

Informing Hydropower Investment and Operational Decisions under Changing Hydrologic Conditions

Mark Wigmosta

Pacific Northwest National Laboratory (PNNL) mark.wigmosta@pnnl.gov February 15, 2017 Informing Hydropower Investment and Operational Decisions in the Face of a Changing Climate intends to provide a scalable, physics-based modeling framework to better understand and evaluate hydropower investments and operational decisions in the face of changing climate, ultimately:

- Quantifying risk, at the plant and system levels
- Identifying impacts of altered climate on hydropower and thermoelectric production; water temperature; and ecosystem resources.
- Challenge: Of specific interest is the relationship between: changing water temperature regimes in rivers; electric power generation from hydropower, thermoelectric plant cooling and discharge; and water-quality and habitat needs for sensitive species (2014 DOE The Water-Energy Nexus: Challenges and Opportunities).
- Who Benefits: Provide decision makers with the ability to predict the probable location, timing, duration, and severity of water-temperature events and explore alternative operations and infrastructure investments to mitigate the frequency and duration of such events.

Partners: Kearns and West, National Renewable Energy Laboratory (NREL), Portland State University, Industrial Stakeholders, Action Agencies (e.g. Bonneville Power Administration [BPA], U.S. Army Corps of Engineers (USACE), U.S. Bureau of Reclamation [USBR])

Next Generation Hydropower (HydroNEXT)

Optimization

- Optimize technical, environmental, and water-use efficiency of existing fleet
- Collect and disseminate data
 on new and existing assets
- Facilitate interagency collaboration to increase regulatory process efficiency
- Identify revenue streams for ancillary services

Growth

- Lower costs of hydropower components and civil works
- Increase power train efficiency for low-head, variable flow applications
- Facilitate mechanisms for testing and advancing new hydropower systems and components
- Reduce costs and deployment timelines of new PSH plants
- Prepare the incoming hydropower workforce

Sustainability

- Design new hydropower systems that minimize or avoid environmental impacts
- Support development of new fish passage technologies and approaches
- Develop technologies, tools, and strategies to evaluate and address environmental impacts
- Increase resilience to climate change

Program Strategic Priorities

Energy Efficiency & Renewable Energy

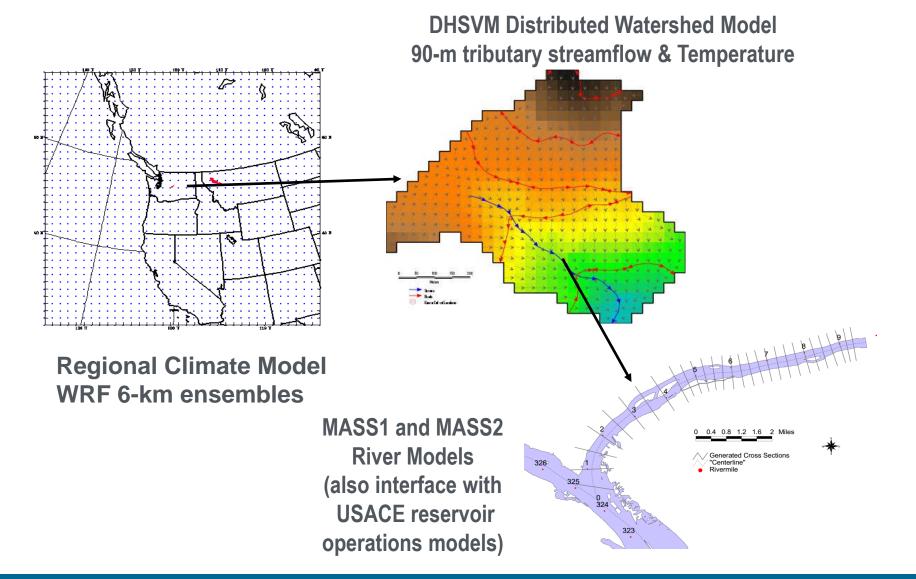
Sustainability

- Develop technologies, tools, and strategies to evaluate and address environmental impacts
- Increase resilience to climate change

The project aims to provide decision makers with the capability to model the likelihood, location, and severity of water-temperature events under both current conditions and a range of future climate scenarios to evaluate alternative operations and infrastructure investments to mitigate such events.

- Plant and system level risk
- Hydropower and thermoelectric production
- Ecosystem resources.

Technical Approach


ENERGY Energy Efficiency & Renewable Energy

- Stakeholder Engagement through an initial User Needs Assessment to scope and focus our modeling framework
 - National Steering Committee (NSC) and Basin Stakeholder Groups to serve as guides throughout the project.
- Initial development and demonstration of the system will be done in a portion of the greater Columbia River Basin
 - 40% of the nation's hydropower generated in the Pacific Northwest
 - Snow dominated basin
 - Already facing climate-related issues summer of 2015, water temperatures in many locations throughout the mainstem and major tributaries were physiologically unsustainable for salmon, resulting in the death of a quarter-million sockeye
 - A recent Federal Court ruling found the current/proposed salmon protection plan fails to adequately consider climate change and address the federal hydropower dams' effect on fish.*
 - Federal agencies were given two years to write a new Biological Opinion and initiate a National Environmental Policy Act (NEPA) process that considers alternatives, including dam removal.*

* Note: this research project is not directly related to nor will provide results used for the court proceedings or NEPA process.

Technical Approach

U.S. DEPARTMENT OF

This project only just started at the end of FY16 so progress is limited

- Coordination kick-off meeting with major Federal Columbia River Basin stakeholders BPA, USACE, and USBR in Portland, OR
- Participated in Columbia River Management Joint Operating Committee (RMJOC-II) workshop for long term planning
- Coordination with University of Washington task for RMJOC
- Entered into contracts with partners 1) Kearns & West, and 2)
 Portland State University
- Begun stakeholder outreach to establish NSC and Columbia Basin Stakeholder Groups (BSG).

	FY2016		FY2017			FY2018			FY2019							
Milestone/Deliverable (selected)	Q 1	Q 2	Q 3	Q 4												
Stakeholder Engagement				-						_		_			_	
Ensemble Climate Modeling					_	_				_	_					
Watershed Hydrologic Modeling							_			_		_	_	-		
River and Reservoir Water Quality Modeling							_								-	•
Environmental Impacts Assessment									_	_		_				Þ
Future Hydropower Impact Assessment																Þ

Budget History									
FY	2014	FY2	2015	FY2016					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
				\$625K*					

* Received December 2016

Partners, Subcontractors, and Collaborators:

- Kearns & West: Facilitate the national and regional user needs assessments, report on those activities, and assist with project outreach efforts
- Portland State University: Evaluate the Columbia River Basin estuarine environment to provide a system-level look at the integrated impacts of climate change on the basin
- NREL: Application of the Regional Energy Deployment System (ReEDS) model and use that model to translate *Hydropower Vision* ReEDS scenario results into new deployments.
- The framework will be structured to accommodate other models provided they are technically acceptable and open source.
- The modeling framework will be compatible with PRIMA, DOE Office of Science's IAM/IAV model set housed at PNNL's Joint Global Change Research Institute.
- Other partners, subcontractors and collaborators TBD.

Technology Transfer, Next Steps and Future Research

U.S. DEPARTMENT OF ENERGY R

Energy Efficiency & Renewable Energy

Communications and Technology Transfer

- Stakeholder interaction with NSC and BSG (Columbia River and TBD second basin)
- Participation in national and local conferences, workshops, and meetings to listen and report out
- Publication of peer-reviewed documents

FY17/Current research:

- Conduct national User Needs Assessment to understand how hydropower investment and operational decisions are made to inform model framework construction
- Establish NSC and Columbia BSG
- Engage the scientific community (e.g., university researchers, technical staff at the BPA, USACE, BOR) for feedback on the proposed modeling methodology
- Based on stakeholder input, begin setup of watershed-river-reservoir models in the Snake River subbasin.

Proposed future research:

- Columbia Basin
 - Complete climate simulations
 - Complete watershed, river, reservoir model runs
 - Complete environmental assessment
 - Evaluate alternative hydrosystem operations.
- Second demonstration basin
 - Select basin, establish BSG, and complete needs assessment
 - Begin climate simulations
 - Complete model setup and calibration
 - Complete environmental model runs
 - Evaluate alternative hydrosystem operations.
- Complete ReEDS-NHAAP analysis of future hydropower development
- Document modeling framework and make available to users.