# **High-Efficiency Low-GWP Compressor**

#### 2017 Building Technologies Office Peer Review





Dr. Frederick J. Cogswell cogswefj@utrc.utc.com United Technologies Research Center

# **Project Summary**

## Timeline:

Start date: September, 2015

Planned end date: August, 2017

<u>Key Milestones</u>

 ✓ Phase1: Design complete for Go/No-go review. Metrics: 5TR capacity; 76% η<sub>compression,</sub> (Aug. 2016)

 Phase 2: Prototype testing and data analysis complete; 5TR capacity; 73% η<sub>flange-to-flange</sub>; 2.1 primary COP (Aug. 2017)

### Budget:

Total Project \$ to Date: (through Jan 2017)

- DOE: \$702,472
- Cost Share: \$301,059

### Total Project \$:

- DOE: \$974,054
- Cost Share: \$417,452

## Project Outcome:

United Technologies Research Center will demonstrate a high efficiency compressor design that is critical to enabling low direct-GWP high-efficiency small-commercial rooftop systems

Two compressor prototypes designed, fabricated and tested for a 5 TR rooftop advancing the TRL from 2 to 5.



#### **Problem Statement**:

- Current small commercial building HVAC systems use R410A with GWP=2088\*.
- Potential regulations and market drivers are pushing the HVAC&R industry to lower direct GWP and higher efficiency systems (indirect GWP).
- New low-GWP refrigerants require new approaches for compressor and system design in order to achieve high efficiency and safe/reliable operation.

#### Target Market and Audience:

- Mid-term light commercial rooftop cooling (3 to 20TR)
- Long-term Residential systems (1.5 to 5 TR)

#### Impact of Project:

- 30% primary annual energy savings and with low GWP enabled through:
  - 2 prototype compressors advancing TRL from 2 to 5 ( $\eta_{compression, total} \ge 73\%^{**}$ )
  - 5 TR rooftop design (< 25\$/kbtu; SEER > 20)
  - Potential plan for system demonstration (2019); field trial (2021)
- \* IPCC AR4 (2007)

\*\* Drive and compression.



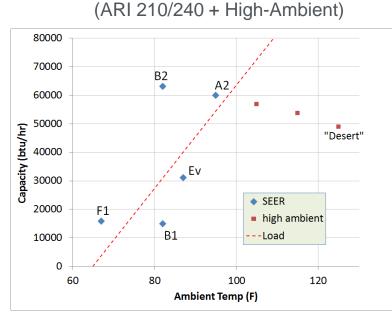
## Approach

### Approach:

- Leverage proprietary UTC HVAC and aerospace compressor design experience & tools.
- Carrier proprietary software to design rooftop system
- Maximize optimal seasonal efficiency (SEER) through modeling
- Use Carrier supply chain to determine cost impact of new components.
- Demonstrate compressor performance on calorimeter over required operating envelope. Two prototype iterations.

Key Issues:

• Maximizing compressor efficiency over a wide range of operating conditions including low-capacity for SEER rating. Minimize system cost.


### **Distinctive Characteristics**:

Combination of novel compression with low GWP refrigerant, high efficiency and system-level design optimization that is scalable for residential and light commercial HVAC systems



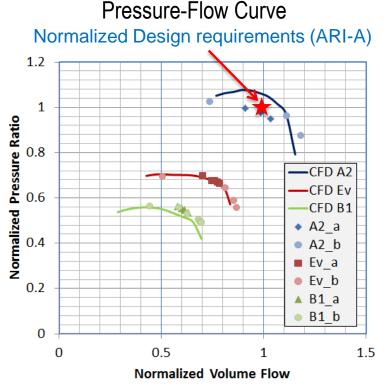
### Accomplishments:

- Phase 1 approval secured (Aug. 2016) based on compressor design & analysis
- Prototype 1 compressor testing metrics met (Jan. 2017)
- System analysis show >20SEER achievable and cost premium <\$25/1000btuh

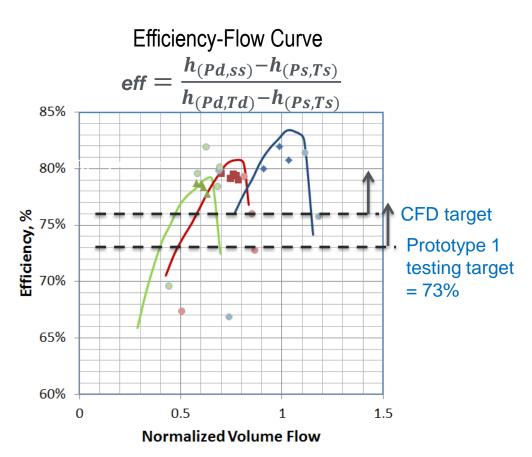


Capacity Requirements

**SEER** analysis conditions




Compressor Calorimeter Test Rig (Phase 1 approved)



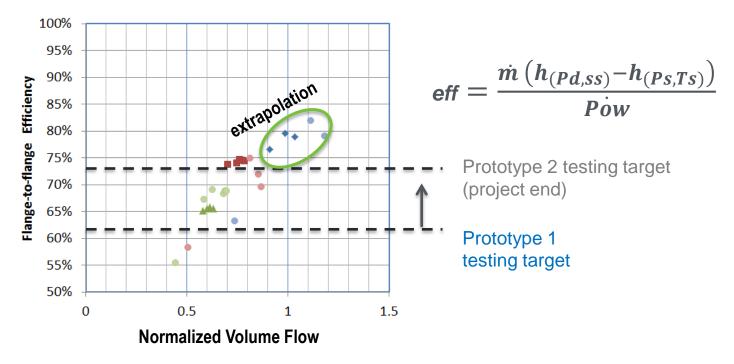

Energy Efficiency & Renewable Energy

• Prototype 1 testing metrics met (aero-performance, compression flow and eff.)



- Required flow and pressure rise achieved for design point (ARI-A)
- Lower speed for off-design (SEER Ev and B1), achieve predicted pressure-flow curves.

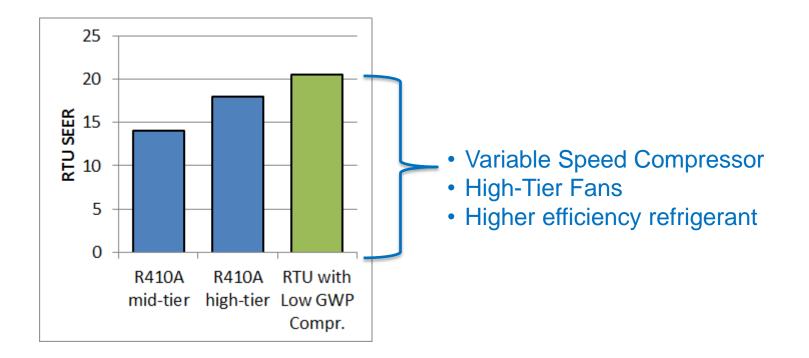



• Exceed required compression efficiency at all required conditions

(lines: CFD predictions; points: data)



Energy Efficiency & Renewable Energy


- Prototype 1 testing metrics met: flange-to-flange efficiency including motor.
- Currently running smoothly, >50hrs of operation



• Flange-to-flange exceeds Prototype 1 testing target at all required conditions



- SEER analysis shows >20SEER possible
  - Heat Exchanger and RTU system optimization study completed.





#### Market Impact:

The UTRC team is heavily engaged with the Commercial North American HVAC division of Carrier Corporation. This engagement ensures that metrics are met during development to accelerate future transition. Carrier Corporation proprietary tools and other standard work are being used throughout the execution of the project which helps transition the developed system.

#### Awards/Recognition: none.

#### Lessons Learned:

Maximize extension of compressor envelope operability Need to further optimize design (compression, motor etc.) to meet all compressor power metrics for phase 2



### **Project Integration**:

- Carrier Corporation is the commercialization path for HVAC technologies and concepts developed at UTRC.
- Carrier is the world's largest manufacturer and distributor of HVAC&R equipment and has a long history of developing successfully commercialized products.
- UTRC project team is closely engaged with product and engineering teams to ensure metrics are met during conceptualization and testing phases
- Carrier is providing partial cost share for this project and significant inkind contribution

Partners, Subcontractors, and Collaborators: None.

**Communications**: Presented at UTC CTO and CEO reviews



### **Next Steps and Future Plans**

#### **Next Steps and Future Plans**:

- Prototype 2 Design, modifications suggested from Prototype 1 data.
  - Motor, compression and test rig
- Plan for system and field demonstrations
- Revisit value proposition
- Support Carrier evaluation of compressor and system



# **REFERENCE SLIDES**



Energy Efficiency & Renewable Energy Project Budget: \$1,391.5K
Variances: none
Cost to Date: \$1,002.5K
Additional Funding: Cost Share 25% UTRC, 5% Carrier.

| Budget History                    |            |           |               |                                         |            |  |  |  |  |  |  |
|-----------------------------------|------------|-----------|---------------|-----------------------------------------|------------|--|--|--|--|--|--|
| Sept. 4, 2015 – FY 2016<br>(past) |            |           | 2017<br>rent) | FY 2018<br>(NA, to be completed FY2017) |            |  |  |  |  |  |  |
| DOE                               | Cost-share | DOE       | Cost-share    | DOE                                     | Cost-share |  |  |  |  |  |  |
| \$537,284                         | \$230,265  | \$165,187 | \$70,795      | 0                                       | 0          |  |  |  |  |  |  |



### **Project Plan and Schedule**

| Project Schedule                               |              |                                            | 1 I          |              |              |              |              |              |              |  |
|------------------------------------------------|--------------|--------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--|
| Project Start: September 2015                  |              | Completed Work                             |              |              |              |              |              |              |              |  |
| Projected End: August 2017                     |              | Active Task (in progress work)             |              |              |              |              |              |              |              |  |
|                                                | •            | Milestone/Deliverable (Originally Planned) |              |              |              |              |              |              |              |  |
|                                                |              | Milestone/Deliverable (Actual)             |              |              |              |              |              |              |              |  |
|                                                | FY2015       | FY2016                                     |              |              | FY2017       |              |              |              |              |  |
| Task                                           | Q4 (Jul-Sep) | Q1 (Oct-Dec)                               | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) |  |
| Past Work                                      |              |                                            |              |              |              |              |              |              |              |  |
| Q1 Milestone: Operating conditions defined     |              |                                            |              |              |              |              |              |              |              |  |
| Q2 Milestone: Downselection of Heat Exchangers |              | <                                          | $\diamond$   |              |              |              |              |              |              |  |
| Q3 Milestone: Drive system selected            |              |                                            |              |              |              |              |              |              |              |  |
| Q3 Milestone: Compressor design complete       |              |                                            |              |              |              |              |              |              |              |  |
| Q4 Milestone: Compressor drawings completed    |              |                                            |              |              |              |              |              |              |              |  |
| Q4 Milestone: Calorimeter commissioned         |              |                                            |              |              |              |              |              |              |              |  |
| Go/No-Go Design Review                         |              |                                            |              |              | •            |              |              |              |              |  |
| Current/Future Work                            |              |                                            |              |              |              |              |              |              |              |  |
| Q5 Milestone: First Prototype Build Complete   |              |                                            |              |              |              |              |              |              |              |  |
| Q6 Milestone: Prototype 1 testing complete     |              |                                            |              |              |              |              | $\diamond$   |              |              |  |
| Q8 Milestone: Prototype 2 testing complete     |              |                                            |              |              |              |              |              |              |              |  |
| Q8 Milestone: Final Cost; T2M plan             |              |                                            |              |              |              |              |              |              |              |  |