Conventional Pumped Storage

Modular Pumped Storage (m-PSH)

Conventional Pumped Storage

Modular Pumped Storage

Hydropower Feasibility and Economic Analysis

Boualem Hadjerioua

Oak Ridge National Laboratory
hadjeriouab@ornl.gov | (865) 574-5191
February 13-17, 2017
Project Overview

Modular Pumped Storage Hydropower Feasibility and Economic Analysis:
• Assess the cost and design dynamics of small modular PSH (m-PSH) development
• Explore whether the benefits of modularization are sufficient to outweigh the economies of scale inherent in utility scale development
• Measure the economic competitiveness of m-PSH against alternative distributed storage technologies (i.e. batteries).

The Challenge:
• Scalability of PSH projects, and whether small modular PSH has competitive advantages over alternative energy storage technologies

Partners: MWH Consulting, Knight Piésold Consulting, Revelo Pumped Storage Company, Biosphere 2, University of Arizona
Next Generation Hydropower (HydroNEXT)

Optimization
- Optimize technical, environmental, and water-use efficiency of existing fleet
- Collect and disseminate data on new and existing assets
- Facilitate interagency collaboration to increase regulatory process efficiency
- Identify revenue streams for ancillary services

Growth
- Lower costs of hydropower components and civil works
- Increase power train efficiency for low-head, variable flow applications
- Facilitate mechanisms for testing and advancing new hydropower systems and components
- **Reduce costs and deployment timelines of new PSH plants**
- Prepare the incoming hydropower workforce

Sustainability
- Design new hydropower systems that minimize or avoid environmental impacts
- Support development of new fish passage technologies and approaches
- Develop technologies, tools, and strategies to evaluate and address environmental impacts
- Increase resilience to climate change
Next Generation Hydropower (HydroNEXT)

Program Strategic Priorities

Growth

- Lower costs of hydropower components and civil works
- Increase power train efficiency for low-head, variable flow applications
- Facilitate mechanisms for testing and advancing new hydropower systems and components
- **Reduce costs and deployment timelines of new PSH plants**
- Prepare the incoming hydropower workforce

The Impact

- Small, modular pumped storage hydropower (PSH) systems could present a significant avenue to cost-competitiveness through direct cost reductions, and by avoiding many of the major barriers facing large conventional designs
- Initial Construction Cost (ICC) target of ~$2,000/kW - $3,000/KW
- Cost estimates, design options, potential revenue streams, and feasibility indicators provide industry with an idea of m-PSH viability
The m-PSH project consists of two technical approaches:

1. Targeted case studies
2. Cost modeling tool

Technical Approach

Project Size
- <1 MW
- 5 MW
- 10 MW
- 25 MW

Pump-Turbine Technology
- Single Speed
- Flexible

Site Feature
- Traditional Pump Energy (Nuclear, Thermal)
 - Brown Field Location (e.g., existing coal mine)
 - Campus (e.g., industrial site)
 - Industrial Site (e.g., manufacturing plant)
 - Existing Water Infrastructure (e.g., water works and reservoirs)
- Renewable Pump Energy (Wind, Solar, Hydropower, Other)
 - Combined Mode (e.g., combined with other renewables to firm variable output)

Energy Sales
- Project Location: Kentucky, New York, Texas, California, Tennessee
- Market Data Source: NYISO, ERCOT, CAISO, TVA

Costs
- Equipment Cost
 - Manufacturer 1
 - Manufacturer 2
 - Manufacturer 3
 - Manufacturer 4
 - Manufacturer 5
- Project Cost Contractor: MWH, Knight Piesold, Other

Economic Indicators
- Benefit-Cost Ratio (BCR)
- Levelized Cost of Energy (LCOE)
Technical Approach: Case Studies

Coal Mine (5MW)
- ICC: $1,700–$2,400/kW (10 hours of storage)
- Closed-loop
- Existing infrastructure
- PJM RTO market
- Regulatory uncertainty and poor regional economic indicators

Buildings (305kW)
- ICC: >$3,500/kW (<1 hour of storage)
- Low energy density
- Prohibitive storage tank volume required
- Unrealistic cost-benefit
- Limited market prospects

ORNL Campus (5MW)
- ICC: $4,100–$4,700/kW (10 hours of storage)
- Open loop
- No existing infrastructure
- Integrated TVA market
- High costs and low market revenue potential

GLIDES (1 kW)
- ICC: >$18,000/kW (10 hours of storage)
- Compressed air/PSH hybrid
- 1 kW prototype at ORNL
- Pressure vessels are major cost driver of economic infeasibility

Biosphere 2 Hybrid (463 kW)
- ICC: $13,600/kW (~13 hours of storage)
- Investigate ‘solar powered’ m-PSH – store solar for off-peak consumption
- Costs of storage tanks are major driver of economic infeasibility
At small installed capacities, cost distributions can be analyzed at several ‘test points’:

- Storage costs are proportionately more expensive as head is reduced
- Conventional approach is prohibitively expensive at installed capacities < 100MW – **innovation is needed**
Accomplishments and Progress

Technical Accomplishments:
- Site visit of decommissioned coal mine and evaluation for m-PSH potential (2014)
- Case study of m-PSH at ORNL completed for campus sustainability initiative (2015)
- Technical Paper of the Year (2nd Place) at HydroVision International (FY 2015)
- Technical memorandum on cost scaling of GLIDES delivered to DOE (2015)
- Site visit of Biosphere 2 and evaluation of m-PSH and solar potential (2016)
- Catalog of m-PSH equipment and construction costs developed (2016)
- Cost estimating tool complete and available for widespread use (2016).

Publications:
- Technical paper on economic viability of two case studies presented at HydroVision International (FY 2015)
- Technical report on economic viability of three case studies delivered to DOE (ORNL/TM-2015/559, FY 2015)
- Technical paper on m-PSH cost model tool development presented at HydroVision International (FY 2016)
- Technical report on solar/m-PSH hybrid case study delivered to DOE (ORNL/TM-2016/591, FY 2016)
- Technical report on cost model tool and results delivered to DOE (ORNL/TM-2016/590, FY 2016)
• Project started October 2014 and ended September 2016.

• All milestones and deliverables were completed on time and within budget.

• Key deliverables were (1) a set of detailed case studies assessing the preliminary feasibility of m-PSH projects and (2) a comprehensive cost estimating tool for closed loop m-PSH projects.
Project Budget

<table>
<thead>
<tr>
<th></th>
<th>FY2014</th>
<th>FY2015</th>
<th>FY2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE</td>
<td>$750K</td>
<td>$400K</td>
<td>$200K</td>
</tr>
<tr>
<td>Cost-share</td>
<td>$0K</td>
<td>$0K</td>
<td>$0K</td>
</tr>
</tbody>
</table>
Research Integration & Collaboration

Partners, Subcontractors, and Collaborators:
• Oak Ridge National Laboratory: Dr. Boualem Hadjerioua, Dr. Adam Witt, Dol Raj Chalise, Rebecca Brink, Miles Mobley, Dr. Ayyoub Mehdizadeh Momen, Dr. Omar Abdelaziz, Dr. Kyle Glueskamp, Adewale Odukomaiya, Ahmad Abu-Heiba
• MWH Consulting: Michael Manwaring
• Knight Piésold Consulting: Norm Bishop Jr.
• Revelo Pumped Storage Company: John Matney
• Biosphere 2: John Adams
• University of Arizona: Dr. Kevin Lansey, Chris Horstman

Communications and Technology Transfer:
• Presentation at HydroVision Conference in Environmental/Social Track (2015)
• Poster presentation at HydroVision Conference (2016)
• Disseminate all technical documents at http://hydropower.ornl.gov/
Next Steps and Future Research

FY17 / Current Research: Project ended in 2016

Proposed Future Research
- Quantification of the m-PSH type resources present in the US
- Improvements in the cost of storage, either through cost reductions in the civil works associated with storage construction or through strategic siting
- Innovative technical R&D on new designs and manufacturing strategies for modular reversible pump-turbines, and alternative construction strategies and materials
- New models and simulations to better understand how m-PSH can be strategically used as an energy storage technology
- Explore economic feasibility of m-PSH projects that enable greater penetration of intermittent renewables