Water Power Technologies Office Peer Review Hydropower Program

Energy Efficiency & Renewable Energy

Harnessing the Hydro-Electric Potential of Engineered Drops

J.L. Straalsund

Percheron Power, LLC jls@percheronpower.com 509-308-2730 February 15, 2017

Harnessing the Hydro-Electric Potential

of Engineered Drops :

• **The Objective:** Design, develop, permit, and operate an Archimedes Hydrodynamic Screw (AHS) low-head hydro-electric facility on an existing engineered drop of a large irrigation canal

• The Challenge:

- To successfully deploy the first hydro plant of this type on a canal in the United States, one of the largest capacity AHS plants in the world
- Demonstrate AHS plants are simple, robust, and economical, and do not negatively impact ongoing irrigation operations

• The Unexpected Obstacle:

• Executing a Power Purchase Agreement in Colorado above \$70/MWh or receiving additional funding to permit economic viability of plant.

Project Overview

Partners

- Uncompany Valley Water Users Association Plant Operations and Input
- U.S. Bureau of Reclamation Lease of Power Privilege and Design Input
- J-U-B Engineers, Inc. Civil/Structural Design
- 3-Helix and Dirk Nuernbergk Turbine System Selection and Analysis
- N.E.I. and Delta Montrose Electric Association Interconnection Design
- Rehart Gmbh and Rehart U.S.A Turbine System Supplier

Next Generation Hydropower (HydroNEXT)

Optimization

- Optimize technical, environmental, and water-use efficiency of existing fleet
- Collect and disseminate data on new and existing assets
- Facilitate interagency collaboration to increase regulatory process efficiency
- Identify revenue streams for ancillary services

Growth

- Lower costs of hydropower components and civil works
- Increase power train efficiency for low-head, variable flow

application

- Facilitate mechanisms for testing and advancing new hydropower systems and components
- Reduce costs and deployment timelines of new PSH plants
- Prepare the incoming hydropower workforce

Sustainability

- Design new hydropower systems that minimize or avoid environmental impacts
- Support development of new fish passage technologies and approaches
- Develop technologies, tools, and strategies to evaluate and address environmental impacts
- Increase resilience to climate change

Next Generation Hydropower (HydroNEXT)

Growth

- Lower costs of hydropower components and civil works
- Increase power train efficiency for lowhead variable flow applications
- Facilitate mechanisms for testing and advancing new hydropower systems and components
- Reduce costs and deproyment timelines of new PSH plants
- Prepare the incoming hydropower workforce

The Impact

 A new but proven low-head technology is demonstrated in the United States and further advancements are underway for AHS

Desired Result: The local canal association successfully operates the plant and provides a public "showplace" for the new technology

 Plant provides revenue to improve their aging infrastructure, with no negative impacts to ongoing irrigation operations

Final Project Deliverable: A large Archimedes Hydrodynamic Screw Plant is successfully constructed and operating in the United States.

Next Generation Hydropower (HydroNEXT)

Sustainability

Design new hydropower systems that minimize or avoid environmental impacts

- Support development of new fish passage technologies and approaches
- Develop technologies, tools, and strategies of evaluate and address environmental impacts
- Increase resilience to climate change

The Impact

• The well-proven steel Archimedes turbine is successfully deployed at lowhead engineered drops in the United States

Desired Result:

- AHS technology is adopted in the United States as a leading low-head plant solution for hundreds of other plant sites across the country
- New distributed capacity is added to the U.S. hydropower fleet with ultra-low environmental impact utilizing existing man-made drops and infrastructure.

Project Scope: Deploy the low-head AHS technology in the United States

- Permit/License, Design, Develop, Construct, Operate
- First Archimedes Hydrodynamic Screw Hydroelectric Plant on Irrigation Canal in U.S.
- One of Largest (nameplate capacity) AHS Plants in World

Impact of Project

- Demonstrates to federal agencies, irrigation districts, and other irrigation system owners and operators that the AHS technology is simple, robust, economical, and does not negatively impact canal operations
- Supports development of new small hydropower projects by making previously marginal low-head sites viable
- Potential for broad applicability of this lower cost technology system to man-made and natural low head drops across the United States.

South Canal Drop 2 of the Uncompany Valley Project selected and approved for the AHS Demonstration Plant

- 100-year-old canal in SE Colorado
- Utilize 15.9 feet of head and 1000 cfs design flow
- 1 MW plant will produce ~4,000 MWhs annually
- Must import turbine system from Europe (currently no U.S. supplier)
- Conceptual, preliminary and detailed designs completed.

We involved the canal operators, Reclamation, and local utility throughout the process to ensure their input, comfort level, and approval

Archimedes Hydrodynamic Screw Turbine

Energy Efficiency & Renewable Energy

• Can tolerate large debris so less trash screening

Technical Challenges of Selected Site

- Replace existing canal and stay within canal easement if possible
- Require full bypass around turbines selected Obermeyer Gate
- Geotechnical surveys determined expansive clays that dictated special structural design and additional concrete.

Archimedes Turbine Size for Drop 2

• Each turbine assembly is over 70 feet long and, 15.5 feet in diameter and weighs ~ 35 tons

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

- 1.48

Project Schedule

- Started December 1, 2012 and planned completion November 30, 2017
- Design and Permitting Fully Complete
 - Site Surveys and Geotechnical Surveys/Design Complete
 - Civil/Structural Detailed Design 100% Complete
 - Detailed Design Reviewed/Approved by UVWUA and Reclamation
 - National Environmental Policy Act Categorical Exclusion received from Reclamation and DOE
 - Preliminary and Final Lease of Power Privilege executed with Reclamation
- Interconnection Design Complete and IA executed
- Procurement and Construction
 - Request for Proposals and Specifications developed
 - Bids solicited, evaluated and contracts negotiated and executed
 - Turbine System Supply Agreement Rehart Gmbh
 - Drop 2 Construction Kissner General Contractors, Inc.

Project On Hold Pending Power Purchase Agreement

- Percheron joined with local co-op utility in attempting to interconnect as a PURPA Qualifying Facility (QF) despite coop's existing contract with wholesale supplier
 - Federal Energy Regulatory Commission (FERC) ruled in DMEA/Percheron's favor (that DMEA must purchase the QF power and at negotiated rates regardless of their wholesale contract)
 - Percheron and DMEA executed Memorandum of Understanding for PPA in June 2015
 - Wholesale supplier petitioned FERC to charge "penalty" fee to DMEA/ local co-op utility to recover their power cost if co-ops buy QF power
 - FERC said no and wholesale supplier requested rehearing final order still pending before FERC
- Percheron diligently pursued multiple other off-takers
- Project viability based on >\$70/Mwh prior to award in 2012
 - Published rates of local utility and wholesaler now ~ \$38/MWh
 - Other utilities >\$100/MWh but require multiple "wheels"

Budget History					
FY2014		FY2015		FY2016	
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share
\$ 248K	\$ 155K	\$ 435K	\$ 123K	\$ 69K	\$6K

- Total Budget: \$1,495K federal; \$3,690K match
- 70% of the federal project budget expended to date
 - Project construction on hold pending PPA
- Matching funds to date of \$602K contributed by Percheron, Rehart, J-U-B Engineers, 3-Helix
- Requests for additional funding to maintain original cost share and permit plant viability at lower PPA price not successful

Partners, Subcontractors, and Collaborators:

- Uncompany Valley Water Users Association Plant Operations and Input
- U.S. Bureau of Reclamation Lease of Power Privilege and Design Input
- J-U-B Engineers, Inc. Civil/Structural Design
- 3-Helix and Dirk Nuernbergk Turbine System Selection and Analysis
- N.E.I. and Delta Montrose Electric Association Interconnection Design
- Rehart Gmbh and Rehart U.S.A Turbine System Supplier

Communications and Technology Transfer:

- Numerous presentations on project throughout Western United States
- Expressions of interest in new AHS plants from canal operators in four other states (representing > 100 sites)

FY17/Current research:

- Follow-up on workarounds to achieve viable PPA and/or additional funding
- Construct Drop 2 Plant as soon as irrigation canal is empty next Fall.

Proposed future research:

- Perform site assessments and develop "pipeline" of followon low head sites for future AHS plants
- Develop lower cost optimized composite AHS turbine and modular civil works
- Develop and test improved efficiency powertrain
- Develop Flexible Test Facility for permanent in-water testing of optimized low head turbines.