

California Wave Energy Test Center (CalWave)

Dr. Sam Blakeslee

Cali Poly San Luis Obispo – Institute for Advanced Technology and Public Policy sblakesl@calpoly.edu + 805.756.1694 February 2017

Project Overview

California Wave Energy Test Center (CalWave)

Challenges, Barriers, and Knowledge Gaps:

- Provide affordable access to world-class test facility for emerging wave energy components and systems
- Reduce technical and financial risks
- Reduce the cost of testing for individual developers and the industry as a whole
- Reduce the time-to-market of commercially-ready systems
- Testing infrastructure "systems integration" to accommodate a wide variety of emerging wave energy converter (WEC) technologies
- Permitting requirements/pathway for ocean marine and hydrokinetics (MHK) facility per federal and California standards to accommodate a wide variety of emerging WEC technologies

Project Overview

Partners:

- Cal Poly San Luis Obispo/IATPP Prime/Academic
- Kearns & West Stakeholder Facilitation
- Leidos Systems Engineering & Integration
- CH2M Permitting
- Protean Wave Energy LLC Project Management
- Omega Engineers Electrical Engineering
- Virginia Tech Technical Review & Academic Partner
- University of California, San Diego (UCSD)- Scripps Institute of Oceanography –
 Wave Regime Data/Expertise
- UK Wave Hub Existing Facility Benchmarking/Consultation
- Electric Power Research Institute Technical Review/Consultation
- Sandia National Laboratories Technical Review/Consultation
- National Renewable Energy Laboratories Technical Review/Consultation
- Pacific Gas & Electric Company Grid Integration and Other Technical Contributions
- California Natural Resources Agency Regulatory Agency Engagement
- Columbia Power Technologies WEC Consultation/Collaboration
- University of California (UC), Davis Technical Collaboration
- William Lyte (Consultant Phase I)

Technology Maturity

- Test and demonstrate prototypes
- Develop cost effective approaches for installation, grid integration, operations and maintenance
- Conduct R&D for innovative MHK systems & components
- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

Deployment Barriers

- Identify potential improvements to regulatory processes and requirements
- Support research focused on retiring or mitigating environmental risks and reducing costs
- Build awareness of MHK technologies
- Ensure MHK interests are considered in coastal and marine planning processes
- Evaluate deployment infrastructure needs and possible approaches to bridge gaps

Market Development

- Support project demonstrations to reduce risk and build investor confidence
- Assess and communicate potential MHK market opportunities, including off-grid and non-electric
- Inform incentives and policy measures
- Develop, maintain and communicate our national strategy
- Support development of standards
- Expand MHK technical and research community

Crosscutting Approaches

- Enable access to testing facilities that help accelerate the pace of technology development
- Improve resource characterization to optimize technologies, reduce deployment risks and identify promising markets
- Exchange of data information and expertise

Project Strategic Alignment

Technology Maturity

- Test and demonstrate prototypes
- Develop cost effective approaches for installation, grid integration, operations and maintenance
- Conduct R&D for innovative MHK systems & components
- Develop tools to optimize device and array performance and reliability
- Develop and apply quantitative metrics to advance MHK technologies

- 12 -15 cents/kWh—levelized cost of energy (LCOE) for Technology Readiness Level (TRL)
 9+
- Systems design and integration of a multi-berth testing facility that can accommodate multiple technologies (TRL 7-9)
- Would provide WEC developers an affordable facility for open-water, grid connected testing
 - Power Purchase Agreement (PPA) opportunity/offset costs (potential of 12 cents/kWH)
- An MHK testing facility that greatly accelerates commercialization of grid-scale WEC technologies

Deployment Barriers

- Identify potential improvements to regulatory processes and requirements
- Support recearch focused on retiring or mitigating environmental risks and reducing costs
- Build awareness of MHK technologies
- Ensure MHK interests are considered in coastal and marine planning processes
- Evaluate deployment infrastructure needs and possible approaches to bridge gaps

- A permitted MHK testing facility in California
- Robust engagement with stakeholders as well as California and federal regulatory agencies
- California's high standards will inform and improve the permitting process everywhere else
- Will provide environmental monitoring and research opportunities for emerging WEC technologies
- An MHK facility that helps to accelerate permitting for future MHK facilities nationally and globally

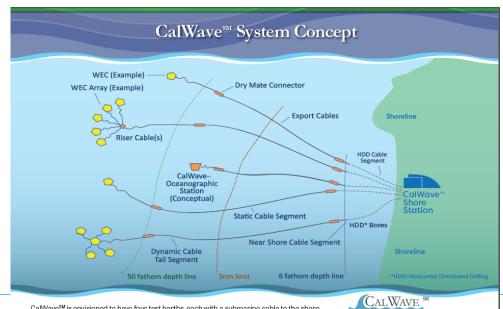
Market Development

- Support project demonstrations to reduce risk and build investor confidence
- Assess and communicate potential MHK market opportunities, including off grid and non-electric
- Inform incentives and policy measures
- Develop, maintain and communicate our national strategy
- Support development of standards
- Expand MHK technical and research community

- Understanding current and future LCOE of WEC technologies
- Understand environmental impact of WEC's and permitting requirements
- If permitted, this facility will trail blaze MHK permitting requirements in high standard environment (California)
- Testing of TRL 7-9 WEC technologies at grid integrated facility will provide LCOE data to inform incentive requirements
- An MHK testing facility that illuminates permitting pathways for emerging WEC technologies and provides LCOE data to inform future policy strategies

Crosscutting Approaches

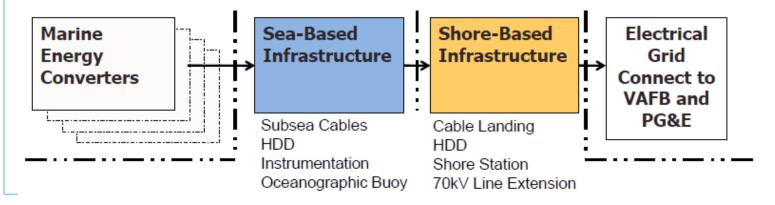
- Enable access to testing facilities that help accelerate the pace of technology development
- Improve resource characterization to optimize technologies, reduce deployment risks and identify promising markets
- Exchange of data information and expertise


- Robust engagement with national laboratories, academic institutions, regulatory agencies, stakeholders, and industry
- Aid in the establishment, advancement, and validation of international technical standards for WEC technology
- National test facility would provide a nexus/hub of MHK expertise and a centralized location for WEC technology testing, validation, and development as well as local/regional development hub for MHK industry
- An MHK testing facility that in the short term will establish a knowledge center of MHK expertise, and in the long term establish a business corridor

Technical Approach

Technical Approach & Methods

- Project Management Practices
- Systems Engineering Approach
- Benchmarking Existing Facilities
- Regulatory Agency Engagement
- Permitting Envelopes
- Stakeholder Outreach


CalWaveSM is envisioned to have four test berths, each with a submarine cable to the shore station. Each test berth hosting Wave Energy Converter (WEC) Arrays will operate independently.

Technical Approach

Unique Aspects of Project

- Bring Your Own Anchoring and Mooring
- Dynamic Riser Cables and Dry-mate Connectors
- On-shore Power Conditioning Option
- PPA Opportunity for WEC Developers and Energy Security for U.S.
 Department of Defense (DOD) Installation
- Potential for Varying Energy and Depths Between Berths

Accomplishments and Progress

2014 Technical Accomplishments

 Develop and Use Criteria to Rank and Finalize Choice for Candidate Ocean Test Sites

2015 Technical Accomplishments

- Shore-Side Support Infrastructure Assessment
- Utility Grid Interconnection Assessment
- Environmental Constraints and Progress on Permitting
- Permitting and Stakeholder Consultation
- Top-Level Requirement and Site Selection Criteria
- Develop Prelim. Design Drawings
- Develop Estimates of Construction Quantity and Costs
- Develop Operations, Maintenance, and Testing Cost Estimates

Accomplishments and Progress

2016 Technical Accomplishments

- Completion of Conceptual Design
- Facility Benchmarking with Partners (UK Wavehub and Others)
- Design/Engineering Site Visits
- Establishment of Stakeholder Advisory Group
- Establishment of Marine Industry Technical Advisory Group
- Three Regulatory Agency Meetings Held
- One Stakeholder Meeting Held
- Completion of Draft Preliminary Design

Project Plan & Schedule

- Phase I Start Date: 6/1/14
- Phase I End Date: 6/30/15 (plus 3 mo. no cost extension)
- Phase II Start Date: 2/19/16
- Projected Completion Date: 2/28/17
- The Phase I Final Technical Report submission was delayed due to delayed report collation/contribution synthesis
- Phase II efforts are currently on track
- FY14 Go/No-Go
 - Siting down selection to Vandenburg Air Force Base
- FY15 Go/No-Go
 - Final technical report review by DOE and Phase II funding decision
- FY16 Go/No-Go
 - N/A

Budget History					
FY2014		FY2015		FY2016	
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share
\$151.177k	\$95.931k	\$383.356k	\$189.543k	\$568.858k	\$137.538k

- Phase I funding was not fully expended as some cost share partners and project partners did not expend efforts as quickly and robustly as predicted
- Phase I Funding Spent (incl. cost share): 79%
- Phase II Funding Spent up to 6Q (incl. cost share):
 36.5%
- **Note that Phase II efforts increase in 7Q, 8Q, and 9Q by design

Research Integration & Collaboration

Partners, Subcontractors, and Collaborators:

Phase II

Cal Poly – San Luis Obispo, Kearns & West, Leidos, CH2M, Protean Wave Energy LLC, Omega Engineers, Virginia Tech, UCSD - Scripps Institute of Oceanography, UK Wave Hub, Electric Power Research Institute, Sandia National Laboratories, National Renewable Energy Laboratories, Pacific Gas & Electric Company, California Natural Resources Agency, Columbia Power Technologies, UC Davis, William Lyte (Consultant)

Communications and Technology Transfer:

- (2015) Final Report of the Feasibility Study for the California Wave Energy Test Center (CalWave) Final Report
- Leidos Rick Williams presented at the Hydrovision International Conference on Wednesday, July 27, 2016 in Session 1C: Electrical Issues: The Heart of the Matter – Electrical Infrastructure Planning for the CalWave Wave Energy Test Center
- CH2M Doug Davy presented at the California Energy Commission (CEC) Offshore Renewable Energy Planning Workshop on the need for a comprehensive marine spatial planning process in advance of marine renewable energy development
- Bill Toman Protean Wave Energy LLC presented at the CEC Offshore Renewable Energy Planning Workshop on the status update of the CalWave project
- CalWave Phase II Final Technical Report (In progress)
- CalWave Draft Preliminary Application Document (In progress)

Next Steps and Future Research

FY17/Current research:

Remaining Barriers

- Final project description to inform permitting application
- Additional surveys as required to fulfill permitting requirements
- Bureau of Ocean Energy Management research lease application
- Submission of Federal Energy Regulatory Commission and state permit applications

1Q of FY17

- Completion of Preliminary Design
- Final Regulatory Agency Consultations/Presentations
- Draft PAD (Preliminary Application Document)
- Construction Cost Estimate Complete
- Final Technical Report in Draft PAD format

Proposed future research:

Phase III – Permitting and Construction Phase Work