Demonstration of the Ocean Energy (OE) Buoy at U.S. Navy’s Wave Energy Test Site

Tony Lewis - CTO
Ocean Energy USA LLC +353 (0) 21 481 6779
tl@oceanenergy.ie
Project Overview

Scope:
- Demonstrate the Ocean Energy (OE) Buoy technology at near-full-scale at an open sea test site

The Challenge:
- Reliability of near-full-scale wave energy converters (WECs) needs to be demonstrated
- Near-full-scale ocean test data is needed to validate performance predictions, reliability, and levelized cost of energy (LCOE) estimates

Partners:
- **Ocean Energy USA**: Business and Technical Project Management
- **Re Vision Consulting**: Real Time Wave Measurement System
- **Tritec Marine USA**: Structural and Mooring System Design
- **HydroGroup**: Umbilical System Design
- **Dresser Rand (Siemens)**: HydroAir Turbine System Integration
- **U.S. Navy**: Wave Energy Test Site (WETS) Operator
- **RG Consulting**: Marine Operations
- **Black & Veatch**: Third Party Validation and Technical Support
Technology Maturity
- **Test and demonstrate prototypes**
- Develop cost effective approaches for installation, grid integration, operations and maintenance
- Conduct R&D for innovative MHK components
- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

Deployment Barriers
- Identify potential improvements to regulatory processes and requirements
- Support research focused on retiring or mitigating environmental risks and reducing costs
- Build awareness of MHK technologies
- Ensure MHK interests are considered in coastal and marine planning processes
- Evaluate deployment infrastructure needs and possible approaches to bridge gaps

Market Development
- Support project demonstrations to reduce risk and build investor confidence
- Assess and communicate potential MHK market opportunities, including off-grid and non-electric
- Inform incentives and policy measures
- Develop, maintain and communicate our national strategy
- Support development of standards
- Expand MHK technical and research community

Crosscutting Approaches
- Enable access to testing facilities that help accelerate the pace of technology development
- Improve resource characterization to optimize technologies, reduce deployment risks and identify promising markets
- Exchange of data information and expertise
Increase MHK deployment in opportune markets

Technology Maturity

• Test and demonstrate prototypes

• Develop cost-effective approaches for installation, grid integration, operations and maintenance

• Conduct R&D for Innovative MHK components

• Develop tools to optimize device and array performance and reliability

• Develop and apply quantitative metrics to advance MHK technologies

The Impact

• Demonstrate the full-scale OE Buoy technology

• Rated capacity of 500kW

• Target average annual pneumatic performance of 131kW

• Target power take-off efficiency of 70%

• Large scale deployments of wave energy technology is possible in United States

• Grid connection of large-scale wave energy devices is possible in United States
Technical Approach

Detailed Design of System Components

- Design of large-scale wave energy structure completed using standard ship construction techniques
- Mooring system design completed to interface with WETS pre-installed system
- HydroAir turbine integration progressing—critical interface for both hull and turbine systems

Risk Reduction Strategies

- Use of recognized and competent contractors for large-scale system designs
- Third Party Validation carried out by independent entity to cross-check designs and validate approach
- Use of industry codes and standards throughout the design process
- Failure Modes, Effects and Criticality Analysis process adopted throughout design process to record key design risks and identify load cases
Technical Approach

Engagement with Component Suppliers and Supply Chain
- Engagement with multiple shipyards throughout U.S. mainland and Hawaii
- Development of relationships with key suppliers to marine and hydrokinetics (MHK) market
- Engagement of supply chain in planning of novel marine operations

Advancement of State of the Art in LCOE Projections
- Completed a full bottom-up review of the power performance projections for the OE Buoy technology
- Developed methods of managing uncertainties in the combination of datasets from model tests of varying Froude scales

Development of a Novel Launch and Recovery Strategy
- Completed scale model testing of novel launching and recovery strategy to monitor stability behavior
Accomplishments and Progress

- Detailed design process nearing completion
- Preferred fabricator identified and engagement continuing on construction of hull
- Marine operations planning progressing and preferred supplier engaged for ocean towing and launching method
- Integration of HydroAir turbine nearing completion
- Financial planning to deliver Budget Period (BP) 2 being completed
Project Plan & Schedule

- Original contract period: 8-1-15 through 2-1-19
- Go/No-Go decision point in FY16
- Proceed to BP2 in FY17
The initial project plan was modified to incorporate required changes as the project evolved. These changes related primarily to sub-contractor budgets. The overall budget is unaffected.

Additional cost share support provided by the Sustainable Energy Authority of Ireland
Partners, Subcontractors, and Collaborators:
- **Ocean Energy USA**: Business and Technical Project Management
- **Re Vision Consulting**: Real Time Wave Measurement System
- **Tritec Marine USA**: Structural and Mooring System Design
- **HydroGroup**: Umbilical System Design
- **Dresser Rand (Siemens)**: HydroAir Turbine System Integration
- **US Navy**: WETS Site Operator
- **RG Consulting**: Marine Operations
- **Black & Veatch**: Third Party Validation and Technical Support

Communications and Technology Transfer:
- Results will be presented at upcoming conference upon completion of project
- Many generic design-process, marine operations, and risk reduction strategies and related items will be transferrable to the wider WEC industry
Next Steps and Future Research

FY17/Current research: Initiate BP2 – Construction, System Integration, Deployment, and Operations

Proposed future research: Optimizing power performance through advanced control strategies