

Biofuels in Defense and Aviation

Zia Haq, Borka Kostova

U.S. Department of Energy Bioenergy Technologies Office

March 8, 2017

Fuels for Distillate and Jet Market

US Liquid Fuels and Products Market Size (billion gallons/year)

	2015	2050	Growth Rate 2015 – 2050 (%/year)
Gasoline	141	114	-0.7%
Diesel	61	64	0.3%
Liquefied Petroleum Gas ^[1]	39	54	1.0%
Other ^[2]	31	38	0.7%
Jet Fuel	24	39	1.4%
Residual fuel oil	4	6	0.3%
Total	300	315	

1. Includes ethane, natural gasoline, and refinery olefins.

2. Includes kerosene, petrochemical feedstocks, lubricants, waxes, asphalt, and others commodities. Source: Energy Information Administration, "Annual Energy Outlook 2017", Reference Case.

- Defense Facilitating commercial scale production capacity
- Aviation Testing and certification of alternative fuels
- Marine Meeting environmental regulations

DPA Initiative Accomplishments

Project	Location	Feedstock	Capacity (million gallons/year)
Fulcrum	McCarran, NV	Municipal solid waste	10
Emerald	Gulf Coast	Fats, oils, and greases	82
Red Rock	Lakeview, OR	Woody biomass	12

- Fuels are approved for use as jet fuel by ASTM at up to 50/50 blends.
- Fuels successfully demonstrated during Rim of the Pacific (RIMPAC) demonstration in 2012 for ships and planes.
- Fuels can be utilized in Navy's warfighting platforms with no degradation to performance or mission.

Additional Supporting Activities

- As fuels become available Navy will make advanced drop-in biofuels a regular part of its bulk fuel procurement.
- USDA has awarded Fulcrum a \$105 million Biorefinery Assistance Program loan guarantee through Bank of America for construction of their facility. The total project cost is \$266 million. 147,000 tons/year of MSW will be gasified to synthesis gas followed by Fischer-Tropsch conversion to jet fuel.
- Cathay Pacific Airways has become an investor in Fulcrum and has negotiated a 10 year supply agreement for jet fuel.
- Southwest Airlines has signed a fuel purchase agreement with Red Rock for 3 million gallons/year of jet fuel. Blended product will be used at Southwest's Bay Area operations. 140,000 dry tons/year of woody biomass feedstock will be converted into renewable jet, diesel, and naphtha.

Criteria for Alternative Fuels in Aviation

- Engine re-light at altitude, polar climate, in winter transport properties of alternative fuels and/or blends have to be within acceptable limits (viscosity, freeze point, fluid flow at low temperatures)
- Flame stability compounds in alternative fuels should not adversely impact flame stability
- Energy content should be as high as fossil derived jet fuel or higher
- Emissions
 - Aromatics too much can cause soot, too little can cause seal swell problems which becomes a maintenance issue
 - Greenhouse gas emissions should be lower than fossil derived jet fuel on a life cycle basis

ASTM Approved Pathways for Alternative Jet Fuels

- Biomass gasification, synthesis gas, Fischer-Tropsch conversion to produce synthetic paraffinic kerosene (FT-SPK) 50% maximum blend (Fulcrum, Red Rock)
- Fats/oils/greases, oil seed crops, other lipids, Hydro-treated esters and fatty acids (HEFA-SPK) processed into jet fuel 50% maximum blend, (AltAir, Paramount, California)
- Biochemical conversion of sugars to iso-paraffins (HFS-SIP) 10% maximum blend (Amyris, farnasene, Brazil)
- Biomass gasification synthesis gas, Fischer-Tropsch conversion with aromatic alkylation (FT-SPK/A) – 50% maximum blend
- Biochemical conversion of sugars to iso-butanol followed by oligomerization to jet components, alcohol-to-jet (ATJ-SPK) – 30% maximum blend (Gevo, Luverne, MN)

Status of ASTM Certification of Alternative Jet Fuel

ASTM Certifications in process

- Catalytic hydro-thermolysis of lipids to jet fuel ARA
- Alcohol to jet synthetic paraffinic kerosene (bio/thermochemical butanol or ethanol Lanzatech, Byogy
- Synthetic kerosene/synthetic aromatic kerosene catalytic conversion of sugars and aqueous phase reforming to jet fuel – Shell/Virent
- Hydro-treated esters and fatty acids+ (HEFA)+ wider cut HEFA with renewable diesel Boeing
- Pyrolysis from lignocellulosic feedstocks UOP, Kior
- Fischer-Tropsch synthetic kerosene with aromatics Sasol, Rentech
- Co-processing multiple approaches Chevron, BP, Phillips 66
- Pathways in future that could enter pipeline
 - Vertimass catalytic conversion of alcohols
 - Global Bioenergies biochemical production of isobutene
 - Algenol hydrothermal liquefaction of algae

Latest Activities

- **AltAir -** United Airlines has begun using commercial scale alternative jet fuel volumes for regularly scheduled flights from LAX. Purchase 15 mgy from AltAir Paramount over 3 years.
- **Gevo** Lufthansa agreement for alcohol-to-jet from Luverne, MN facility. 8 mgy from Gevo or up to 40 mgy over 5 years.
- **Fulcrum** Strategic partnership between United, Cathay Pacific, BP Ventures, Air BP businesses to invest \$30 million. 10 year off-take for 50 mgy from plants in North America.
- **Red Rock** 3 million gallons/year of renewable jet fuel for 3 years for FedEx Express. Southwest purchase agreement from Lakeview, Oregon facility to convert 140,000 dry tons/year of woody biomass into 15 million gallons/year of renewable jet, diesel, and naphtha.
- **Byogy** AVAPCO biomass-to-ethanol with Byogy alcohol-to-jet process to produce jet fuel from woody biomass. DOE award of \$3.7 million to develop demonstration scale biorefinery.
- **UOP** Petrixo Oil and Gas to produce renewable jet and diesel at new refinery in Fujairah, UAE to convert 500,000 metric tonnes of renewable feedstocks into 1 million tons/year of biofuels.
- **KLM and SkyNRG** for 3 year agreement enabling LAX flights
- Neste, KLM, SAS, Lufthansa, SkyNRG Nordic, and Oslo Airport

The Issue of Scale

- From IAH there are at least IAH 7 non-stop flights/day to Europe
- Average flight time from IAH to Europe about 10.5 hour, additional 2 hours of fuel requirement for reserve and alternate destination requirements for total 12.5 hours of fuel
- Fuel burn 3,000 gallons/hour for wide-body aircraft
- Assume 20/80 biofuel/fossil ratio
- Fuel burn calculation suggests 19 million gallons/year facility could supply IAH for all 7 flights to Europe

Gas-to-Liquids Micro-Channel Technology

- First distributed scale Fischer-Tropsch product commercially produced at Envia landfill gas and waste biomass GTL plant in East Oak landfill, Oklahoma City, Oklahoma
- Team: Waste Management, NRG, Velocys, Ventech, Envia to convert gas to paraffin wax, diesel, and naphtha at distributed scale
- Scale: 1,000 barrel/day (15 million gallons/year) compared to conventional Fischer-Tropsch scale of 30,000 barrels/day (460 million gallons/year) or more
- Price: with natural gas at \$3.89/million Btu, Velocys can produce diesel at \$1.57/gallon (no RIN or LCFS credits)
- Conversion efficiency: 57 76 gallons/ton waste biomass
- 15.3 million gallons/year from 200,000 tons of biomass

Well-to-Wake GHG Emissions of Alternative Jet Fuels

- LCA functional unit gCO2e/MJ of fuel consumption (from GREET2016)
- LUC-related emissions are not included
- Other key factors: Technology readiness level (TRL), production costs, resource availability and fuel types Source: simulation results with GREET2016 by ANL

Ethanol-to-jet (ETJ) and Sugar-to-Jet (STJ) GHG Emissions

- Corn-ethanol-based ETJ reduces GHG emissions by 23%, cellulosic by 71% compared to petroleum jet
- Stover-based STJ reduces GHG emissions by 27 71% depending on conversion process and hydrogen source
- Note: LUC-related emissions are not included; ETJ-corn could have LUC GHG of 8 grams/MJ; stover pathways do not cause LUC.

12

Bio-aviation Fuel Pathways by Feedstock

Co-products in the Bio-Aviation Fuel Pathways

