DEVELOPMENT OF AN INNOVATIVE HIGH EFFICIENCY RADON FAN

2017 Building Technologies Office Peer Review

Dr. Edward Bennett Vice President of Fluids Engineering Mechanical Solutions, Inc. e-mail: emb@mechsol.com

Project Summary

Timeline:

Start date: 6/2016

Planned end date: 3/2017

Key Milestones

1. N/A

Budget:

Total Project \$ to Date:

• DOE: \$132,200

Key Partners:

Fantech	

Project Outcome:

This project will redesign a radon fan to significantly improve efficiency while approximately maintaining current dimensions. Radon fan market leader Fantech will assist in commercializing redesigned system for maximum impact and energy savings.

Problem Statement: Radon fans are an "always-on" ventilation system designed to reduce the risk of radon exposure. However, they are not presently optimized for efficiency.

Target Market and Audience:

- US Radon fan market is presently approximately 600,000 homes
- EPA estimates approximately 6 million homes suffer from elevated radon levels and would directly benefit from a radon mitigation system
- Current installed based represents approximately 0.001 quads, and the potential market 0.01 quads

Impact of Project:

- The final output of the project is a) a high-efficiency radon fan design that
 b) has a clear path to commercialization and subsequent energy savings.
- Contribution to US energy savings will be directly measurable in product sales.
- Serve as an important benchmark for all indoor air management systems, providing significant derivative follow-on savings.
- The project will advance BTO's goal of reducing building energy use intensity 30% by 2030 compared to 2010 levels.
 Energy Efficiency & Energy Efficiency & Renewable Energy

Approach: Develop a high efficiency prototype to demonstrate to the private sector the significant energy savings capable at cost parity.

Key Issues:

- Current Indoor Air Quality (IAQ) air movers are not optimized for efficiency, focusing on other attributes like cubic feet per minute (cfm) and sound levels
- Consumer sentiment is shifting toward higher efficiency, but private industry is hesitant to lead
- Need to apply new design in close collaboration with industry to facilitate acceptance

Distinctive Characteristics: Apply advanced Computational Fluid Dynamics (CFD) modeling to optimize design, partner with market leader

Progress and Accomplishments

Accomplishments: Integrated motor fan efficiency significantly exceeds requirement for reduction in energy consumption by a minimum of 25% compared to state-of-the-art units. Multiple fan designs considered and downselect to final configuration has been completed. Downselect design complete and ready for fabrication

Market Impact:

- New Project (Ph I SBIR), so no market impact to note yet
- Partnered with industry leader who is actively involved in design and has plans to replace existing product line with optimized design once ready

Awards/Recognition: N/A

Lessons Learned:

- Pairing technology development with market leadership is worth the early investment of resources during proposal stage of project.
- Impediments to adopting new technology can exist throughout the supply chain, not just with the commercializer

Project Objectives

- Performance
 - Reduction in energy consumption by a minimum of 25% compared to state-of-the-art units. Fan-based devices should include performance curves based on laboratory testing under ideal conditions using AMCA 210 (chart: static pressure (inches) vs volume (cfm))
- Physical Size
 - < 5% larger than state-of-the-art designs</p>
- Required cleaning intervals, or difficulty of cleaning, to maintain as-new performance
 - Little to no increase as compared to state-of-the-art designs
- Susceptibility to damage or corrosion or performance degradation during manufacture, assembly, transportation, installation, or use (indoor and outdoor environments)
 - Little to no increase as compared to state-of-the-art designs for relevant applications; indoor and outdoor applications.
- Lifetime
 - Same as current units
- Cost
 - Little to no increase as compared to state-of-the-art designs. Projects should have a simple payback period no greater than 5 years at full commercial production rates.

Energy Efficiency & Renewable Energy

Project Integration and Collaboration

Project Integration: MSI has established an excellent working relationship with a radon fan industry leader, who is able to provide insight into enduser requirements to ensure successful market acceptance.

Partners, Subcontractors, and Collaborators: Fantech provides user requirements, supply chain considerations, and market data

Communications: N/A

Baseline Existing Architecture

- Scan data from Shape Fidelity, representing the standard market model impeller, was input into the cad model for a baseline characterization study.
- Results were compared with the CFD of the newly designed flowpath, as well as the experimental data.

Baseline Existing Architecture – CFD Results

Renewable Energy

9

Fluid Domain– CFX Analysis Setup

Matched Experimental Point 6

- Solver Conditions
 - Air Ideal Gas
 - Shear Stress Transport Turbulence Model
 - Isothermal @ 25°C
- Domain Conditions:
 - Full 360° Model applied to Rotor and Stator domains
 - Information passed through interface between rotating and stationary frames of reference
 - A specified rotor pitch was applied and the information passed directly from Rotor to Stator (Frozen Rotor approach)
- Boundary Conditions
 - Inlet $\dot{m}_{in} = 0.11415 \ lbm/s (93.5 \ cfm)$
 - Outlet - $P_s = 14.679 \, psi$
 - Walls
 - Rotating- Impeller Hub and Shroud, Impeller Blades, Motor Face
 - Stationary- Entire outer casing, All Diffuser surfaces, and Duct Walls.

Energy Efficiency & Renewable Energy

Initial Fan Design

- Some minor recirculation zones are present
 - Inlet to diffuser
 - Sharp hub angle just following impeller exit
 - Suction side of vane separation
 - Exit to PVC
 - Realignment to axial direction around shroud
 - Exit hub nose (shape not finalized)

Performance Results and Comparison

Energy Efficiency & Renewable Energy

Fan Meets Requirements With Increased Efficiency

MSI design meets geometric requirements versus existing architecture

Recent Accomplishments

- Integrated motor fan efficiency significantly exceeds requirement
 - Reduction in energy consumption by a minimum of 25% compared to state-ofthe-art units
- Study of various fan designs performed and Downselect to final configuration conducted
 - MSI investigated six different fan designs (seven total configurations includes exit diffuser)
- 3-dimensional CAD model generated
- Aero/mechanical design of integrated fan/motor nearly completed
- Material investigation for manufacturing and cost purposes nearly finalized
- Downselect design complete and ready for fabrication
 - Phase II

Project Budget

Project Budget:

• DOE: \$150,000

Variances:

• Currently no variances specific to project

Cost to Date:

• DOE: \$132,200

Additional Funding:

• N/A

Budget History							
06/2016– FY 2016 (past)		FY 2017 (current)		FY 2017 – 3/2017 (planned)			
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share		
\$21,000	N/A	\$132,200	N/A	17,800	N/A		

Next Steps and Future Plans

- Complete final report supporting Phase I tasks and objectives
- Secure funding for prototype development and test
- Transition to market with commercial partner

