

Hybrid Approach for PEM Fuel Cell Electrode Microstructural Analysis

C. F. Cetinbas, R. K. Ahluwalia, N. Kariuki, D. J. Myers, V. J. De Andrade Argonne National Laboratory, Argonne, IL

> ElectroCat Workshop July 26, 2016

Argonne National Laboratory, Argonne, IL

Electrode Microstructure Characterization

Experimental electrode microstructure characterization:

Porosimetry = Electron microscopy (SEM, TEM, ET) = FIB-SEM = Nano scale X-CT

Electron Tomography, Lopez-Haro et al. Nature Commun. (2014)

FIB-SEM, Ziegler et al. J. Power Sources (2011)

Numerical microstructure characterization:

Hard X-ray Nanoprobe Beamline at APS

X-ray Tomography of Annealed Pt/C Catalyst at 32-ID

451 images over 180° rotation, 20 nm voxel size

X-CT can only provide morphology of secondary pores due to 20 nm resolution

Pore

1µm sample is extracted to use in hybrid approach

Catalyst and Support Particle Size Distributions

 TEM images taken at UT-Austin to measure the primary C particle size distribution in the Ketjen 300J powder

Pt particle size distribution in annealed Pt/C catalyst

Hybrid Approach: Volume Fractions of Pt, C, N and Pores

 Microstructure of the electrode strongly depends on the ink composition

 $I/C = f_{IC} = 0.8$ $f_{PtC} = 0.297$

- Volume fraction of primary pores (that are lost in solid X-CT volume) needs to be determined approximately
- Mercury intrusion porosimetry results are used to determine f_{pm}

 $f_{pm} = \frac{volume \ of \ pores \ d_p < 20 \ nm}{total \ volume \ of \ pores}$

 ε_{vs} : porosity obtained from X - CT

• An algorithm is developed to regenerate microstructure from C, Pt and ionomer

Hybrid Model Validation

BET porosimetry is performed for validation along with MIP

Hybrid Approach: Ionomer Structure

Direct imaging of 3D ionomer network still remains a challenge

Transport Simulations

- Transport related characteristic properties are investigated by performing simulations
- σ_m and σ_s are assumed to be constant
- Local diffusivity D_t is calculated by accounting for Knudsen diffusion:

$$\frac{1}{D_t} = \frac{1}{D_b} + \frac{1}{D_k} \qquad D_k = \frac{d_p}{3} \sqrt{\frac{8RT}{\pi M_{O_2}}}$$
$$D_{eff} = J \frac{t_{cl}}{\Delta c} \qquad \tau = \varepsilon_i \frac{\langle D_t \rangle}{D_{eff}}$$

Oxygen Transport

- Effective diffusivities for X-CT data and the corresponding hybrid microstructure are compared
- Even though the primary pores decrease the tortuosity, they have minor effect on computed effective diffusivities because of slower Knudsen diffusion in primary pores

Oxygen Transport: Anisotropy

Charge Transport

Conclusions and Future Work

- Detailed microstructure (C, Pt, ionomer, primary pores) of PEFC electrodes reconstructed by incorporating data from different experimental techniques
- Ionomer size distribution is calculated by combining X-CT with other techniques
- Although primary pores generate new pathways, they have minor effect on calculated effective diffusivity due to Knudsen diffusion regime
- Transport simulations and the shortest path tortuosity calculations illustrate heterogeneity and anisotropy of the microstructure

Next steps:

- X-CT (with 12.5 nm voxel) of samples doped with Cs to resolve ionomer network
- Electrochemical reactions will be solved and compared with experimental data
- Water transport will be studied by performing X-CT on water logged samples
- Application of methodology to PGM-free electrodes

ESEM micrographs, Nam et al. Int. J. Heat Mass Tran. (2009)