Water Power Technologies Office Peer Review Marine and Hydrokinetics Program

Energy Efficiency & Renewable Energy

Reduction of System Cost Characteristics through Innovative Solutions to Installation, Operations, and Maintenance

Ken Rhinefrank

Columbia Power Technologies, Inc. krhinefrank@columbiapwr.com 541.760.1833 February 2017

Reduction of System Cost Characteristics through Innovative Solutions to Installation, Operations, and Maintenance

The Challenge:

Identify practical opportunities through innovative design and operational strategies to reduce the cost of wave energy converter (WEC) installation, operations, maintenance and recovery

Partners:

U.S. Navy Ershigs Sea Engineering RG Consulting Siemens DNV GL

Program Strategic Priorities

Technology Maturity

Test and demonstrate prototypes

Develop cost effective approaches for installation, grid integration, operations and maintenance

 Conduct R&D for Innovative MHK components

- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

Deployment Barriers

- Identify potential improvements to regulatory processes and requirements
- Support research focused on retiring or mitigating environmental risks and reducing costs
- Build awareness of MHK technologies
- Ensure MHK interests are considered in coastal and marine planning processes
- Evaluate deployment infrastructure needs and possible approaches to bridge gaps

Market Development

- Support project demonstrations to reduce risk and build investor confidence
- Assess and communicate potential MHK market opportunities, including off-grid and non-electric
- Inform incentives and policy measures
- Develop, maintain and communicate our national strategy
- Support development of standards
- Expand MHK technical and research community

Crosscutting Approaches

- Enable access to testing facilities that help accelerate the pace of technology development
- Improve resource characterization to optimize technologies, reduce deployment risks and identify promising markets
- Exchange of data information and expertise

Project Strategic Alignment

Safe and Cost-Efficient Installation, Operations and Maintenance (IO&M)

Technology Maturity

Test and demonstrate prototypes

Develop cost effective approaches for installation, grid integration, operations and maintenance

Conduct R&D for Innovative MHK components

- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

Design/Process Improvement	CapEx	ОрЕх	Availability	System Life
Serviceable seals	-65%	-90%	2%	0%
Simplified ascent & descent ballasting	0%	-50%	1%	0%
Hard ballast replacement	-80%	-25%	1%	0%
Mooring & umbilical modularity	10%	-50%	1%	0%
Transit ballasting optimization	-10%	-60%	2%	0%
PTO "lockout"	10%	-15%	5%	10%
Improved shipyard handling (primarily mass reduction)	-25%	-30%	0%	0%
Improved deployment logistics	0%	-20%	1%	0%
Optimized IO&M cost and strategy	-5%	-30%	1%	5%
Reduced shipping / transit costs*	TBD	TBD	TBD	TBD

Project Impact:

- Advances commercial readiness for CPower
- Supports full-scale open-ocean WEC test
- Delivers industry-relevant practical subsystem and operational cost reductions

Technical Approach

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

- Study to establish confidence in the impact of the identified WEC design and IO&M process improvements
 - Capital cost
 - Operating cost and complexity
 - Risk
- Utilize experienced marine operations and component suppliers partners
- Demonstrate design and process improvements in 12month open-water deployment

Accomplishments and Progress

Energy Efficiency & Renewable Energy

- Project initiated in May 2016
- Initial Risk Register compliance check and update complete
- Baseline IO&M costs established
- Initiated IO&M design and process improvement investigation

- Budget Period 1: 05/06/16 07/05/17
- Delay in initiation of design and process investigation due to resource constraints
- Project down select in FY 2017
- Full project = 40 months
- Budget Period 2 & 3 plans
 - Initiate certification activities
 - Integrate design and process improvements
 - Finalize permitting activities
 - Build, assemble, and commission StingRAY WEC
 - 12-month deployment at the Wave Energy Test Site (WETS) in 2018
 - Decommissioning

Budget History								
FY	2014	FY2015		FY2016				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
				\$59K	\$41K			

- 13% of BP1 budget expended to date. Total Budget Period 1 (BP1) DOE funding \$400K, Columbia Power cost share \$184K
- No other funding sources in BP1
- Total project budget (BP1-BP3) pending go/no-go decisions = \$13.2M
 - U.S. Navy funding \$3M
 - DOE funding \$4.1M

Energy Efficiency & Renewable Energy

Partners, Subcontractors, and Collaborators: U.S. Navy – Test berth operator RG Consulting – Marine operations consultant Ershigs – Hull design and manufacture Siemens – Electric plant manufacture Sea Engineering – WETS Marine operations DNV GL – WEC Certification

Communications and Technology Transfer:

- International Marine Renewable Energy Conference 2016
- CPower-NREL Open House at National Wind Technology Center – November 2016
- Project data uploaded to the MHK-Data Repository and final report made publicly available

FY17/Current research:

- Complete desktop study
- Integrate appropriate design and process improvements
- Build and test full-scale WEC in open water
- Demonstrate cost- and risk-reduction improvements
- Achieve Technology Readiness Level (TRL) 7/8

Proposed future research:

Open-water demonstration in fully exposed resource to achieve TRL 8/9