] that the approval of the proposed projects, if constructed and operated as described in the final EIS, is an environmentally acceptable action.”322 FERC further determined that GPP had met the requirements of Recommendations 18 and 19 in the final EIS, and therefore omitted these environmental mitigation measures from the Order.323 On that basis,
FERC adopted 83 environmental mitigation measures as conditions to the authorizations of the GPP Export Project and GPPL Pipeline Expansion Project granted in the Order.324

\textbf{XII. DISCUSSION AND CONCLUSIONS}

In reviewing GPP’s Application to export LNG, DOE/FE has considered both its obligations under NEPA and its obligation under NGA section 3(a) to ensure that the proposed LNG exports are not inconsistent with the public interest. To accomplish these purposes, DOE/FE has examined a wide range of information addressing environmental and non-environmental factors, including:

- GPP’s Application, the single comment filed opposing the Application, the numerous comments filed supporting the Application, the submissions of Sierra Club and APGA opposing the Application, GPP’s Answer, Sierra Club’s reply to GPP’s Answer, and GPP’s second Answer;

- FERC’s EIS and December 21, 2016 Order, including the 83 conditions adopted in that Order;

- The Draft Addendum, comments received in response to the Draft Addendum, and the final Addendum;

- The LCA GHG Report (and the supporting NETL document), including comments submitted in response to those documents; and

- The 2014 and 2015 LNG Export Studies, including comments received in response to those Studies.

To avoid repetition, the following discussion focuses on arguments and evidence presented by GPP and the two intervenor-protestors opposing the Application (Sierra Club and APGA), to the extent that DOE/FE has not already addressed the same or substantially similar arguments in its responses to comments on the Addendum, the LCA GHG Report, and/or the 2014 and 2015 Studies.

324 \textit{See id. at P 100 & Appendix.} As noted above, FERC issued an Errata Notice on February 1, 2017 (158 FERC ¶ 61,106), in which it corrected its reference to certain environmental conditions in the FERC Order.
A. Motions to Intervene

We find good cause to grant the motions to intervene submitted by Sierra Club and APGA, as well as Sierra Club’s motion to reply to GPP’s Answer. GPP filed an Answer opposing both motions on the basis that (among other reasons) neither proposed intervenor demonstrated an interest in this proceeding, nor provided affirmative evidence to show the economic impact of authorizing the proposed exports.325 Sierra Club moved to file a reply to that Answer.

We find that the evidence presented in this proceeding, as well as in the 2014 and 2015 LNG Export Studies, indicate that the economic consequences of granting the Application could be far-reaching and could affect the interests of Sierra Club, APGA, and their members. This fact alone is good cause to permit their intervention. In addition, Sierra Club and APGA each raised a number of issues that are relevant to the public interest and addressed herein. GPP was afforded an opportunity to respond to Sierra Club’s and APGA’s arguments pursuant to 10 C.F.R. § 590.304(f), and did so. Accordingly, we will grant the motions to intervene, as well as Sierra Club’s motion to reply to GPP’s Answer. See infra § XV (Ordering Paras. S, T).

B. Non-Environmental Issues

In considering non-environmental issues in this proceeding, we have reviewed the Application, including the Deloitte MarketPoint Study and Perryman Group Study submitted by GPP; the pleadings and comments submitted in this proceeding; and the 2014 and 2015 LNG

325 See GPP Answer at 1.
Export Studies and comments thereto. We also take administrative notice of EIA’s most recent authoritative supply data and projections, set forth in AEO 2017, discussed below.326

1. GPP’s Application

GPP’s Application reviews natural gas supply and demand conditions in the United States and the likely impact that the proposed exports will have on natural gas prices. GPP relies on the Deloitte MarketPoint Study and EIA estimates in stating that the United States has significant natural gas resources available to meet both projected future domestic needs and supply gas for the proposed exports with only a modest incremental impact on domestic natural gas prices. GPP also relies on the Perryman Group Study in asserting that the proposed exports will yield significant local, regional, and national economic benefits and will generate additional international benefits. The 2012 LNG Export Study, the 2014 and 2015 LNG Export Studies, as well as more recent data in AEO 2017 provide additional support for the conclusion that the proposed exports of LNG will yield significant economic benefits.

Sierra Club and APGA have argued that GPP’s conclusions are unfounded. In particular, they each contend that the proposed exports would not yield economic benefits but, in fact, would increase natural gas prices significantly and result in other deleterious economic and societal impacts. They contend, for example, that the net economic benefits projected in the 2012 LNG Export Study will be slight and limited to a relatively small, affluent segment of the population. They argue that, independent of the distributional economic impacts of LNG exports, the proposed exports will likely have a negative impact on the U.S. economy by increasing the price of natural gas and eliminating jobs in energy intensive industries.

326 As noted supra note 200, EIA released \textit{Annual Energy Outlook} 2017 (AEO 2017) on January 5, 2017. The AEO 2017 includes the Clean Power Plan in its Reference Case. The AEO 2017 Reference Case shows natural gas production levels that favor exports, but also has lower net LNG exports in 2040 (12 Bcf/d).
APGA and Sierra Club further maintain that exports of LNG have the potential to drastically affect total U.S. natural gas supply. Sierra Club contends that the 2012 LNG Export Study is “flawed,” and that Deloitte MarketPoint’s estimates of estimated export volumes and related price increases are too low. Accordingly, Sierra Club and APGA contend that the proposed exports, and U.S. LNG exports generally, will result in significantly higher natural gas prices domestically than projected by GPP. Sierra Club also challenges the sustainability of economic benefits in regions tied to resource extraction industries, as discussed below.

On review, DOE/FE finds that the evidence of record showing that the proposed exports would be in the public interest outweighs the concerns expressed by the intervenors. DOE has considered and rejected each of the arguments raised by the intervenors that bear on the validity of the 2012 NERA Study in this Order or prior orders. In regards to those arguments, the intervenors have adduced no additional substantive support for their views in these proceedings.

EIA’s projections in AEO 2017 provide independent support for the proposition that domestic supplies will be adequate both to meet domestic needs and to supply GPP’s exports and other final non-FTA LNG exports previously authorized by DOE/FE. See supra § VIII.A. Further, GPP (based on the Perryman Group Study) and numerous commenters assert that the proposed exports will benefit the local economy in and around Jefferson County; Texas’s state economy; the Gulf Coast regional economy; and the greater national economy. These conclusions are bolstered by the 2014 and 2015 LNG Export Studies. Accordingly, we find that the evidence shows that the market will be capable of sustaining the level of exports proposed in

327 Id. at 14.
328 See id. at 19.
the Application over the term of the requested authorization without significant negative price or other impacts. For these reasons, as further discussed below, we find that APGA and Sierra Club have not overcome the statutory presumption that the requested exports are consistent with the public interest.

2. Regional Impacts

GPP, relying on the Perryman Group Study, asserts that the proposed exports will stimulate local, regional, and national economies through direct and indirect job creation, increased economic activity, and tax revenues. The opponents of the Application attempt to counter these claims.

APGA contends that the NERA Study, conducted as part of the 2012 LNG Export Study, concludes that price increases resulting from LNG exports will hurt consumers of natural gas and electricity. APGA is also concerned that exports of LNG will undercut a manufacturing renaissance in the United States and, in particular, will disadvantage the petrochemical industry for which natural gas is a significant cost component. APGA maintains that the United States should pursue policies that allow industry to invest in manufacturing industries rather than LNG export facilities because manufacturing provides a value-added benefit to the economy that multiplies the value of every dollar spent on natural gas.

Sierra Club makes several of the same arguments raised by APGA—specifically, it asserts that GPP’s estimated benefits “are likely either more limited than Golden Pass contends, or entirely illusory because they come at the cost of harming the rest of the domestic economy.”330 Sierra Club also challenges the sustainability of economic benefits in regions tied to resource extraction industries, focusing principally on the durability of economic benefits in

330 Sierra Club. Mot. at 1.
natural gas producing regions where drilling is occurring. In particular, Sierra Club contends that DOE/FE must consider a full range of counterfactual scenarios by evaluating whether the nation would be better off without LNG exports, or with lower export volumes. Sierra Club asserts that any “boom” in economic activity will be followed by a bust, and that the prospect of such an event demonstrates that a grant of the requested authorization is inconsistent with the public interest.331

We note that certain commenters on the 2014 and 2015 LNG Export Studies make several of the same arguments raised by APGA and Sierra Club. In particular, these commenters contend that DOE/FE must consider a full range of counterfactual scenarios, and they likewise challenge claimed regional economic benefits and assert that any “boom” in economic activity will result in a “bust” to the detriment of the public interest.

On review, we do not agree with APGA and Sierra Club that GPP’s proposed exports will not yield net economic benefits or that the proposed exports will produce deleterious economic and societal impacts. The 2014 and 2015 LNG Export Studies, as well as EIA’s supply data and projections in AEO 2017 show that the proposed exports are likely to generate net economic benefits for the United States. Further, we note that, in responding to the Notice of Application, neither APGA nor Sierra Club offered detailed analyses specific to the local and regional economic impacts of GPP’s proposal to contradict this evidence.

To the extent that Sierra Club, APGA, or other commenters are claiming that the exports proposed by GPP will physically exhaust existing resources (i.e., resulting in a “bust”), we refer to the section above in which we conclude that record evidence indicates that there will be substantial supply into the foreseeable future. To the extent they allege that “bust” cycles will be

331 See id. at 16-17, 21-22.
brought on by price declines that render existing natural gas resources uneconomic to produce, we do not see compelling evidence that the exports will exacerbate this risk. If anything, we agree with GPP that it seems more likely that GPP’s ability to export to non-FTA countries will deepen and diversify the market for U.S.-produced natural gas, making the potential for a precipitous price-driven downturn in production activities less likely, not more likely.

Finally, we reject the claims that exports will have a negative impact on employment. Sierra Club points to a study conducted by Weinstein and Partridge (the Weinstein study) to support its position.332 However, we have considered the analysis contained in the Weinstein study in several LNG export orders, and found that the Weinstein Study showed only a statistically insignificant decline in employment in the regions studied in the years before a drilling boom (2001 to 2005), compared to the years during the drilling boom (2005 to 2009).333 This small decline could have been the result of other factors, particularly since the years of the drilling boom coincided with a national economic recession. On the other hand, comparing the same time periods, we found that the Weinstein study showed substantial gains in economic growth rates in counties with drilling operations as opposed to those without. For the same reasons provided in those orders, we reject Sierra Club’s arguments here.334

3. Price Impacts

As discussed above, the 2014 and 2015 LNG Export Studies projected the economic impacts of LNG exports in a range of scenarios, including scenarios that exceeded the current amount of LNG exports authorized in the final non-FTA export authorizations to date.

332 Sierra Club Mot. at 21 & n.59 (discussing Weinstein and Partridge, The Economic Value of Shale Natural Gas in Ohio, Ohio State University, Swank Program in Rural-Urban Policy Summary & Report (Dec. 2010)).
333 See, e.g., Sabine Pass Liquefaction, LLC, DOE/FE Order No. 3669, at 192.
334 See id.
(equivalent to a total of 19.2 Bcf/d of natural gas with the issuance of this Order). The 2015 Study concluded that LNG exports at these levels (12 to 20 Bcf/d of natural gas) would result in higher U.S. natural gas prices, but that these price changes would remain in a relatively narrow range across the scenarios studied. However, even with these estimated price increases, the 2015 Study found that the United States would experience net economic benefits from increased LNG exports in all cases studied.

We have also reviewed EIA’s AEO 2017, published in January 2017. The Reference case of this projection includes the effects of the Clean Power Plan (CPP), discussed supra, which is intended to reduce carbon emissions from the power sector. DOE/FE assessed the AEO 2017 to evaluate any differences from AEO 2014, which formed the basis for the 2014 Study.

Comparing key results from 2040 (the end of the projection period in Reference case projections from AEO 2014) shows that the latest Reference case Outlook foresees lower-48 market conditions that would be even more supportive of LNG exports, including higher production and demand coupled with notably lower prices. Results from EIA’s AEO 2017 no-CPP case, which is the same as the Reference case but does not include the CPP, are also more supportive of LNG exports on the basis of higher production with lower prices relative to AEO 2014.

For the year 2040, the AEO 2017 Reference case anticipates 3 percent more natural gas production in the lower-48 than AEO 2014. It also projects an average Henry Hub natural gas price that is lower than AEO 2014 by 38 percent. With regard to exports, the AEO 2017 projection’s for 2040 net pipeline exports of 3.7 Bcf/d and lower-48 LNG exports of 12.1 Bcf/d

335 See infra § XII.D.
336 See 2015 Study at 8, 82.
(over 63 percent higher than lower-48 LNG exports in AEO 2014) illustrate a market environment supportive of LNG exports.

In the AEO 2017 no-CPP case, for the year 2040, lower-48 production is 2 percent higher than in AEO 2014, with the Henry Hub price 39 percent lower. Net pipeline exports of 3.8 Bcf/d and total LNG exports of 12.7 Bcf/d again indicate a market supportive of exports. These differences are depicted in the table below:

Table 11: Year 2040 Reference Case Comparisons in AEO 2014 and AEO 2017

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower-48 Dry Natural Gas Production (Bcf/d)</td>
<td>99.4</td>
<td>102.3</td>
<td>101.4</td>
</tr>
<tr>
<td>Total Natural Gas Consumption (Bcf/d)</td>
<td>86.4</td>
<td>87.2</td>
<td>85.6</td>
</tr>
<tr>
<td>Electric Power Sector Consumption (Bcf/d)</td>
<td>30.7</td>
<td>30.2</td>
<td>28.5</td>
</tr>
<tr>
<td>Net Exports by Pipeline (Bcf/d)</td>
<td>6.6</td>
<td>3.7</td>
<td>3.8</td>
</tr>
<tr>
<td>Net LNG Exports (Bcf/d)</td>
<td>9.2</td>
<td>12.0</td>
<td>12.5</td>
</tr>
<tr>
<td>LNG Exports – Total (Bcf/d)</td>
<td>9.6</td>
<td>12.1</td>
<td>12.7</td>
</tr>
<tr>
<td>Lower-48</td>
<td>7.4</td>
<td>12.1</td>
<td>12.7</td>
</tr>
<tr>
<td>Alaska</td>
<td>2.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Henry Hub Spot Price ($/MMBtu) (Note 1)</td>
<td>$8.15 (2016$)</td>
<td>$5.07 (2016$)</td>
<td>$5.01 (2016$)</td>
</tr>
<tr>
<td></td>
<td>$7.65 (2012$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note 1: Prices adjusted to 2016$ with the AEO 2014 projection of a GDP price index.

4. Significance of the 2014 and 2015 LNG Export Studies

For the reasons discussed above, DOE/FE commissioned the 2014 EIA LNG Export Study and the 2015 LNG Export Study, and invited the submission of responsive comments on both Studies. DOE/FE has analyzed this material and determined that these two Studies provide substantial support for granting GPP’s Application. Specifically, the conclusion of the 2015 Study is that the United States will experience net economic benefits from issuance of authorizations to export domestically produced LNG.

We have evaluated the public comments submitted in response to the 2014 and 2015 LNG Export Studies. Certain commenters have criticized aspects of the models, assumptions, and design of the Studies. As discussed above, however, EIA’s projections in AEO 2017 continue to show market conditions that will accommodate increased exports of natural gas. When compared to the AEO 2014 Reference case, the AEO 2017 Reference case projects increases in domestic natural gas production—well in excess of what is required to meet projected increases in domestic consumption. Accordingly, we find that the 2014 and 2015 LNG Export Studies are fundamentally sound and support the proposition that the proposed authorization will not be inconsistent with the public interest.

5. Benefits of International Trade

We have not limited our review to the contents of the 2014 and 2015 LNG Export Studies and the data from AEO 2017, but have considered a wide range of other information. For example, the National Export Initiative, established by Executive Order and cited by GPP, sets a goal to “improve conditions that directly affect the private sector’s ability to export” and to
“enhance and coordinate Federal efforts to facilitate the creation of jobs in the United States through the promotion of exports.”

We have also considered the international consequences of our decision. We review applications to export LNG to non-FTA nations under section 3(a) of the NGA. The United States’ commitment to free trade is one factor bearing on that review. An efficient, transparent international market for natural gas with diverse sources of supply provides both economic and strategic benefits to the United States and our allies. Indeed, increased production of domestic natural gas has significantly reduced the need for the United States to import LNG. In global trade, LNG shipments that would have been destined to U.S. markets have been redirected to Europe and Asia, improving energy security for many of our key trading partners. To the extent U.S. exports can diversify global LNG supplies, and increase the volumes of LNG available globally, it will improve energy security for many U.S. allies and trading partners. As such, authorizing U.S. exports may advance the public interest for reasons that are distinct from and additional to the economic benefits identified in the 2014 and 2015 Studies.

C. Environmental Issues

In reviewing the potential environmental impacts of GPP’s proposal to export LNG, DOE/FE has considered both its obligations under NEPA and its obligation under NGA section 3(a) to ensure that the proposal is not inconsistent with the public interest.

1. Adoption of FERC’s Final EIS

DOE/FE participated in FERC’s environmental review of the proposed GPP Export Project as a cooperating agency and has examined the arguments submitted by the intervenors who challenged FERC’s reasoning and conclusions. Because DOE was a cooperating agency,

DOE/FE is permitted to adopt without recirculating FERC’s final EIS for the GPP Export Project, provided that DOE/FE has conducted an independent review of the EIS and determines that its comments and suggestions have been satisfied. For the reasons set forth below, DOE/FE has not found that the arguments raised in the FERC proceeding, the current proceeding, or the 2014 and 2015 LNG Export Study proceedings detract from the reasoning and conclusions contained in the final EIS. Accordingly, DOE has adopted the EIS (DOE/EIS-0501), and hereby incorporates the reasoning contained in the EIS in this Order.

2. Scope of NEPA Review

In the proceeding before FERC, EPA filed comments on both the draft and final EIS recommending that FERC consider the potential for increased natural gas production and associated increased environmental impacts resulting from the proposed GPP Export Project. For example, EPA urged FERC to consider future natural gas production and development activities “at a conceptual level” by incorporating the results of a Department of Energy study regarding LNG exports [the Addendum] in [FERC’s] decision in these proceedings.” Additionally, Sierra Club argued to FERC that “the draft EIS fails to provide an analysis of the indirect effects of the Export Terminal Project including upstream natural gas production, domestic gas-to-coal switching, in response to increased natural gas prices related to natural gas exports, as well the downstream effects of the exported LNG’s transportation, re-gasification and ultimate combustion in end-use markets.”

338 See 40 C.F.R. § 1506.3(c).
340 FERC Order at P 79.
341 Id.
342 Id. at P 78.
As discussed above, FERC staff responded to EPA’s comments on the draft EIS by including in the final EIS an analysis of “increased natural gas production, transport of the LNG to foreign nations, and ultimate combustion by unknown customers.”343 In the final EIS, FERC staff concluded that “these issues are outside the scope of NEPA.”344 FERC staff reasoned that “any life-cycle analysis of induced natural gas production, LNG transport, and end use are too speculative to permit any meaningful consideration as part of this cumulative analysis.”345

In its December 21, 2016 Order, FERC likewise found that these effects, such as induced natural gas production, are not “reasonably foreseeable” within the meaning of NEPA.346 Additionally, FERC relied on the D.C. Circuit’s conclusion in \textit{Sierra Club v. FERC} (the \textit{Freeport} decision) that “[FERC’s] NEPA analysis did not have to address the indirect effects of the anticipated export of natural gas” “because the Department of Energy, not [FERC], has sole authority to license the export of any natural gas going through the Freeport facilities.”347

Based on this record, we find that FERC’s environmental review covered all reasonably foreseeable environmental impacts of the proposed GPP Export Project,348 and that NEPA does not require the review to include induced upstream natural gas production.

Fundamental uncertainties constrain our ability to foresee and analyze with any particularity the incremental natural gas production that may be induced by permitting exports of LNG to non-FTA countries—whether from unconventional shale gas formations or otherwise. For this reason, and because DOE/FE had received comments regarding the potential environmental impacts associated with unconventional production, DOE/FE produced the

\begin{flushleft}
343 Final EIS at 4-254.
344 Id.
345 Id.
346 FERC Order at P 83.
347 Id. at P 82 (quoting \textit{Sierra Club}, 827 F.3d at 46).
348 Under CEQ’s regulations, “indirect effects” of a proposed action are “caused by the action and are later in time or farther removed in distance, but are still reasonably foreseeable.” 40 C.F.R. § 1508.8(b).
\end{flushleft}
Addendum and made it available for public comment. The Addendum takes a broad look at unconventional natural gas production in the United States, with chapters covering water resources (including water quantity and quality), air quality, GHG emissions, induced seismicity, and land use.

The Addendum addresses unconventional natural gas production in the nation as a whole. It does not attempt to identify or characterize the incremental environmental impacts that would result from LNG exports to non-FTA nations. Such impacts are not reasonably foreseeable and cannot be analyzed with any particularity. To begin, there is uncertainty as to the aggregate quantity of natural gas that ultimately may be exported to non-FTA countries. Receiving a non-FTA authorization from DOE/FE does not guarantee that a particular facility would be financed and built; nor does it guarantee that, if built, market conditions would continue to favor export once the facility is operational. To illustrate the point, of the more than 40 applications to build new LNG import facilities that were submitted to federal agencies between 2000 and 2010, only eight new facilities were built and those facilities have seen declining use in the past decade.349

There is also fundamental uncertainty as to where any additional production would occur and in what quantity. As the Addendum illustrates, nearly all of the environmental issues presented by unconventional natural gas production are local in nature, affecting local water resources, local air quality, and local land use patterns, all under the auspices of state and local regulatory authority. As DOE explained in Sabine Pass, Order No. 2961-A, without knowing where, in what quantity, and under what circumstances additional gas production will arise, the environmental impacts resulting from production activity induced by LNG exports to non-FTA

countries are not “reasonably foreseeable” within the meaning of the CEQ’s NEPA regulations.350

3. Cumulative Environmental Impacts

Sierra Club has asserted in this proceeding that DOE/FE’s environmental review must consider the cumulative environmental impacts from all proposed and previously approved export authorizations and that a programmatic EIS is legally required for these purposes. The cumulative environmental impact analysis in the FERC Order examined cumulative impacts from other projects in the vicinity of the proposed GPP Export Project that affect the same resources in the same approximate time frame.351 FERC agreed with the conclusion in the final EIS that the GPP Export Project’s and the Pipeline Expansion Project’s “contribution to cumulative impacts on affected resources will not result in significant impacts.”352

We find that the environmental review conducted by FERC took into account all reasonably foreseeable cumulative environmental impacts relating to the exports of LNG proposed in this proceeding. In our view, Sierra Club is seeking a programmatic EIS where no broad federal action such as the adoption of a new agency program had been proposed.353 Thus, the EIS properly fulfilled its purpose of disclosing the environmental impacts of the GPP Export Project while also setting forth measures that would mitigate or minimize potential impacts. We, therefore, agree with FERC’s reasoning and adopt its analysis concerning cumulative environmental impacts.

351 See FERC Order at PP 75-76.
352 Id. at P 76 (citing Final EIS at 4-238 to 4-256).
353 40 C.F.R. § 1502.4(b).
4. Environmental Impacts Associated with Induced Production of Natural Gas

The current rapid development of natural gas resources in the United States likely will continue, with or without the export of natural gas to non-FTA nations. Nevertheless, a decision by DOE/FE to authorize exports to non-FTA nations could accelerate that development by some increment. For this reason, DOE/FE prepared and received public comment on the Addendum and made the Addendum and the comments part of the record in this proceeding. As discussed above, the Addendum reviewed the academic and technical literature covering the most significant issues associated with unconventional gas production, including impacts to water resources, air quality, greenhouse gas emissions, induced seismicity, and land use.

The Addendum shows that there are potential environmental issues associated with unconventional natural gas production that need to be carefully managed, especially with respect to emissions of VOCs and methane, and the potential for groundwater contamination. These environmental concerns do not lead us to conclude, however, that exports of natural gas to non-FTA nations should be prohibited. Rather, we believe the public interest is better served by addressing these environmental concerns directly—through federal, state, or local regulation, or through self-imposed industry guidelines where appropriate—rather than by prohibiting exports of natural gas. Unlike DOE, environmental regulators have the legal authority to impose requirements on natural gas production that appropriately balance benefits and burdens, and to update these regulations from time to time as technological practices and scientific understanding evolve. For example, in 2012, using its authority under the Clean Air Act, EPA promulgated regulations for hydraulically fractured wells that are expected to yield significant emissions

354 Addendum at 2.
reductions. In 2013, EPA updated those regulations to include storage tanks, and in 2014 EPA issued a series of technical white papers exploring the potential need for additional measures to address methane emissions from the oil and gas sector. In January 2015, EPA announced a strategy for “address[ing] methane and smog-forming VOC emissions from the oil and gas industry in order to ensure continued, safe and responsible growth in U.S. oil and natural gas production.” Specifically, EPA has initiated a rulemaking to set standards for methane and VOC emissions from new and modified oil and gas production sources, and natural gas processing and transmission sources. EPA issued the proposed rule in September 2015, and the final rule on June 3, 2016.

Section 3(a) of the NGA is too blunt an instrument to address these environmental concerns efficiently. A decision to prohibit exports of natural gas would cause the United States to forego entirely the economic and international benefits discussed herein, but would have little more than a modest, incremental impact on the environmental issues identified by intervenors. For these reasons, we conclude that the environmental concerns associated with natural gas

358 Id.
359 The White House, Office of the Press Secretary, Fact Sheet: Administration Takes Steps Forward on Climate Action Plan by Announcing Actions to Cut Methane Emissions (Jan. 14, 2015), available at https://www.whitehouse.gov/the-press-office/2015/01/14/fact-sheet-administration-takes-steps-forward-climate-action-plan-anno-1 (stating that, in developing the proposed and final standards, EPA “will focus on in-use technologies, current industry practices, [and] emerging innovations … to ensure that emissions reductions can be achieved as oil and gas production and operations continue to grow.”).
361 See supra note 276.
production do not establish that exports of natural gas to non-FTA nations are inconsistent with the public interest.

5. Compliance with the Endangered Species Act

To comply with the Endangered Species Act (ESA), the final EIS adopted by FERC reflected input gathered from the U.S. Fish and Wildlife Service and the National Marine Fisheries Service regarding the biological impacts of the GPP Export Project on animal species within the counties affected by the two Projects. According to the final EIS, most potential impacts would be localized and temporary during construction, or during and immediately following maintenance dredging. Additionally, the EIS concluded that no critical habitat for federally listed species was identified in the Project area.

Sierra Club argues in the current proceeding that DOE/FE must conduct a broader inquiry than that conducted by FERC in order to comply with ESA. Specifically, it contends that “DOE/FE must consider not just species impacts at the proposed project site (although it must at least do that), but the effects of increased gas production across the full region the plant affects.” These arguments echo those that it makes in support of a broader scope for NEPA review, i.e. the proposal to export LNG, if granted, will impact a wide area due to induced natural gas production activities. DOE need not repeat its arguments with respect to the appropriate scope of review over indirect effects except to observe that conducting a wider regional or national consultation regarding species impacts would add greatly to the burden of acting on applications to export natural gas to non-FTA countries. Moreover, the inability to predict at a local level the volumes of induced natural gas production would make such ESA

362 See Final EIS at 4-88.
363 See id. at 4-79.
364 Sierra Club Mot. at 9 n.15.
analysis more speculative than informative. The scope of review undertaken by FERC in the EIS was properly limited to reasonably foreseeable impacts of the proposed GPP Export Project and its use for the export of LNG. Accordingly, we reject Sierra Club’s arguments in respect to the scope of ESA review.

Sierra Club and other commenters on the LCA GHG Report, the Addendum, and the 2014 and 2015 LNG Export Studies have expressed concern that exports of domestic natural gas to non-FTA nations may impact the balance of global GHG emissions through their impact domestically on the price and availability of natural gas for electric generation and other uses. They also have objected that exports of natural gas could have a negative effect on the GHG intensity and total amount of energy consumed in foreign nations.

a. Domestic Environmental Impacts Associated with Increased Natural Gas Prices

To the extent exports of natural gas to non-FTA nations increase domestic natural gas prices, those higher prices would be expected, all else equal, to reduce the use of natural gas in the United States as compared to a future case in which exports to non-FTA exports were prohibited. Within the U.S. electric generation sector, reduced demand for natural gas caused by higher prices would be balanced by some combination of reduced electric generation overall (aided by conservation and efficiency measures), increased generation from other resources (such as coal, renewables, and nuclear), and more efficient use of natural gas (i.e., shifting of generation to natural gas-fired generators with superior heat rates).

Although EIA’s 2012 Study found that additional natural gas production would supply most of the natural gas needed to support added LNG exports, EIA modeled the effects of higher natural gas prices on energy consumption in the United States in the years 2015 through 2035,
and found several additional results. In particular, EIA found that “under Reference case conditions, decreased natural gas consumption as a result of added exports are countered proportionately by increased coal consumption (72 percent), increased liquid fuel consumption (8 percent), other increased consumption, such as from renewable generation sources (9 percent), and decreases in total consumption (11 percent).” Further, EIA determined that, in the earlier years of the 2015 to 2035 period, “the amount of natural gas to coal switching is greater,” with “coal play[ing] a more dominant role in replacing the decreased levels of natural gas consumption, which also tend to be greater in the earlier years.” Likewise, “[s]witching from natural gas to coal is less significant in later years, partially as a result of a greater proportion of switching into renewable generation.” EIA ultimately projected that, for LNG export levels from 6 to 12 Bcf/d of natural gas and under Reference case conditions, aggregate carbon dioxide emissions would increase above a base case with no exports by between 643 and 1,227 million metric tons (0.5 to 1.0 percent) over the period from 2015 to 2035. It is worth noting, however, that a substantial portion of these projected emissions came from consumption of natural gas in the liquefaction process, rather than from increased use of coal. The liquefaction of natural gas is captured in the LCA GHG Report’s estimate of the life cycle GHG emissions of U.S.-exported LNG, discussed above.

We further note that EIA’s 2014 Study assumed the regulations in effect at the time the AEO 2014 was prepared. Therefore, EIA’s analysis included the impacts that EPA’s Mercury

365 2012 EIA Study at 18.
366 Id.
367 Id.
368 Id. at 19.
369 See supra § VII.B.
and Air Toxics Standard370 but not EPA’s Transport Rule371 as it had been vacated at the time. EIA’s analysis in 2014 also captured the Clean Air Interstate Rule, which sets limits on regional sulfur dioxide and mono-nitrogen oxides (SO\textsubscript{2} and NO\textsubscript{x}). There are, however, other rules that were not final at the time of AEO 2014, including two then-proposed rules from EPA to reduce the extent to which the increased use of coal would compensate for reduced use of natural gas. These rules, finalized in the fall of 2015, impose limits on GHG emissions from both new and existing coal-fired power plants.372 In particular, these rules have the potential to mitigate significantly any increased emissions from the U.S. electric power sector that would otherwise result from increased use of coal, and perhaps to negate those increased emissions entirely.

The AEO 2017 incorporated the Clean Power Plan (CPP) final rule in the Reference case and assumes that all states choose to meet a mass-based standard to cover both existing and new sources of carbon dioxide emissions. In the AEO 2017 Reference case—which includes 12.1 Bcf/d of LNG exports from the United States in 2040—electric power sector carbon dioxide emissions are projected to be 37 percent below 2005 levels in 2040, decreasing from 2,416 million metric tons of carbon dioxide (MMmt CO\textsubscript{2}) in 2005 to 1,531 in 2040, due to the implementation of the CPP as well as decreasing use of coal-fired generation. Natural gas generation increases by 33 percent in the Reference case from 2015 to 2040, and coal generation declines by 31 percent from 2015 to 2040.

In the AEO 2017 Reference case that did not incorporate the Clean Power Plan, LNG exports from the United States are 12.7 Bcf/d in 2040 and electric power sector carbon dioxide emissions are projected to be 20 percent below 2005 levels in 2040, decreasing in this case from 2,413 MMmt CO2 in 2005 to 1,941 in 2040, which is primarily attributable to increased use of natural gas generation that still occurs without the CPP. Also in the 2017 AEO Reference Case without the CPP, natural gas generation still rises from 2015 to 2040, but to a lesser degree, with a 33 percent increase with the CPP and a 22 percent increase without it. Coal generation increases 3 percent from 2015 to 2040 without the CPP.

Therefore, on the record before us, we cannot conclude that exports of natural gas would be likely to cause a significant increase in U.S. GHG emissions through their effect on natural gas prices and the use of coal for electric generation.

b. International Impacts Associated with Energy Consumption in Foreign Nations

The LCA GHG Report estimated the life cycle GHG emissions of U.S. LNG exports to Europe and Asia, compared with certain other fuels used to produce electric power in those importing countries. The key findings for U.S. LNG exports to Europe and Asia are summarized in Figures 3 and 4 below, which are also presented above in Section IX.A (Figures 1 and 2):
Figure 3: Life Cycle GHG Emissions for Natural Gas and Coal Power in Europe

LCA GHG Report at 9 (Figure 6-1).
While acknowledging substantial uncertainty, the LCA GHG Report shows that to the extent U.S. LNG exports are preferred over coal in LNG-importing nations, U.S. LNG exports are likely to reduce global GHG emissions. Further, to the extent U.S. LNG exports are preferred over other forms of imported natural gas, they are likely to have only a small impact on global GHG emissions.375

Figure 4: Life Cycle GHG Emissions for Natural Gas and Coal Power in Asia

While acknowledging substantial uncertainty, the LCA GHG Report shows that to the extent U.S. LNG exports are preferred over coal in LNG-importing nations, U.S. LNG exports are likely to reduce global GHG emissions. Further, to the extent U.S. LNG exports are preferred over other forms of imported natural gas, they are likely to have only a small impact on global GHG emissions.375

The LCA GHG Report does not answer the ultimate question whether authorizing exports of natural gas to non-FTA nations will increase or decrease global GHG emissions, because regional coal and imported natural gas are not the only fuels with which U.S.-exported LNG would compete. U.S. LNG exports may also compete with renewable energy, nuclear energy, petroleum-based liquid fuels, coal imported from outside East Asia or Western Europe,

374 LCA GHG Report at 10 (Figure 6-2).
375 Id. at 9, 18.
indigenous natural gas, synthetic natural gas derived from coal, and other resources, as well as efficiency and conservation measures. To model the effect that U.S. LNG exports would have on net global GHG emissions would require projections of how each of these fuel sources would be affected in each LNG-importing nation. Such an analysis would not only have to consider market dynamics in each of these countries over the coming decades, but also the interventions of numerous foreign governments in those markets.

For example, Sierra Club and other commenters have observed that renewable energy has experienced significant growth in key LNG-importing countries such as India and China. These commenters do not, however, place the growth of renewable energy in the context of the aggregate use of fossil energy projects in those countries. Nor do they explain the extent to which growth in renewable energy has been driven by public policies in those countries and how the availability of U.S. LNG exports would or would not impact the continuation of those policies.

The uncertainty associated with estimating each of these factors would likely render such an analysis too speculative to inform the public interest determination in this or other non-FTA LNG export proceedings. Accordingly, DOE/FE elected to focus on the discrete question of how U.S. LNG compares on a life cycle basis to regional coal and other sources of imported natural gas in key LNG-importing countries. This is a useful comparison because coal and imported natural gas are prevalent fuel sources for electric generation in non-FTA LNG-importing nations. For example, EIA notes that installed electric generation capacity in China was 63 percent coal and 4 percent natural gas in 2013.376 For India, installed electric generation capacity in 2014 is

62 percent coal and 8 percent natural gas.\(^{377}\) In both China and India, electric generation capacity is expected to increase substantially in coming years. For Japan, the largest importer of LNG in the world, electric generation from fossil fuels was 74 percent of total generation in 2011 and has increased in the years following the Fukushima disaster—most recently to 85 percent in 2014.\(^{378}\) In Europe, use of fossil fuels is slightly less than in the Asian nations noted above but still significant, comprising 62 percent of electric generation in the United Kingdom and around half for Spain for 2014, respectively.\(^{379}\)

The conclusions of the LCA GHG Report, combined with the observation that many LNG-importing nations rely heavily on fossil fuels for electric generation, suggests that exports of U.S. LNG may decrease global GHG emissions, although there is substantial uncertainty on this point as indicated above. In any event, the record does not support the conclusion that U.S. LNG exports will increase global GHG emissions in a material or predictable way. Therefore, while we share the commenters’ strong concern about GHG emissions as a general matter, based on the current record evidence, we do not see a reason to conclude that U.S. LNG exports will significantly exacerbate global GHG emissions.

7. **Other Considerations**

Our decision is not premised on an uncritical acceptance of the general conclusion of the 2014 and 2015 LNG Export Studies of net economic benefits from LNG exports. Both of those

\(^{377}\) U.S. Energy Information Administration, India Analysis Brief (last updated June 14, 2016), available at http://www.eia.gov/beta/international/analysis.cfm?iso=IND.

\(^{379}\) EIA, International Energy Statistics, available at: http://www.eia.gov/beta/international/. To evaluate the effect that U.S. LNG exports may have on the mix of fuels used for electric generation in Western Europe also requires consideration of the role of the European Trading System (ETS). The ETS places a cap on GHG emissions. Therefore, where the cap is a binding constraint, the ETS ultimately may ensure that the availability of U.S.-exported LNG will not affect aggregate emissions.
Studies and many public comments identify significant uncertainties and even potential negative impacts from LNG exports. The economic impacts of higher natural gas prices and potential increases in natural gas price volatility are two of the factors that we view most seriously. Yet we also have taken into account factors that could mitigate such impacts, such as the current oversupply situation and data indicating that the natural gas industry would increase natural gas supply in response to increasing exports. Further, we note that it is far from certain that all or even most of the proposed LNG export projects will ever be realized because of the time, difficulty, and expense of commercializing, financing, and constructing LNG export terminals, as well as the uncertainties inherent in the global market demand for LNG. On balance, we find that the potential negative impacts of GPP’s proposed exports are outweighed by the likely net economic benefits and by other non-economic or indirect benefits.

More generally, DOE/FE continues to subscribe to the principle set forth in our 1984 Policy Guidelines that, under most circumstances, the market is the most efficient means of allocating natural gas supplies. However, agency intervention may be necessary to protect the public in the event there is insufficient domestic natural gas for domestic use. There may be other circumstances as well that cannot be foreseen that would require agency action. Given these possibilities, DOE/FE recognizes the need to monitor market developments closely as the impact of successive authorizations of LNG exports unfolds.

381 Some commenters previously asked DOE to clarify the circumstances under which the agency would exercise its authority to revoke (in whole or in part) previously issued LNG export authorizations. We cannot precisely identify all the circumstances under which such action would be taken. We reiterate our observation in Sabine Pass that: “In the event of any unforeseen developments of such significant consequence as to put the public interest at risk, DOE/FE is fully authorized to take action as necessary to protect the public interest. Specifically, DOE/FE is authorized by section 3(a) of the Natural Gas Act … to make a supplemental order as necessary or appropriate to protect the public interest. Additionally, DOE is authorized by section 16 of the Natural Gas Act ‘to perform any and all acts and to prescribe, issue, make, amend, and rescind such orders, rules, and regulations as it may find necessary or appropriate’ to carry out its responsibilities.” Sabine Pass, DOE/FE Order No. 2961, at 33 n.45 (quoting 15 U.S.C. § 717o).
D. Conclusion

We have reviewed the evidence in the record and relevant precedent in earlier non-FTA export decisions and have not found an adequate basis to conclude that GPP’s proposed exports of LNG to non-FTA countries will be inconsistent with the public interest. We further find that the two intervenor-protestors in this proceeding—Sierra Club and APGA—have failed to overcome the statutory presumption that the proposed export authorization is consistent with the public interest. For these reasons, we are authorizing GPP’s proposed exports to non-FTA countries subject to the limitations and conditions described in this Order.

In deciding whether to grant a final non-FTA export authorization, we consider in our decision-making the cumulative impacts of the total volume of all final non-FTA export authorizations. With the issuance of this Order, DOE/FE has now issued final non-FTA authorizations in a cumulative volume of exports totaling 19.2 Bcf/d of natural gas, or 7.01 trillion cubic feet per year, for the 25 final authorizations issued to date—Sabine Pass Liquefaction, LLC (2.2 Bcf/d),382 Carib Energy (USA) LLC (0.04 Bcf/d),383 Cameron LNG, LLC (1.7 Bcf/d),384 FLEX I (1.4 Bcf/d),385 FLEX II (0.4 Bcf/d),386 Dominion Cove Point LNG,

383 Carib Energy (USA) LLC, DOE/FE Order No. 3487, FE Docket No. 11-141-LNG, Final Order Granting Long-Term, Multi-Contract Authorization to Export Liquefied Natural Gas in ISO Containers by Vessel to Non-Free Trade Agreement Nations in Central America, South America, or the Caribbean (Sept. 10, 2014).
LP (0.77 Bcf/d),387 Cheniere Marketing, LLC and Corpus Christi Liquefaction, LLC (2.1 Bcf/d),388 Sabine Pass Liquefaction, LLC Expansion Project (1.38 Bcf/d),389 American Marketing LLC (0.008 Bcf/d),390 Emera CNG, LLC (0.008 Bcf/d),391 Floridian Natural Gas Storage Company, LLC,392 Air Flow North American Corp. (0.002 Bcf/d),393 Bear Head LNG Corporation and Bear Head LNG (USA), LLC (0.81 Bcf/d),394 Pieridae Energy (USA) Ltd.,395 Sabine Pass Liquefaction, LLC Design Increase (0.56 Bcf/d),396 Cameron LNG, LLC Design

387 Dominion Cove Point LNG, LP, DOE/FE Order No. 3331-A, FE Docket No. 11-128-LNG, Final Opinion and Order Granting Long-Term, Multi-Contract Authorization to Export Liquefied Natural Gas from the Cove Point LNG Terminal in Calvert County, Maryland, to Non-Free Trade Agreement Nations (May 7, 2015).

388 Cheniere Marketing, LLC and Corpus Christi Liquefaction, LLC, DOE/FE Order No. 3638, FE Docket No. 12-97-LNG, Final Order and Opinion Granting Long-Term, Multi-Contract Authorization to Export Liquefied Natural Gas by Vessel from the Proposed Corpus Christi Liquefaction Project to Be Located in Corpus Christi, Texas, to Non-Free Trade Agreement Nations (May 12, 2015).

393 Air Flow North American Corp., DOE/FE Order No. 3753, FE Docket No. 15-206-LNG, Final Opinion and Order Granting Long-Term, Multi-Contract Authorization to Export Liquefied Natural Gas in ISO Containers Loaded at the Clean Energy Fuels Corp. LNG Production Facility in Willis, Texas, and Exported by Vessel to Non-Free Trade Agreement Nations in Central America, South America, the Caribbean, or Africa (Dec. 4, 2015).

394 Bear Head LNG Corporation and Bear Head LNG (USA), DOE/FE Order No. 3770, FE Docket No. 15-33-LNG, Opinion and Order Granting Long-Term, Multi-Contract Authorization to Export U.S.-Sourced Natural Gas by Pipeline to Canada for Liquefaction and Re-Export in the Form of Liquefied Natural Gas to Non-Free Trade Agreement Countries (Feb. 5, 2016).

395 Pieridae Energy (USA) Ltd., DOE/FE Order No. 3768, FE Docket No. 14-179-LNG, Opinion and Order Granting Long-Term, Multi-Contract Authorization to Export U.S.-Sourced Natural Gas Natural Gas by Pipeline to Canada for Liquefaction and Re-Export in the Form of Liquefied Natural Gas to Non-Free Trade Agreement Countries (Feb. 5, 2016).

Increase (0.42 Bcf/d), 397 Flint Hills Resources, LP (0.01 Bcf/d), 398 Cameron LNG, LLC Expansion Project (1.41 Bcf/d), 399 Lake Charles Exports, LLC (2.0 Bcf/d), 400 Lake Charles LNG Export (2.0 Bcf/d), 401 Carib Energy (USA), LLC (0.004), 402 Magnolia LNG, LLC (1.08 Bcf/d), 403 Southern LNG Company, L.L.C. (0.36 Bcf/d), 404 the FLEX Design Increase (0.34 Bcf/d), 405 and this Order.

We note that the volumes authorized for export in the \textit{Lake Charles Exports} order and \textit{Lake Charles LNG Export} are both 730 Bcf/yr (2.0 Bcf/d), yet are not additive to one another because the source of LNG approved under both orders is from the Lake Charles Terminal.

Likewise, the \textit{Carib} and \textit{Floridian} orders are both 14.6 Bcf/yr of natural gas (0.04 Bcf/d), yet are not additive to one another because the source of LNG approved under both orders is from the

397 \textit{Cameron LNG, LLC}, DOE/FE Order No. 3797, FE Docket No. 15-167-LNG, Final Opinion and Order Granting Long-Term, Multi-Contract Authorization to Export Liquefied Natural Gas by Vessel from the Cameron Terminal Located in Cameron and Calcasieu Parishes, Louisiana, to Non-Free Trade Agreement Nations (Mar. 18, 2016).

399 \textit{Cameron LNG, LLC}, DOE/FE Order No. 3846, FE Docket No. 15-90-LNG, Opinion and Order Granting Long-Term, Multi-Contract Authorization to Export Liquefied Natural Gas by Vessel from Trains 4 and 5 of the Cameron LNG Terminal Located in Cameron and Calcasieu Parishes, Louisiana, to Non-Free Trade Agreement Nations (July 15, 2016).

400 \textit{Lake Charles Exports, LLC}, DOE/FE Order No. 3324-A, FE Docket No. 11-59-LNG, Final Opinion and Order Granting Long-Term, Multi-Contract Authorization to Export Liquefied Natural Gas by Vessel from the Lake Charles Terminal in Calcasieu Parish, Louisiana, to Non-Free Trade Agreement Nations (July 29, 2016).

402 \textit{Carib Energy (USA) LLC}, DOE/FE Order No. 3937, FE Docket No. 16-98-LNG, Opinion and Order Granting Long-Term, Multi-Contract Authorization to Export Liquefied Natural Gas in ISO Containers Loaded at Designated Pivotal LNG, Inc. Facilities and Exported by Vessel to Non-Free Trade Agreement Nations in Central America, South America, or the Caribbean (Nov. 28, 2016).

403 \textit{Magnolia LNG, LLC}, DOE/FE Order No. 3909, FE Docket No. 13-132-LNG, Opinion and Order Granting Long-Term, Multi-Contract Authorization to Export Liquefied Natural Gas by Vessel from the Proposed Magnolia LNG Terminal to be Constructed in Lake Charles, Louisiana, to Non-Free Trade Agreement Nations (Nov. 30, 2016).

Additionally, the volumes authorized for export in the *Bear Head* and *Pieridae US* orders are not additive; together, they are limited to a maximum of 0.81 Bcf/d to reflect the current capacity of the Maritimes Northeast Pipeline at the U.S.-Canadian border. In sum, the total export volume is within the range of scenarios analyzed in the 2014 and 2015 LNG Export Studies. The 2015 Study found that in all such scenarios—assuming LNG export volumes totaling 12 Bcf/d up to 20 Bcf/d of natural gas—the United States would experience net economic benefits.

DOE/FE will continue taking a measured approach in reviewing the other pending applications to export domestically produced LNG. Specifically, DOE/FE will continue to assess the cumulative impacts of each succeeding request for export authorization on the public interest with due regard to the effect on domestic natural gas supply and demand fundamentals. In keeping with the performance of its statutory responsibilities, DOE/FE will attach appropriate and necessary terms and conditions to authorizations to ensure that the authorizations are utilized in a timely manner and that authorizations are not issued except where the applicant can show that there are or will be facilities capable of handling the proposed export volumes and existing and forecast supplies that support that action. Other conditions will be applied as necessary.

The reasons in support of proceeding cautiously are several: (1) the 2014 and 2015 LNG Export Studies, like any studies based on assumptions and economic projections, are inherently limited in their predictive accuracy; (2) applications to export significant quantities of

406 See Floridian Natural Gas Storage Co., LLC, DOE/FE Order No. 3744, at 22 (stating that the quantity of LNG authorized for export by Floridian in DOE/FE Order No. 3744 “will be reduced by the portion of the total approved volume of 14.6 Bcf/yr that is under firm contract directly or indirectly to Carib Energy (USA), LLC”); see also id. at 21 (Floridian “may not treat the volumes authorized for export in the *Carib and Floridian* proceedings as additive to one another.”).

407 See Bear Head LNG Corporation and Bear Head LNG (USA), DOE/FE Order No. 3770, at 178-79 (stating that the quantity of LNG authorized for export by Bear Head LNG and Pieridae US “are not additive; together, they are limited to a maximum of 0.81 Bcf/d to reflect the current capacity of the M&N US Pipeline.”).
domestically produced LNG are a new phenomena with uncertain impacts; and (3) the market for natural gas has experienced rapid reversals in the past and is again changing rapidly due to economic, technological, and regulatory developments. The market of the future very likely will not resemble the market of today. In recognition of these factors, DOE/FE intends to monitor developments that could tend to undermine the public interest in grants of successive applications for exports of domestically produced LNG and, as previously stated, to attach terms and conditions to the authorization in this proceeding and to succeeding LNG export authorizations as are necessary for protection of the public interest.

XIII. TERMS AND CONDITIONS

To ensure that the authorization issued by this Order is not inconsistent with the public interest, DOE/FE has attached the following Terms and Conditions to the authorization. The reasons for each term or condition are explained below. GPP must abide by each Term and Condition or may face rescission of the authorization or other appropriate sanction.

A. Term of the Authorization

GPP requests a 25-year term for the authorization commencing from the date export operations begin. However, consistent with our prior non-FTA authorizations to date, we believe that caution recommends limiting this authorization to no longer than a 20-year term beginning from the date of first export. In imposing this condition, we are mindful that LNG export facilities are capital intensive and that, to obtain financing for such projects, there must be a reasonable expectation that the authorization will continue for a term sufficient to support repayment. We find that a 20-year term is likely sufficient to achieve this result. Accordingly, the 20-year term will begin on the date when GPP commences commercial export of domestically sourced LNG from the Golden Pass LNG Terminal, but not before.
B. Commencement of Operations Within Seven Years

Consistent with our prior non-FTA authorizations to date, DOE/FE will add as a condition of the authorization that GPP must commence commercial LNG export operations from the Golden Pass LNG Terminal no later than seven years from the date of issuance of this Order. The purpose of this condition is to ensure that other entities that may seek similar authorizations are not frustrated in their efforts to obtain those authorizations by authorization holders that are not engaged in actual export operations.

C. Commissioning Volumes

GPP will be permitted to apply for short-term export authorizations to export Commissioning Volumes prior to the commencement of the first commercial exports of domestically sourced LNG from the Golden Pass LNG Terminal. “Commissioning Volumes” are defined as the volume of LNG produced and exported under a short-term authorization during the initial start-up of each LNG train, before each LNG train has reached its full steady-state capacity and begun its commercial exports pursuant to GPP’s long-term contracts. The Commissioning Volumes will not be counted against the maximum level of volumes previously authorized in GPP’s FTA authorization (DOE/FE Order No. 3147) or in this Order.

D. Make-Up Period

GPP will be permitted to continue exporting for a total of three years following the end of the 20-year term established in this Order, solely to export any Make-Up Volume that it was unable to export during the original export period. The three-year term during which the Make-Up Volume may be exported shall be known as the “Make-Up Period.”

The Make-Up Period does not affect or modify the total volume of LNG previously authorized in GPP’s FTA authorization (DOE/FE Order No. 3147) or in this Order. Insofar as GPP may seek to export additional volumes not previously authorized for export, it will be required to obtain appropriate authorization from DOE/FE.

E. Transfer, Assignment, or Change in Control

DOE/FE’s natural gas import/export regulations prohibit authorization holders from transferring or assigning authorizations to import or export natural gas without specific authorization by the Assistant Secretary for Fossil Energy. As a condition of the similar authorization issued to Sabine Pass in DOE/FE Order No. 2961, DOE/FE found that the requirement for prior approval by the Assistant Secretary under its regulations applies to any change of effective control of the authorization holder either through asset sale or stock transfer or by other means. This condition was deemed necessary to ensure that, prior to any transfer or change in control, DOE/FE will be given an adequate opportunity to assess the public interest impacts of such a transfer or change.

DOE/FE construes a change in control to mean a change, directly or indirectly, of the power to direct the management or policies of an entity whether such power is exercised through one or more intermediary companies or pursuant to an agreement, written or oral, and whether such power is established through ownership or voting of securities, or common directors, officers, or stockholders, or voting trusts, holding trusts, or debt holdings, or contract, or any other direct or indirect means. A rebuttable presumption that control exists will arise from the

409 10 C.F.R. § 590.405.
ownership or the power to vote, directly or indirectly, 10 percent or more of the voting securities of such entity.410

\textbf{F. Agency Rights}

GPP requests authorization to export LNG from the Golden Pass LNG Terminal on its own behalf and as agent for other entities that hold title to the LNG at the time of export, pursuant to long-term contracts. DOE/FE previously addressed the issue of Agency Rights in Order No. 2913, which granted Freeport LNG Expansion, L.P., \textit{et al.} (FLEX) authority to export LNG to FTA countries.411 In that order, DOE/FE approved a proposal by FLEX to register each LNG title holder for whom FLEX sought to export LNG as agent. DOE/FE found that this proposal was an acceptable alternative to the non-binding policy adopted by DOE/FE in \textit{Dow Chemical}, which established that the title for all LNG authorized for export must be held by the authorization holder at the point of export.412 We find that the same policy considerations that supported DOE/FE’s acceptance of the alternative registration proposal in Order No. 2913 apply here as well.

DOE/FE has reiterated its policy on Agency Rights procedures in prior authorizations, including in \textit{Cameron LNG, LLC}, DOE/FE Order No. 3846.413 In that order, DOE/FE determined that, in LNG export orders in which Agency Rights have been granted, DOE/FE shall require registration materials filed for, or by, an LNG title-holder (Registrant) to include the

410 For information on DOE/FE’s procedures governing a change in control, see U.S. Dep’t of Energy, Procedures for Changes in Control Affecting Applications and Authorizations to Import or Export Natural Gas, 79 Fed. Reg. 65,541 (Nov. 5, 2014) [hereinafter Procedures for Changes in Control].

411 \textit{Freeport LNG Expansion, L.P., et al.}, DOE/FE Order No. 2913, FE Docket No. 10-160-LNG, Order Granting Long-Term Authorization to Export Liquefied Natural Gas from Freeport LNG Terminal to Free Trade Nations (Feb. 10, 2011) [hereinafter \textit{Freeport LNG}].

413 See \textit{Cameron LNG, LLC}, DOE/FE Order No. 3846.
same company identification information and long-term contract information of the Registrant as if the Registrant had filed an application to export LNG on its own behalf.414

To ensure that the public interest is served, the authorization granted herein shall be conditioned to require that where GPP proposes to export LNG from the Golden Pass LNG Terminal as agent for other entities that hold title to the LNG (Registrants), it must register with DOE/FE those entities on whose behalf it will export LNG in accordance with the procedures and requirements described herein.

\textbf{G. Contract Provisions for the Sale or Transfer of LNG to be Exported}

DOE/FE’s regulations require applicants to supply transaction-specific factual information “to the extent practicable.”415 Additionally, DOE/FE regulations allow confidential treatment of the information supplied in support of or in opposition to an application if the submitting party requests such treatment, shows why the information should be exempted from public disclosure, and DOE/FE determines it will be afforded confidential treatment in accordance with 10 C.F.R. § 1004.11.416

DOE/FE will require that GPP file or cause to be filed with DOE/FE any relevant long-term commercial agreements, including liquefaction tolling agreements, pursuant to which GPP exports LNG as agent for a Registrant.

DOE/FE finds that the submission of all such agreements or contracts within 30 days of their execution using the procedures described below will be consistent with the “to the extent practicable” requirement of section 590.202(b). By way of example and without limitation, a “relevant long-term commercial agreement” would include an agreement with a minimum term

414 \textit{See id. at} 128-29 (citation omitted).
415 10 C.F.R. § 590.202(b).
416 \textit{Id.} § 590.202(e).
of two years, an agreement to provide natural gas processing or liquefaction services at the Golden Pass LNG Terminal, a long-term sales contract involving natural gas or LNG stored or liquefied at the Golden Pass LNG Terminal, or an agreement to provide export services from the Golden Pass LNG Terminal.

In addition, DOE/FE finds that section 590.202(c) of DOE/FE’s regulations\(^{417}\) requires that GPP file, or cause to be filed, all long-term contracts associated with the long-term supply of natural gas to the Golden Pass LNG Terminal, whether signed by GPP or the Registrant, within 30 days of their execution.

DOE/FE recognizes that some information in GPP’s or a Registrant’s long-term commercial agreements associated with the export of LNG, and/or long-term contracts associated with the long-term supply of natural gas to the Golden Pass LNG Terminal, may be commercially sensitive. DOE/FE therefore will provide GPP the option to file or cause to be filed either unredacted contracts, or in the alternative (A) GPP may file, or cause to be filed, long-term contracts under seal, but it also will file either: i) a copy of each long-term contract with commercially sensitive information redacted, or ii) a summary of all major provisions of the contract(s) including, but not limited to, the parties to each contract, contract term, quantity, any take or pay or equivalent provisions/conditions, destinations, re-sale provisions, and other relevant provisions; and (B) the filing must demonstrate why the redacted information should be exempted from public disclosure.

To ensure that DOE/FE destination and reporting requirements included in this Order are conveyed to subsequent title holders, DOE/FE will include as a condition of this authorization

\(^{417}\) Id. § 590.202(c).
that future contracts for the sale or transfer of LNG exported pursuant to this Order shall include an acknowledgement of these requirements.

H. Export Quantity

In the Application, GPP sought authorization to export up 740 Bcf/yr of natural gas (2.02 Bcf/d), based on its chosen Bcf to million metric ton conversion factor. DOE/FE, however, uses a different conversion factor than GPP, resulting in an increased export volume. Accordingly, this Order authorizes the export of LNG up to the equivalent of 808 Bcf/yr of natural gas (2.21 Bcf/d), not to exceed the 15.6 mtpa of LNG approved by FERC for the GPP Export Project in its December 21, 2016 Order.

I. Combined FTA and Non-FTA Export Authorization Volumes

GPP is currently authorized in DOE/FE Order No. 3147 to export domestically produced LNG to FTA countries in a volume equivalent to approximately 740 Bcf/yr of natural gas. Because the source of LNG for that FTA order and this Order is the Golden Pass LNG Terminal, GPP may not treat the volumes as additive to one another.

XIV. FINDINGS

On the basis of the findings and conclusions set forth above, we find that it has not been shown that a grant of the requested authorization will be inconsistent with the public interest, and we further find that GPP’s Application should be granted subject to the Terms and Conditions set forth herein. The following Ordering Paragraphs reflect current DOE/FE practice.

418 As explained above (supra at § I), GPP used a conversion factor of 47.256 Bcf per million metric tons. GPP App. at 1 n.3. DOE/FE uses a conversion factor of 51.75 per million metric tons, resulting in the higher authorized export volume.

419 See FERC Order at P 9 & Ordering Para. A.
XV. ORDER

Pursuant to section 3 of the Natural Gas Act, it is ordered that:

A. Golden Pass Products LLC (GPP) is authorized to export domestically produced LNG by vessel from the existing Golden Pass LNG Terminal owned by Golden Pass LNG Terminal LLC and located near Sabine Pass, in Jefferson County, Texas. GPP is authorized to export this LNG in a volume equivalent to 808 Bcf/yr of natural gas (not to exceed the 15.6 mtpa of LNG approved by FERC in its December 21, 2016 Order) on its own behalf and as agent for other entities that hold title to the natural gas, pursuant to one or more long-term contracts (a contract greater than two years).

B. The 20-year authorization period will commence when GPP commences commercial export of domestically sourced LNG from the Golden Pass LNG Terminal, but not before. GPP may export Commissioning Volumes prior to the commencement of the terms of this Order, pursuant to a separate short-term export authorization. The Commissioning Volumes will not be counted against the maximum level of volumes previously authorized in GPP’s FTA order (DOE/FE Order No. 3147) or in this Order.

C. GPP may continue exporting for a total of three years following the end of the 20-year export term, solely to export any Make-Up Volume that it was unable to export during the original export period. The three-year Make-Up Period allowing the export of Make-Up Volumes does not affect or modify the maximum volume of LNG authorized for export in GPP’s existing FTA order (DOE/FE Order No. 3147) or in this Order. Insofar as GPP may seek to export additional volumes not previously authorized for export, it will be required to obtain appropriate authorization from DOE/FE.

D. GPP must commence export operations using the planned liquefaction facilities no later than seven years from the date of issuance of this Order.
E. The LNG export quantity authorized in this Order is equivalent to 808 Bcf/yr of natural gas. This quantity is not additive to the export volume in GPP’s existing FTA order, set forth in DOE/FE Order No. 3147.

F. This LNG may be exported to any country with which the United States does not have a FTA requiring the national treatment for trade in natural gas, which currently has or in the future develops the capacity to import LNG, and with which trade is not prohibited by United States law or policy.

G. GPP shall ensure that all transactions authorized by this Order are permitted and lawful under United States laws and policies, including the rules, regulations, orders, policies, and other determinations of the Office of Foreign Assets Control of the United States Department of the Treasury and FERC. Failure to comply with this requirement could result in rescission of this authorization and/or other civil or criminal remedies.

H. GPP shall ensure compliance with all terms and conditions established by FERC in the EIS, including the 83 conditions adopted in the FERC Order. Additionally, this authorization is conditioned on GPP’s on-going compliance with any other preventative and mitigative measures at the Golden Pass LNG Terminal imposed by federal or state agencies.

I. (i) GPP shall file, or cause others to file, with the Office of Regulation and International Engagement a non-redacted copy of all executed long-term contracts associated with the long-term export of LNG as agent for other entities from the Golden Pass LNG Terminal. The non-redacted copies may be filed under seal and must be filed within 30 days of their execution. Additionally, if GPP has filed the contracts described in the preceding sentence under seal or subject to a claim of confidentiality or privilege, within 30 days of their execution, GPP shall also file, or cause others to file, for public posting either: (a) a redacted version of the
contracts described in the preceding sentence, or (b) major provisions of the contracts. In these filings, GPP shall state why the redacted or non-disclosed information should be exempted from public disclosure.

(ii) GPP shall file, or cause others to file, with the Office of Regulation and International Engagement a non-redacted copy of all executed long-term contracts associated with the long-term supply of natural gas to the Golden Pass LNG Terminal. The non-redacted copies may be filed under seal and must be filed within 30 days of their execution. Additionally, if GPP has filed the contracts described in the preceding sentence under seal or subject to a claim of confidentiality or privilege, within 30 days of their execution, GPP shall also file, or cause others to file, for public posting either: i) a redacted version of the contracts described in the preceding sentence, or ii) major provisions of the contracts. In these filings, GPP shall state why the redacted or non-disclosed information should be exempted from public disclosure.

J. GPP, or others for whom GPP acts as agent, shall include the following provision in any agreement or other contract for the sale or transfer of LNG exported pursuant to this Order and any other applicable DOE/FE authorization:

Customer or purchaser acknowledges and agrees that it will resell or transfer U.S.-sourced natural gas in the form of LNG purchased hereunder for delivery only to countries identified in Ordering Paragraph F of DOE/FE Order No. 3978, issued April 25, 2017, in FE Docket No. 12-156-LNG and/or to purchasers that have agreed in writing to limit their direct or indirect resale or transfer of such LNG to such countries. Customer or purchaser further commits to cause a report to be provided to Golden Pass Products LLC that identifies the country of destination (or countries) into which the exported LNG or natural gas was actually delivered and/or received for end use, and to include in any resale contract for such LNG the necessary conditions to insure that Golden Pass Products LLC is made aware of all such actual destination countries.

K. GPP is permitted to use its authorization in order to export LNG as agent for other entities, after registering such entities with DOE/FE. Registration materials shall include an
acknowledgement and agreement by the Registrant to supply GPP with all information necessary to permit GPP to register that person or entity with DOE/FE, including: (1) the Registrant’s agreement to comply with this Order and all applicable requirements of DOE/FE’s regulations at 10 C.F.R. Part 590, including but not limited to destination restrictions; (2) the exact legal name of the Registrant, state/location of incorporation/registration, primary place of doing business, and the Registrant’s ownership structure, including the ultimate parent entity if the Registrant is a subsidiary or affiliate of another entity; (3) the name, title, mailing address, e-mail address, and telephone number of a corporate officer or employee of the Registrant to whom inquiries may be directed; and (4) within 30 days of execution, a copy of any long-term contracts not previously filed with DOE/FE, described in Ordering Paragraph I of this Order.

L. Each registration submitted pursuant to this Order shall have current information on file with DOE/FE. Any changes in company name, contact information, change in term of the long-term contract, termination of the long-term contract, or other relevant modification, shall be filed with DOE/FE within 30 days of such change(s).

M. As a condition of this authorization, GPP shall ensure that all persons required by this Order to register with DOE/FE have done so. Any failure by GPP to ensure that all such persons or entities are registered with DOE/FE shall be grounds for rescinding in whole or in part the authorization.

N. Within two weeks after the first export of domestically produced LNG occurs from the Golden Pass LNG Terminal, GPP shall provide written notification of the date that the first export of LNG authorized in Ordering Paragraph A above occurred.

O. GPP shall file with the Office of Regulation and International Engagement, on a semi-annual basis, written reports describing the progress of the GPP Export Project at the
Golden Pass LNG Terminal. The reports shall be filed on or by April 1 and October 1 of each year, and shall include information on the progress of the GPP Export Project, the date the GPP Export Project is expected to be operational, and the status of the long-term contracts associated with the long-term export of LNG and any long-term supply contracts.

P. With respect to any change in control of the authorization holder, GPP must comply with DOE/FE’s Procedures for Change in Control Affecting Applications and Authorizations to Import or Export Natural Gas.420 For purposes of this Ordering Paragraph, a “change in control” shall include any change, directly or indirectly, of the power to direct the management or policies of GPP, whether such power is exercised through one or more intermediary companies or pursuant to an agreement, written or oral, and whether such power is established through ownership or voting of securities, or common directors, officers, or stockholders, or voting trusts, holding trusts, or debt holdings, or contract, or any other direct or indirect means.421

Q. Monthly Reports: With respect to the LNG exports authorized by this Order, GPP shall file with the Office of Regulation and International Engagement, within 30 days following the last day of each calendar month, a report indicating whether exports of LNG have been made. The first monthly report required by this Order is due not later than the 30th day of the month following the month of first export. In subsequent months, if exports have not occurred, a report of “no activity” for that month must be filed. If exports of LNG have occurred, the report must give the following details of each LNG cargo: (1) the name(s) of the authorized exporter registered with DOE/FE; (2) the name of the U.S. export terminal; (3) the name of the LNG tanker; (4) the date of departure from the U.S. export terminal; (5) the country (or countries) into which the exported LNG or natural gas is actually delivered and/or received for end use; (6) the

420 See Procedures for Changes in Control at 65,541-42.
421 See id. at 65,542.
name of the supplier/seller; (7) the volume in Mcf; (8) the price at point of export per million
British thermal units (MMBtu); (9) the duration of the supply agreement; and (10) the name(s) of
the purchaser(s).

(Approved by the Office of Management and Budget under OMB Control No. 1901-0294)

R. All monthly report filings shall be made to U.S. Department of Energy (FE-34),
Office of Fossil Energy, Office of Regulation and International Engagement, P.O. Box 44375,
Washington, D.C. 20026-4375, Attention: Natural Gas Reports. Alternatively, reports may be
e-mailed to ngreports@hq.doe.gov or may be faxed to Natural Gas Reports at (202) 586-6050.

S. Sierra Club’s and APGA’s motions to intervene are both granted.

T. Sierra Club’s reply to GPP’s Answer is granted.

U. Good cause having been shown, the late-filed comment submitted by Deloris
“Bobbie” Prince, Mayor of Port Arthur, Texas, is accepted for filing.

Issued in Washington, D.C., on April 25, 2017.

Douglas W. Hollett
Assistant Secretary (Acting)
Office of Fossil Energy