Water Power Technologies Office Peer Review Hydropower Program

Energy Efficiency & Renewable Energy

Modular Low-Head Hydropower System

David Duquette

Littoral Power Systems Inc. dduquette@littoralpower.com, (508) 436-4102 Feb. 2017

"A cost-disruptive, low impact, modular form factor low-head hydropower system"

The challenge: New stream-reach development requires <u>low</u> <u>environmental impact</u> and <u>low cost civil works</u>.

Partners:

- **GZA GeoEnvironmental**: geotechnical/ dam module/ ancillaries (Chad Cox, P.E., co-PI)
- **UMass-Dartmouth**: spillway module (Daniel MacDonald, Ph.D.)
- National Renewable Energy Laboratory (NREL: Levelized cost of energy (LCOE)/ risk register/ reference siting (Elise DeGeorge, Scott Jenne, David Snowberg)
- Alden Research Laboratory: turbine module/ structural analysis (Dave Schowalter, Ph.D, Mark Graeser, P.E.)

Next Generation Hydropower (HydroNEXT)

Optimization

- Optimize technical, environmental, and water-use efficiency of existing fleet
- Collect and disseminate data on new and existing assets
- Facilitate interagency collaboration to increase regulatory process efficiency
- Identify revenue streams for ancillary services

Growth

- Lower costs of hydropower components and civil works
- locrease power train efficiency to low-head, variable flow applications
- Facilitate mechanisms for testing and advancing new hydropower systems and components
- Reduce costs and deployment timelines of new PSH plants
- Prepare the incoming hydropower workforce

Sustainability

- Design new hydropower systems that minimize or avoid environmental impacts
- Support development of new fish passage technologies and approaches
- Develop technologies, tools, and strategies to evaluate and address environmental impacts
- Increase resilience to climate change

Next Generation Hydropower (HydroNEXT)

Growth

Lower costs of hydropower components and civil works

low-head, variable flow applications

- Facilitate mechanisms for testing and advancing new hydropower systems and components
- Reduce costs and deployment timelines of new PSH plants
- Prepare the incoming hydropower workforce

The Impact

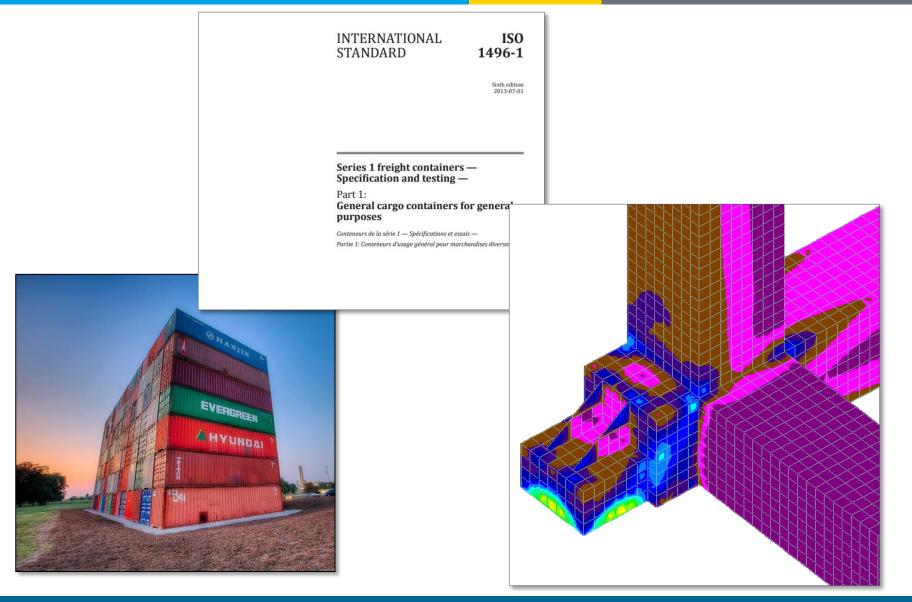
- 50% reduction in civil works costs versus traditional concrete installation
- Enables ecological small, low head and run-ofriver installations that take advantage of new streamlined FERC regulations.
- Modular, prefabricated dam, spillway, and powerhouse modules with dimensions and connectors of shipping containers make up a kit of standardized parts to flexibly fit a wide variety of sites, that can be quickly installed, and can be removed at the end of their useful life leaving little if any environmental footprint.

Next Generation Hydropower (HydroNEXT)

Sustainability

Design new hydropower systems that minimize or avoid environmental impacts

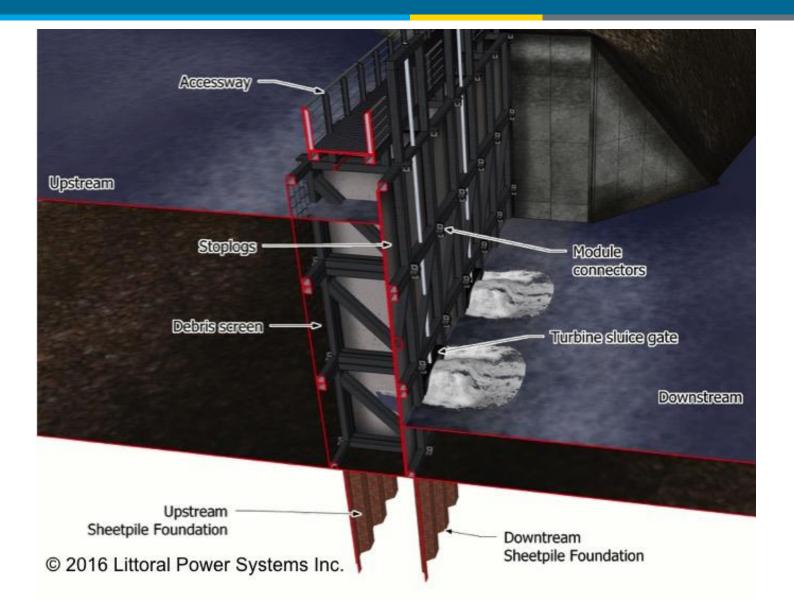
- Support development or new fish passage technologies and approaches
- Develop technologies, tools, and strategies of evaluate and address environmental impacts
- Increase resilience to climate change


The Impact

- 50% reduction in civil works costs versus traditional concrete installation
- Enables ecological small, low head and run-ofriver installations that take advantage of new streamlined FERC regulations.
- Modular, prefabricated dam, spillway, and powerhouse modules with dimensions and connectors of shipping containers make up a kit of standardized parts to flexibly fit a wide variety of sites, that can be quickly installed, and can be removed at the end of their useful life leaving little if any environmental footprint.

Technical Approach

U.S. DEPARTMENT OF


Energy Efficiency & Renewable Energy

Technical Approach

Energy Efficiency & Renewable Energy

Accomplishments and Progress

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

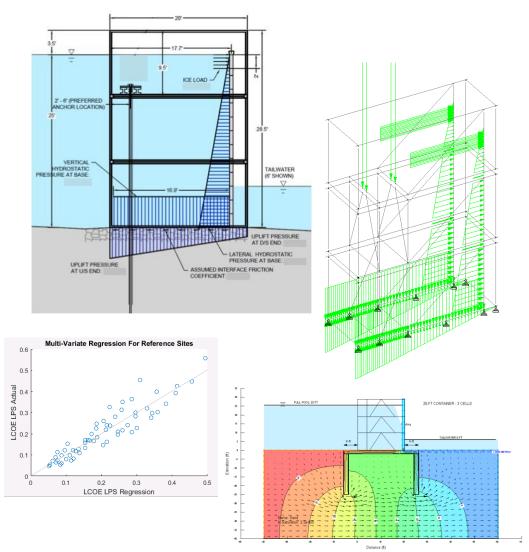
Global stability analysis

- sliding overturning flotation
- Seepage analysis w/varying riverbed compositions
 - meets USACE (Cedergren) guides

Leakage worst case per AWWA C563

• 0.07% of flow rate through turbine

Structural integrity


- per AISC and USACE
- a per USACE ETL 1110-2-584
- ISO 1496-1:1990 containers

LCOE analysis

- >50% reduction in civil works cost
- 13.4¢/kWh

Statistical tool – LCOE vs. site Turbine selection – 20+ considered Spillway – pneumatic modular

large debris passage

Budget Period 1: Preliminary designs

Four main modules: Dam, Power (turbine/draft tube), Spillway, Penstock

Go/No-go #1: Dam modules stable/capable in global stability and seepage conditions.

Budget Period 2: Detailed designs for test articles, full size testing for structure and leakage

Apr 1, 2017 – Mar 31, 2018

Project managed with waterfall and agile elements. Risks tracked via NREL Risk Register.

Budget History					
FY2014		FY2015		FY2016	
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share
				\$ 285.347k	\$ 74.768k

- Values shown are for invoiced and reimbursed life-todate amounts as of 9/30/2016.
- Budgeted amounts for budget period 1, Feb 1, 2016 thru March 31, 2017, are: \$766.559k federal, and \$192.115k cost share.
- Total project thru March 2018 amounts are: \$1,421.67k federal, and \$371.111k cost share.

Energy Efficiency & Renewable Energy

Partners, Subcontractors, and Collaborators:

- GZA GeoEnvironmental: Chad Cox P.E. co-PI, Bin Wang P.E.
- Alden Research Laboratory: David Schowalter Ph.D., Mark Grasser P.E., Greg Allen P.E., Brian McMahon P.E., Rhonda Young
- University of Massachusetts Dartmouth: Daniel MacDonald, Ph.D., May May Khin, Michele Winchel
- NREL: Scott Jenne, David Snowberg, Elise DeGeorge

Communications and Technology Transfer:

- Four blog posts on LPS web site, <u>www.littoralpower.com</u>
- Article on Alden website, <u>https://www.aldenlab.com/News/Alden-News/ArticleID/41/Modular-Dams-for-Hydropower</u>
- Provided graphics for Oak Ridge National Laboratory, Adam Witt, presentations
- Environmental Business Council of New England 3 Nov 2016
- Potential investors individual/ family/ private/ public three key leads
- Potential pilot site owners following eight leads

U.S. DEPARTMENT OF

I = N = Ke

FY17/Current research:

Budget Period 2 will refine the designs and LCOE model.

- 1) for the spillway module, use CFD simulations to prove no substantial erosion danger during flooding,
- 2) for the dam module, build two modules, and test them in a flood wall to prove stability, leakage, and structural adequacy, and
- 3) analyze LCOE for concrete baseline, an LPS module pilot site and an envisioned full scale scenario at a reference site.

Proposed future research:

- 1) Explore site flexibility via simulations of installations topography, hyrodology, and geotechnical.
- 2) Explore applicability to infrastructure repair install/monitor dam modules in a field/pilot test site.
- 3) Explore abutment design concepts for various site conditions.
- 4) Explore applicability to add power to non-powered dams.