

Quadrennial Technology Review 2015

Appendices

List of Technology Assessments

List of Supplemental Information

Office of the Under Secretary for Science and Energy Executive Steering Committee and Co-Champions

Authors, Contributors, and Reviewers

Glossary

Acronyms

List of Figures

List of Tables

Technology Assessments

Chapter 3

Cyber and Physical Security Designs, Architectures, and Concepts Electric Energy Storage Flexible and Distributed Energy Resources Measurements, Communications, and Control Transmission and Distribution Components

Chapter 4

Advanced Plant Technologies Carbon Dioxide Capture and Storage Value-Added Options Biopower Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Carbon Dioxide Capture for Natural Gas and Industrial Applications Crosscutting Technologies in Carbon Dioxide Capture and Storage **Fast-spectrum Reactors Geothermal Power High Temperature Reactors** Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power

Chapter 6

Additive Manufacturing Advanced Materials Manufacturing Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Combined Heat and Power Systems **Composite Materials Critical Materials** Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating **Process Intensification** Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for **Power Electronics**

Chapter 7

Bioenergy Conversion Natural Gas Delivery Infrastructure Biomass Feedstocks and Logistics Gas Hydrates Research and Development Hydrogen Production and Delivery Offshore Safety and Spill Reduction Unconventional Oil and Gas

Chapter 8

Connected and Automated Vehicles Fuel Cell Electric Vehicles Internal Combustion Engines Lightweight Automotive Materials Plug-in Electric Vehicles

[See online version.]

Supplemental Information

Chapter 1

Additional Information on Energy Challenges Agency Information Representative DOE Applied Energy Program Workshops

Chapter 5

Building Energy Technology Roadmaps Building Technologies Office Potential Energy Savings Analysis

Chapter 6

Competitiveness Case Studies Public-Private Consortia and Technology Transition Case Studies

Chapter 7

Oil and Gas Technologies Subsurface Science and Technology

Chapter 9

A Comparison of Research Center Funding Modalities High-Performance Computing Capabilities and Allocations User Facility Statistics Examples and Case Studies

Chapter 10

Additional Information on Concepts in Integrated Analysis

[See online version.]

Office of the Under Secretary for Science and Energy Executive Steering Committee and QTR Co-Champions

Any endeavor the size and scope of the QTR 2015 requires strong leadership and dedication of resources. The individuals listed below represent the senior leaders within DOE who provided the essential guidance and key resources which made this report possible.

Office of the Under Secretary for Science and Energy

Kimberly D. Rasar, Associate Deputy Under Secretary

Office of Electricity Delivery and Reliability

Henry (Hank) Kenchington, Deputy Assistant Secretary, for Advanced Grid Integration David Ortiz, Deputy Assistant Secretary for Energy Infrastructure Modeling and Analysis

Office of Energy Efficiency and Renewable Energy

Steve Chalk, Deputy Assistant Secretary for Operations Doug Hollett, Deputy Assistant Secretary for Renewable Power Mark A. Johnson, Director, Advanced Manufacturing Office Roland Risser, Director, Building Technologies Office Reuben Sarkar, Deputy Assistant Secretary for Transportation

Office of Fossil Energy

Julio Friedmann, Principal Deputy Assistant Secretary David Mohler, Deputy Assistant Secretary, Office of Clean Coal and Carbon Management Darren Mollot, Associate Deputy Assistant Secretary, Office of Clean Coal and Carbon Management

Office of Nuclear Energy

John E. Kelly, Deputy Assistant Secretary for Nuclear Reactor Technologies

Office of Indian Energy

Pilar Thomas, Former Acting Director, Office of Indian Energy Policy & Programs David Conrad, Deputy Director, Office of Indian Energy Policy and Programs

Office of Technology Transitions

Jetta Wong, Director and Department Technology Transfer Coordinator

Office of Science

Pat Dehmer, Acting Director of Science Steve Binkley, Associate Director of Advanced Scientific Computing Research Harriet Kung, Associate Director of Science for Basic Energy Sciences

Advanced Research Projects Agency - Energy

Ellen Williams, Director, Advanced Research Projects Agency - Energy

Office of the Chief Financial Officer

Christopher (Chris) Johns, Director of the Budget Office

Office of International Affairs

Robert (Bob) Marlay, Director, Office of International Science and Technology Collaboration

Authors

The QTR 2015 was executed by a core team responsible for all aspects of production including drafting the report, engaging stakeholders, managing the peer review process, and leading the technology assessments. In addition, they provided connectivity within the department ensuring a cogent and integrated view of the nation's broad energy RDD&D enterprise.

Sam Baldwin DOE **Gilbert Bindewald** DOE Austin Brown National Renewable Energy Laboratory Charles Chen Energetics Kerry Cheung DOE Corrie Clark Argonne National Laboratory Joe Cresko DOE Matt Crozat DOE Jarad Daniels DOE Jae Edmonds Pacific Northwest National Laboratory Paul Friley Brookhaven National Laboratorv Jeff Greenblatt Lawrence Berkeley National Laboratory Zia Haq DOE Kristen Honev DOE (AAAS Fellow) Marcos Huerta DOE

Ziga Ivanic Energetics William Joost DOE Fred Joseck DOE Akhlesh Kaushiva DOE Henry Kelly DOE Dan King DOE (AAAS Fellow) Adam Kinney DOE (AAAS Fellow) Michael Kuperberg DOE Alan Kwan DOE (AAAS Fellow) Alex Larzelere DOF Heather Liddell Energetics Steve Lindenberg DOE Michael Martin DOE (AAAS Fellow) Colin McMillan National Renewable Energy Laboratory Elena Melchert DOE Josh Mengers DOE

Eric Miller DOE James Miller Argonne National Laboratory George Muntean Pacific Northwest National Laboratory Tien Nguyen DOE Pat Phelan DOE Charles Russomanno DOE Ridah Sabouni Energetics Ann Satsangi DOE Andrew Schwartz DOE Dev Shenoy DOE A.J. Simon Lawrence Livermore National Laboratory Gurpreet Singh DOE **Emmanuel Taylor** DOE Jake Ward DOE **Bradley Williams** DOE

Contributors

In addition to the core team of lead authors, the report and technology assessments would not have been completed without numerous valuable contributions. Essential material was provided and/or produced by the individuals listed below. The QTR 2015 is indebted to them for their critical contributions.

Omar Abdelaziz *DOE*

Mark Ackievicz DOE

Anant Agarwal DOE

David Anderson DOE

Todd Anderson DOE

Kristin Balder-Froid Lawrence Berkeley National Laboratory

Fredric Beck SRA International

Doug Blankenship Sandia National Laboratories

Richard Boardman Idaho National Laboratory

Dan Boff Mantech Corporation

Ray Boswell National Energy Technology Laboratory

Anthony Bouza DOE

Shannon Bragg-Sitton Idaho National Laboratory

Jay Braitsch DOE

Megan Brewster DOE

Lynn Brickett National Energy Technology Laboratory James Brodrick *DOE* Benjamin Brown *DOE* Douglas Burns

Idaho National Laboratory Lou Capitanio DOF

Alberta Carpenter National Renewable Energy Laboratory

Julie Carruthers

David Catarious

Jeff Chamberlain Argonne National Laboratory

Isaac Chan DOE

Jared Ciferno National Energy Technology Laboratory

Regis Conrad DOE

George Crabtree Argonne National Laboratory

Fred Crowson Energetics

Sujit Das Oak Ridge National Laboratory

Patrick Davis DOE Ravi Deo DOE Rick Diamond Lawrence Berkeley National Laboratory

Sara Dillich DOE

Kevin Doran

Amgad Elgowainy Argonne National Laboratory

Rick Elliott

Phillip Finck Idaho National Laboratory

Aaron Fisher Energetics

Jay Fitzgerald DOE (AAAS Fellow)

Erica Folio DOE

David Forrest

Christopher Freitas *DOE*

Benjamin Gaddy DOE (AAAS Fellow)

John Gangloff DOE

Nancy Garland

Chris Gearhart National Renewable Energy Laboratory

Gary Geernaert DOE

Jess C. Gehin Oak Ridge National Laboratory

Bob Gemmer DOE

Kristin Gerdes National Energy Technology Laboratory

Jehanne Gillo DOE

Patrick Glynn DOE

Mike Goff DOE

Jeffery Gonder National Renewable Energy Laboratory

Roland Gravel DOE

Diane Graziano Argonne National Laboratory

Joel Grimm *DOE*

Timothy Hallman

Dave Hardy DOE

Chioke Harris DOE

Eric Heim E Heim Consulting

George Hernandez Pacific Northwest National Laboratory

Robert Hill Argonne National Laboratory

Devin Hodge Argonne National Laboratory

Linda Horton DOE

Ken Howden DOE

David Howell DOE

Sara Hunt BCS, Inc Bob Hwang Sandia National Laboratories

Keith Jamison Energetics

Thomas Jenkins National Renewable Energy Laboratory

Robin Johnston Lawrence Berkeley National Laboratory

Robert Kaplar Sandia National Laboratories

Burton 'Mack' Kennedy Lawrence Berkeley National Laboratory

Chris King DOE

Alex King Ames Laboratory

Douglas Kothe Oak Ridge National Laboratory

Alison LaBonte

Sandy Landsberg

Karl Lang National Energy Technology Laboratory

Jared Langevin DOE

Peter Lee

Robie Lewis

John Litynski *DOE*

Henning Lohse-Busch Argonne National Laboratory

Roy Long National Energy Technology Laboratory

Seungwook Ma DOE

Jonathan Male DOE

Maggie Mann National Renewable Energy Laboratory George Maracas DOE

Robert Margolis National Renewable Energy Laboratory

Laura Marlino Oak Ridge National Laboratory

Blake Marshal DOE

Eric Masanet Northwestern University

Jack Mayernik DOE

Kathryn McCarthy Idaho National Laboratory

Mike McKittrick

Gail McLean DOE

Alan Meier Lawrence Berkeley National Laboratory

Marc Melaina National Renewable Energy Laboratory

David C. Miller National Energy Technology Laboratory

Subhashree Mishra DOE (AAAS Fellow)

Mark Morgan Pacific Northwest National Laboratory

Geoff Morrison

William R. Morrow, III Lawrence Berkeley National Laboratory

James Murphy DOE

Gene Nardella DOE

Jay Nathwani

Brent Nelson DOE Sachin Nimbalkar Oak Ridge National Laboratory

Olayinka Ogunsola DOE

Ed Owens DOE

Burak Ozpineci Oak Ridge National Laboratory

Dimitrios Papageorgopoulos DOE

Mike Penev National Renewable Energy Laboratory

Mark Peters Argonne National Laboratory

David Petti Idaho National Laboratory

Tanja Pietrass DOE

Anand Raghunathan *Energetics*

James Rhyne DOE

Matthew Riddle University of Massachusetts

Brian Robinson DOE

Gary Rochau Sandia National Laboratories

Traci Rodosta National Energy Technology Laboratory

Susan Rogers

Robert Romanosky National Energy Technology Laboratory

Amir Roth DOE

Tom Russell DOE

William Sanders University of Illinois

Sunita Satyapal DOE Erin Searcy DOE

Arman Shehabi Lawrence Berkeley National Laboratory

John H. Shinn Carbon Capture Simulation Initiative

Anna Shipley SRA International

James Siegrist

Jerry Simmons Sandia National Laboratories

Wade Sisk

Eric Smistad National Energy Technology Laboratory

Sarah Smith Lawrence Berkeley National Laboratory

Jacob Spendelow Los Alamos National Laboratory

Thomas Stephens Argonne National Laboratory

Ned Stetson

John Storey Oak Ridge National Laboratory

Kevin Stork

DOE

Sarah Studer

Deborah Sunter

Erika Sutherland

Ed Synakowski DOE

Timothy Theiss Oak Ridge National Laboratory

Arvind Thekdi Energy and Environmental Efficiency Management, Inc Claudia Tighe DOE

Tony Tubiolo DOE

Paul Turinsky North Carolina State University

Rich Tusing DOE

Bradley Ullrick Argonne National Laboratory

Michael Ulsh National Renewable Energy Laboratory

Alfonso Valdes Trustworthy Cyber Infrastructure for the Power Grid

James Van Dam *DOE*

John Vetrano DOE

Laura Vimmerstedt National Renewable Energy Laboratory

Kelly Visconti DOE

Anant Vyas Argonne National Laboratory

Brian Walker DOE (AAAS Fellow)

Hsin Wang Oak Ridge National Laboratory

Sharlene Weatherwax *DOE*

Devin West Oak Ridge National Laboratory

John Wimer National Energy Technology Laboratory

Joyce Yang DOE

Yan (Joann) Zhou Argonne National Laboratory

Reviewers

Extensive stakeholder inputs and peer reviews were considered in the drafting of this report. The external reviewers selected were all recognized experts in science and energy technology RDD&D. Their advice was considered on that basis, not as representatives of any particular organization or institution. Their comments were incorporated as appropriate, which greatly improved the accuracy and quality of the report. Any remaining inconsistencies or errors are not to be attributed to the reviewers. The individuals that participated in the review process are listed below. Their organizational affiliation is listed only to assist in identification and does not imply any form of endorsement.

Kev Adjemian Idaho National Laboratory

David Allen University of Texas

Tim Allison Southwest Research Institute

Laura Diaz Anadon Harvard University

Iver Anderson Ames National Lab

Brian Anderson West Virginia University

Stacy Angel EPA

Don Anton Savannah River National Laboratory

Chris Apblett Sandia National Laboratories

Doug Arent National Renewable Energy Laboratory

Renata Arsenault Ford Motor Company

Ed Arthur University of New Mexico

Terry Aselage Sandia National Laboratories

Misra Ashutosh ITN Energy Systems

Stan Atcitty Sandia National Laboratories Robert D. Atkinson The Information Technology & Innovation Foundation

Chad Augustine National Renewable Energy Laboratory

Richard Axelbaum Washington University, St. Louis

Kathy Ayers Proton Energy Systems

Justin Baca Solar Energy Industry Association

Joe Badin *USDA*

Grechen Baier The Dow Chemical Company

Erin Baker University of Massachusetts

William Ball Southern Company

Xuegang (Jeff) Ban Rensselaer Polytechnic Institute

Suji Banerjee Monolith Semiconductor

Ezra Bar Ziv Michigan Tech University

Galen Barbose Lawrence Berkeley National Laboratory Yaneer Bar-Yam New England Complex Systems Institute

Mary Rose Bayer *EPA*

Kristin Bennett *kbScience*

Crystal Bergeman HUD

Alan Berscheid Los Alamos National Laboratory

Dipka Bhambhani Breitling Energy

Abhoyjit Bhown Electric Power Research Institute

Jim Biershenk Marlow Industries

Gil Bindewald

Doug Blankenship Sandia National Laboratory

Richard Boardman Idaho National Laboratory

William B. Bonvillian Massachusetts Institute of Technology

Rod Borup Los Alamos National Laboratory

Anjan Bose Washington State University Terry Boss Interstate Natural Gas Association of America

Steve Bossart National Energy Technology Laboratory

Paul Boyd Pacific Northwest National Laboratory

Howard Branz DOE

Gerry Braun University of California, Davis

Jeanne Briskin *EPA*

Arturo Bronson University of Texas at El Paso

Marilyn Brown Georgia Institute of Technology

Esther Bryan DOE

Paul Bryan University of California Berkeley

Jonathon Burbaum *DOE*

Vann Bush Gas Technology Institute

Thomas Butcher Brookhaven National Laboratory

Sandy Butterfield *NWTC*

John Cabaniss DOE

Elizabeth Cantwell Arizona State University

Stewart Cedres

Cheryl L. Cejka Sandia National Laboratories

Paul Centolella Paul Centolella & Associates

Luis Cerezo EPRI Ruey Chen *NSF*

Charlie Chen Energetics

Gang Chen Massachusetts Institute of Technology

Chen Chen Argonne National Laboratory

Andrea Cherepy *EPA*

Diane Chinn Lawrence Livermore National Laboratory

Lalit Chordia Thar Energy LLC

Srabanti Chowdhury Arizona State University

Peter Christensen Pacific Northwest National Laboratory

Craig Christenson Turbine Technology Partners

David Claridge Texas A&M

Charlton Clark DOE

Steven Clark Chrysler Corporation

John Clarke Industrial Heating Equipment Association

Kipp Coddington University of Wyoming

James Cole Idaho National Laboratory

Tim Collett USGS

Regis Conrad *DOE*

Guenter Conzelmann Argonne National Laboratory

Ben Cook *NASA*

Khershed Cooper National Science Foundation Doug Crawford Genomics Institute

Michael Crawford DuPont

Mary Ann Curran *BAMAC, Ltd.*

Aiguo Dai State University of New York - Albany

Abigail Daken *EPA*

Jeff Daniels The Ohio State University

Edward Daniels Argonne National Laboratory

Sujit Das Oak Ridge National Laboratory

John Davinson IEA

Jim Davis University of California, Los Angeles

Steven Davis University of California, Irvine

Joe Decarolis North Carolina State University

Mark DeFigueiredo *EPA*

Phil DiPietro *GE*

lan Dobson Iowa State University

Steve Duclos GE

Catherine Dunwoody California Air Resources Board

Steve Durbin Purdue University

Betsy Dutrow EPA

Jim Easterly Black & Veatch Laurence Eaton Oak Ridge National Laboratory

Matthew Eckelman Northeastern University

Elizabeth Eide National Academy of Sciences

Jack Eisenhauer Nexight Group

Bruce Eldridge University of Texas

Mark Elless DOE

Ross Elliott

Derek Elsworth Penn State

Marleen Esprit *Umicore*

Joe Eto Lawrence Berkeley National Laboratory

Paul Evans University of Wisconsin

Ron Faibish DOE

Srinivas Farimella Georgia Institute of Technology

John Farrell National Renewable Energy Laboratory

Cynthia Feller Ames National Lab

Thomas Felter Sandia National Laboratories

Mike Fero *TeslaGen*

Rob Finley University of Illinois

Bill Flanagan *GE*

Jean-Pierre Fleurial NASA Jet Propulsion Laboratory

Mike Focazio USGS Charles Forsberg Massachusetts Institute of Technology

Rita Foster Idaho National Laboratory

Michel Foure Lawrence Berkeley National Laboratory

Joe Fowler Stress Engineering

Amy Francetic Clean Energy Trust

Pamela Franklin EPA

Joe Frantz Range Resources

Kristina Friedman *EPA*

Daniel Friend NIST

Steve Fruh EPA

Matt Frye BOEM

Erica R.H. Fuchs Carnegie Mellon University

Peter Fuhr Oak Ridge National Laboratory

Brent Fultz California Institute of Technology

Anne Gaffney Idaho National Laboratory

John Gale International Energy Agency

Josh Gange NOAA

Srinivas Garimella Georgia Institute of Technology

Jay Garland *EPA*

Clark Gellings EPRI Sarah Genovese

GE

Hossein Ghezel-Ayagh FuelCell Energy

Dolf Gielen IRENA

Ken Gillingham Yale University

Jill Glass Sandia National Laboratories

Leo Goff ACARYIS, CNA Corporation

Mike Goff Idaho National Laboratory

Jarett Goldsmith DNV GL

Barb Goodman National Renewable Energy Laboratory

Tip Goodwin Oncor Electric Delivery

Anand Gopal Lawrence Berkeley National Laboratory

Bhaskaran Gopalakirshnan West Virginia University

Avi Gopstein U.S. Department of State

Charles Gorecki UNDEERC

Alison Gotkin UTRC

David Gotthold Pacific Northwest National Laboratory

Tom Graedel Yale University

Sallie Greenberg University of Illinois

David Greene University of Tennessee

Chris Greer NIST

David Greves Carnegie Mellon University

Teresa Grocela-Rocha GE Ignacio Grossman Carnegie Mellon University

Neeraj Gupta Battelle

Angela Hackel *EPA*

Nancy Haegel National Renewable Energy Laboratory

Christian Hageleuken *Umicore*

Michael Hagood Idaho National Laboratory

lan Hamos DOE

Rachna Handa DOE

Bryan Hannegan National Renewable Energy Laboratory

John Harju UNDEERC

Mike Harpster General Motors

Debbie Haught DOE

Rich Haut Houston Advanced Research Center

Troy Hawkins Enviance

Carla Heathman Idaho National Laboratory

Christopher Hedge NOAA

Grant Heffelfinger Sandia National Laboratories

Allen Hefner NIST

Michael Heitkamp Savannah River National Laboratory

James Hemby EPA

Craig Henderson DOE James Hendler Rensselaer Polytechnic Institute

Jeff Hendrix MRComposites

Tom Hennebel University of California, Berkeley

Jordan Henry Sandia National Laboratories

Steve Herring Idaho National Laboratory

Howard Herzog Massachusetts Institute of Technology

John Hofmeister *Lufkin*

Patrick Holman

Susan Holmes NOAA

Roland Horne Stanford University

David Horton FERC

Linda Horton

Nancy Horton Energy Industries of Ohio, Inc.

Marc Houyoux EPA

Sue Hovorka *UT-BEG*

David Howard DOE

John Hryn Argonne National Laboratory

Solomon Hsiang University of California, Berkeley

Henry Huang Pacific Northwest National Laboratory

David Hungerford California Energy Commission Daniel Hussey NIST

Dennis Hussey EPRI

Nick Hutson EPA

Mike Hyland American Public Power Association

Britt Ide Ide Law Strategy

George Imel Idaho State University

Bill Irving EPA

Chris Irwin DOE

Kyle Isakower American Petroleum Institute

Cindy Jacobs EPA

Don Jacobsen Noble Corporation

David Jacobson NIST

Kristina Johnson Enduring Hydro

Tom Johnson Southern Company

Eddie Johnston Gas Technology Institute

Mark Jonkhof *GE*

Ajey Joshi Applied Materials

David Julius Duke Energy

Andy Kadak Exponent

Landis Kannberg Pacific Northwest National Laboratory

Anhar Karimjee EPA Akhlesh Kaushiva DOE

Curtis Keliiaa Sandia National Laboratories

Klaus Keller Penn State University

Jay Keller Sandia National Laboratories (retired)

Sean Kelly *Praxair*

Mack Kennedy Lawrence Berkeley National Laboratory

John Kessler *EPRI*

Jim Ketcham-Colwill *EPA*

Haroon Kheshji Exxon Mobile

Himanshu Khurana *Honeywell*

Ed Kiczek Airproducts

Hyung Chul Kim Ford Motor Company

Joyce Kim DOE

Thomas King, Jr. Oak Ridge National Laboratory

Michael Kintner-Meyer Lawrence Berkeley National Laboratory

Randolph Kirchain Massachusetts Institute of Technology

Harold Kirkham Pacific Northwest National Laboratory

Lindsay Kishter Nexight Group

James Klausner DOE

Andrew Klein Oregon State University Robert Kleinberg Schlumberger

Lingard Knutson

Bruce Kobelski *EPA*

Mike Koerber EPA

Tim Konnert FERC

John Kopasz Argonne National Laboratory

George Koperna Advanced Resources International

David Koppenaal Pacific Northwest National Laboratory

Vladimir Koritarov Argonne National Laboratory

Bruce Kramer NSF

Ben Kroposki National Renewable Energy Laboratory

Anthony Ku *GE*

Abhai Kumar ANSER

Hannes Kunz ABY

Thomas Kurfess Georgia Institute of Technology

Ellen Kurlansky EPA

Greg Kusinski *Chevron*

Roxann Laird Southern Company

Eric Larson Princeton University

Alan Lauder CCAS

Jeff Leahey National Hydropower Association Fred Leavitt *Hi-Z*

Audrey Lee Advanced Microgrid Systems

Chun-Wai Lee

Richard LeSar Iowa State University

Reenst Lesemann Columbia Power

David Lesmes DOE

Robie Lewis

T-G Lian *EPRI*

Yanna Liang Southern Illinois University

JoAnn Lighty *NSF*

Bill Linak *EPA*

Kunlei Liu University of Kentucky

Yilu Liu Oak Ridge National Laboratory

Ping Liu DOE

Eric Loewen GE

Despina Louca University of Virginia

Xianoan Lu Argonne National Laboratory

Kevin Lynn *DOE*

Jim Lyons Capricorn Investment Group

Don MacKenzie University of Washington

Bill Macleod Hyundai-DC

Peter Madsen Technical University of Denmark Jorge Magalhaes Vestas

Ernie Majer Lawrence Berkeley National Laboratory

Dawn Manley Sandia National Laboratories

Margaret Mann National Renewable Energy Laboratory

Mike Manwaring MWH

Jason Marcinkoski Fuel Cell Technologies Office

Jan Mares Resources for the Future

John L. Marion Alstom Power, Inc.

John Marra Savannah River National Laboratory

Mitolo Massimo Eaton Corporation

Regis Matzie Westinghouse

James Maughan *GE*

Michael Max Hydrate Energy International

Michael McAdams Advanced Biofuels Association

David McCarthy Air Products

Tom McCarthy Ford Motor Company

Dan McConnell Fugro

Colin McCormick General Motors

Tim McDonald USDA

Mike McElfresh Argonne National Laboratory

A. McKane Lawrence Berkeley National Laboratory Jim McMahon Cal Energy and Climate

Steve McMaster DOE

Brian McPherson Southwest Partnership

Shreyes Melkote Georgia Institute of Technology

Rob Mellors Lawrence Livermore National Laboratory

Steve Melzer Consultant

Robert Meyers EPA

Vijay Mhetar General Cable Corporation

Andrew Michener International Energy Agency

Doug Middleton

Craig Miller National Rural Electric Cooperative Association

Jim Miller Argonne National Laboratory

Ted Miller Ford Motor Company

Liang Min Lawrence Livermore National Laboratory

Florence Mingardon Total

Rob Mitchell USDA

Darren Mollot DOE

Dave Mooney National Renewable Energy Laboratory

Mark Morgan Pacific Northwest National Laboratory

George Moridis Lawrence Berkeley National Laboratory Ed Morris America Makes - NAMII

Jacob Moss *EPA*

Ralph Mueleisen Argonne National Laboratory

Michael Muller Rutgers

David Murphy St Lawrence University

Lawrence Murphy P4EP

Vinod Narayanan University of California, Davis

Jim Nash Brayton Energy

Greg Nemet University of Wisconsin

Stuart Nemser Compact Membrane Systems

Robin Newmark National Renewable Energy Laboratory

Norris Nicholson USDA

Christopher Noble Massachusetts Institute of Technology

Bruce Nordman Lawrence Berkeley National Laboratory

John Northington Southern Company

Frank Novacheck *Xcel Energy*

Paul Ohodnicki National Energy Technology Laboratory

Sara Ohrel *EPA*

Mark O'Malley UC Dublin

Dale Osborn Midcontinent Independent System Operator

Ralph Overend National Renewable Energy Laboratory (Retired) Mike Pacheco National Renewable Energy Laboratory

Asanga Padmaperuma Pacific Northwest National Laboratory

Joe Paladino *DOE*

Chris Paredis National Science Foundation

Danny Parker University of Central Florida

Seth Parker Levitan

George Parks Fuel Science

ZhiJan Pei *NSF*

Leslie Perkins USAF

Donna Perla *EPA*

Kent Peters

Tanja Pietrass DOE

Rob Podgorney Idaho National Laboratory

Brian Polagye University of Washington

Dana Powers Sandia National Laboratories

Rick Pratt Pacific Northwest National Laboratory

Rob Pratt Pacific Northwest National Laboratory

Frank Princiotta EPA

Betty Pun Chevron

Junjian Qi Argonne National Laboratory

Feng Qiu Argonne National Laboratory Verena Radulovic *EPA*

Varun Rai University of Texas, Austin

Noorie Rajvanshi Siemens

Anand Rao Independent Consultant

Robert Rapier *Tenaciousdna*

Phil Rasch Pacific Northwest National Laboratory

Dan Rastler *EPRI*

Jeff Reed Sempra Energy Utilities

Joy Rempe Idaho National Laboratory

Joel Renner National Renewable Energy Laboratory

Mark Rice Pacific Northwest National Laboratory

Craig Rieger Idaho National Laboratory

Bob Rose EPA

Mike Rottmayer U.S. Air Force

Edward Rubin Carnegie Mellon University

Pablo Ruiz The Brattle Group

Dave Russ USGS

Harvey Sachs American Council for an Energy Efficient Economy

William Sanders University of Illinois -Urbana-Champaign

Linda Sapochak National Science Foundation

Hamid Sarv Babcock & Wilcox Roger Sathre Lawrence Berkeley National Laboratory

Genevieve Saur National Renewable Energy Laboratory

Buzz Savage Independent Consultant

Maxine Savitz Honeywell (ret.)

Samveg Saxena Lawrence Berkeley National Laboratory

George Schatz Northwestern University

Joe Schatz Southern Company

Rich Scheer Scheer Ventures LLC

David Schmalzer Argonne National Laboratory

Kevin Schneider Pacific Northwest National Laboratory

Ron Schoff Clean Global Energy

Laura Schoppe Fuentek

Art Schroder Energy Valley

Dan Schultheisz EPA

Arah Schuur HUD

James Scofield Air Force Research Lab

Charles Scouten Fusfeld Group

Corinne Scown Lawrence Berkeley National Laboratory

Jean Scoyer Scaron Consulting

Charles Scozzie Army Research Lab

Richard Sears Stanford University Mark Segal *EPA*

Robert Shaw Aretê Corporation

Eric Shiff DOE

David Shiffer ONR

Willy Shih Harvard Business School

Drew Shindell Duke University

John Shingledecker Electric Power Research Institute

Abhyankar Shrirang Argonne National Laboratory

Dale Simbeck SFA Pacific

Karl Simon *EPA*

Gupreet Singh

Ramteen Sioshansi The Ohio State University

Wade Sisk DOE

Charlie Smith Utility Variable-Generation Integration Group

Merrill Smith DOE

Steve Smith Pacific Northwest National Laboratory

Shahab Sokhansanj Oak Ridge National Laboratory

Christopher Soles NIST

Arun Solomon General Motors

Andrew Sowder EPRI

Taylor Sparks University of Utah Thomas Speth EPA

Siva Srinivasan University of Florida

Ravi Srivastava EPA

Ed Steadman UNDEERC

John Sterling Solar Electric Power Association

Henrik Stiesdal Siemens

Bryce Stokes AST

Rob Stoner Massachusetts Institute of Technology

Stephen Streiffer Argonne National Laboratory

Ray Stults National Renewable Energy Laboratory

Tia Sutton EPA

Jim Sweeney Stanford University

Madhava Syamlal National Energy Technology Laboratory

Jeffrey Taft Pacific Northwest National Laboratory

Taro Takahashi Columbia University

Lanetra Tate NASA

Emmanuel Taylor

Mark Taylor Corning Inc.

Kevin Teichman EPA Steve Thomas DOE Bob Thompson EPA Scott Tinker Bureau of Economic Geology

Jessika Trancik Massachusetts Institute of Technology

Robert Tribble Brookhaven National Laboratory

Diane Turchetta U.S. Department of Transportation

Jason Turgeon *EPA*

Paul Turinsky North Carolina State University

Michael Ulsh National Renewable Energy Laboratory

Baskar Vairamohan EPRI

Vicky VanZandt Electric Transmission Consulting

Ron Vance EPA

Mark Verbrugge General Motors

John Vetrano DOE

Phil Vitale U.S. Navy

Bill Vocke

USCG

Zia Wadud University of Leeds

Marianne Walck Sandia National Laboratories

Brian Walker

Doug Wall Sandia National Laboratories

Doug Wall Sandia National Laboratories

Dan Walsh NRECA Annie Wang *Senvol*

John Wang Oak Ridge National Laboratory

Haizhong Wang Oregon State University

Steve Wasserman *Eli Lilly & Co.*

Robert J. Wayland *EPA*

Melissa Weitz EPA

Christian Wetzel Rensselaer Polytechnic Institute

John Weyant Stanford University

Michael Whelan Pipeline Research Council International

Kate Whitefoot National Academy of Engineering

Susan Wickwire EPA Angus Wilkinson Georgia Institute of Technology

Ellen Williams DOE

Robert Williams Princeton University

Jim Williams *E3*

Tracy Williamson EPA

Daryl Wilson Hydrogenics

Mary Wilson *WZI, Inc*

Paul Wilson University of Wisconsin

Bob Wimmer Toyota Motor North America, Inc.

Jamie Winebrake Rochester Institute of Technology

Ryan Wiser Lawrence Berkeley National Laboratory Frank Wolak FuelCell Energy

Jetta Wong DOE

Frances Wood OnLocation

Margaret Wooldridge University of Michigan

Thomas Wunsch Sandia National Laboratories

Hongjun Yang Semerane Inc.

Jeff Yang *EPA*

George Q. Zhang *ABB*

Carl Zichella Natural Resources Defense Council

Glossary

ab initio	From first principles. In science, a method is considered ab initio if it relies only on the established laws of nature and does not utilize assumptions or special models.
aberration	In optics, the failure of rays to converge at a single focus because of defects in a lens or mirror, leading to a blurring of the image produced. Similarly, in electron microscopy aberration leads to a blurring of the sample image, reducing the minimum attainable resolution.
absorption heat transformer	A device with the ability to raise the temperature of low or medium heat to higher, more useful temperature.
additive manufacturing	A class of processes that builds up objects by adding material, rather than using subtractive processes such milling and machining. This is also known as 3D printing.
advanced metering infrastructure	Integrated system of smart meters, communications networks, and data management systems that enables two-way communication between utilities and customers.
advanced ultra-supercritical	Advanced ultra-supercritical (A-USC) pulverized coal power plants use steam cycle temperatures above 650°C (1202°F) to increase overall plant efficiency. USC steam temperatures are limited to approximately 627°C (1160°F) by the use of ferritic steels.
albedo	The fraction of incident light reflected from a surface, such as from the earth back into space.
Alpha decay	A mechanism of radioactive decay in which the radioisotope emits an alpha particle, undergoing a change to another element having a mass number reduced by four and an atomic number reduced by two.
alpha emitter	A radioisotope that undergoes alpha decay.
alpha particle	A helium nucleus, which contains two protons and two neutrons. It has an electric charge of +2, and an energy of approximately five megaelectron volts.
alternating current	An electric current that oscillates between positive and negative values at a fixed frequency.
Archaea	The biological kingdom of single celled organisms called prokaryotes having no cell nucleus or other membrane bound organelles.
Atomic layer deposition	A thin film deposition technique based on the sequential use of two (or more) gas phase chemicals (precursors) that react with a surface until all exposed sites are consumed (self-limiting). Through repeated exposure to each precursor, a thin film is deposited. In contrast to chemical vapor deposition, the precursors are never present at the same time.

auxiliary loads	The power required to power ancillary equipment in a power plant, such as fans and pumps.
auxiliary power unit	A device on a vehicle (truck, airplane, etc.) that provides power to start engines, run support equipment, or serve as backup power.
B20	A fuel composed of 80% petroleum based diesel fuel and 20% bio diesel that is typically made from soybean, canola, or other vegetable oils, animal fats, or recycled grease.
balancing area	A geographic segment of the electric power system in which electrical balance is maintained between resources and loads.
base-load power plant	A plant, usually housing high-efficiency steam-electric units, which is normally operated to take all or part of the minimum load of a system, and which consequently produces electricity at an essentially constant rate and runs continuously.
beam emittance	The properties of a particle beam in an accelerator, describing the size of the source and the divergence of the beam.
biogenic	Produced by biological processes of living organisms.
biomass gasification with carbon capture and storage	A power generation plant that gasifies biomass with the resulting synthetic gas used to fire a combined-cycle unit to produce electricity with the waste carbon dioxide being stored rather than vented to the atmosphere.
biomass-to-liquids	A process that converts biomass into a syngas which is then converted into liquid hydrocarbons.
black start	The process of restoring a power station to operation without relying on the external electric power transmission network.
blowout preventer	A piece of equipment used to control the flow of oil and gas from wells and prevent an uncontrolled release from the well.
Brayton cycle	A thermodynamic cycle that describes the workings of a constant pressure heat engine.
British thermal unit	The quantity of heat required to raise the temperature of one pound of liquid water by one degree Fahrenheit.
burning plasma	A condition wherein the energy produced by nuclear fusion within a confined plasma is sufficient to maintain the plasma temperature, i.e. the energy output is greater than the energy input.
CAFE	The Corporate Average Fuel Economy standard was first enacted by the U.S. Congress in 1975 and sets average fuel economy standards across a fleet of vehicles produced by an individual manufacturer.
calutron	A mass spectrometer used to separate the isotopes of an element.
capacitor bank	A passive electrical component used to improve the quality of power delivery by sourcing reactive power.
capacity factor	The ratio of the electrical energy produced by a generating unit for the period of time considered to the electrical energy that could have been produced at continuous full power operation during the same period.
carbon capture and storage	The process of capturing waste carbon dioxide from a source, such as fossil fuel power plants, and storing it where it will not enter the atmosphere.

cascading effect	A chain of events due to an initial disturbance that propagates across the system.
catalyst	A molecule or material that accelerates the rate of a chemical reaction without undergoing a permanent change itself. Catalysts exist either in the same phase (homogeneous) or a different phase (heterogeneous) relative to the reactant.
central generators	Centrally dispatched power-generating technologies that are connected to an electricity grid.
chained dollars	A measure used to express real prices. Real prices are those that have been adjusted to remove the effect of changes in the purchasing power of the dollar; they usually reflect buying power relative to a reference year.
circuit breaker	A critical component of the electric power system used to ensure safety and protection of assets by separating and isolating segments of the electric power system.
clean energy manufacturing	The manufacture of goods in a manner that reduces the environmental impacts associated with the manufacture, use, and/or disposal of the products.
cloud condensation nuclei	Small particles upon which water condenses that serve as the precursors to cloud formation.
CO ₂ equivalent	A measure used to compare the emissions from various greenhouse gases based upon their global warming potential in units that are equivalent to that of carbon dioxide (CO_2) .
coal-to-liquids	A process that converts coal into a syngas which is then converted into liquid hydrocarbons.
co-design	In science and engineering, a design methodology wherein the requirements of the problem to be solved are considered when designing the system that will be used to solve the problem.
colossal magnetoresistance	A property of some materials that enables them to dramatically change their electrical resistance in the presence of an external magnetic field.
combined heat and power	A power generating unit designed to produce both electricity and heat from a fuel source, increasing system efficiency.
combined heat and power	The concurrent production of electricity or mechanical power and useful thermal energy from a single energy input.
compressed air energy storage	The storage of compressed air in a container, usually an underground cavern, for later expansion through a turbine to generate electricity.
compressed natural gas	Natural gas compressed to a pressure at or above 200-248 bar (i.e., 2,900- 3,600 pounds per square inch) and stored in high-pressure containers. It is used as a fuel for natural gas-powered vehicles.
computational fluid dynamics	A branch of fluid mechanics that uses computers to solve problems of fluid flow using numerical analysis and algorithms.
computational manufacturing	The use of computational tools such as modeling, simulation, and control systems to improve and regulate manufacturing processes or develop novel materials and products.

concentrating solar power	A solar energy conversion system characterized by the optical concentration of solar rays through an arrangement of mirrors to generate a high- temperature working fluid that is then used in a steam or gas turbine to generate electricity.
conservation voltage reduction	A strategy to reduce energy consumption by reducing the voltage along distribution feeders while staying within limits needed for equipment to operate properly.
core damage frequency	An expression of the likelihood that, given the way a reactor is designed and operated, an accident could cause the fuel in the reactor to be damaged.
critical material	A material of high economic importance that is at risk of supply disruption due to challenges such as a small global market, lack of supply diversity, or geopolitical risk.
cycle life	The number of charge/discharge cycles that a battery is able to support for a given depth-of-discharge within its useful life.
day ahead markets	Forward electricity markets where participants commit to buy or sell wholesale electricity a day in advance to help avoid price volatility.
demand controlled ventilation	A system which automatically adjusts the operation of ventilation equipment, either through a timed schedule or occupancy sensors, to meet ventilation requirements.
demand-side management	Utility programs that incentivize consumers to shift electricity use away from periods of peak demand (e.g., via load shifting), and to reduce electricity use overall (e.g., via energy efficiency).
density functional theory	A computational quantum mechanical modeling method used to simulate the electronic structure of many-body systems.
depth-of-discharge	A method to indicate a battery's state of charge, where 100% is empty.
diffraction	The process by which incident particles (photons, electrons, protons, neutrons, ions) interact with a periodic structure to produce a characteristic interference pattern. This interference pattern can be used to determine structural properties of a material.
dimethyl ether	A colorless gas that can be produced from natural gas or biomass and can be used as a substitute for liquefied petroleum gas for cooking or industrial uses or as a motor fuel in diesel engines with relatively minor modifications.
direct current	An electric current that flows in one direction.
direct energy conversion	Devices or systems that convert energy from one form to another without intermediate steps.
dispatchable demand resources	Customer demand that can be reduced in response to the utility or grid operator direction to address electricity system peak demand or supply constraints in exchange for a reduction in their electricity bills.
distributed energy resources	Small, modular technologies that can provide electricity or energy services, such as distributed generation and energy storage, that can be placed throughout the grid but typically near customer loads.
distributed generation	A variety of small, modular power-generating technologies that can be placed throughout the grid, particularly on distribution systems. (Note that they do not necessarily have to be combined with storage, etc., and don't necessarily get used to improve operations.)

distribution feeder	Power lines connected to a distribution substation to deliver electricity to customers.
distribution system	The lower voltage portion of the electricity delivery system used to connect supplies, typically from transmission, and distribute it to individual customers in a more confined geographic region.
duck curve	A graphical representation of the net-load curve (total load minus the amount produced by variable generation such as solar) projected for the California Independent System Operator demonstrating the increased need for system flexibility to meet steep ramps.
E15	A fuel containing a mixture of 15 percent ethanol and 85 percent gasoline.
E85	A fuel containing a mixture of 85 percent ethanol and 15 percent gasoline.
edge localized mode	A sudden, intense burst of heat that erupts from the edge of a plasma magnetically confined in a Tokamak fusion device.
electric drive technologies	Technologies that provide propulsion for electric drive vehicles and include power electronics and electric motors.
electric vehicle supply equipment	Equipment that increases the safety and ease of charging electric vehicles by enabling two-way communication between the vehicle and charger.
electric vehicles	A vehicle powered by electricity stored in batteries.
electricity architecture	The collection of relationships, connectivity, interactions, and structures that make up the electric power system spanning the physical, cyber, and human domains.
electrolysis	A process that uses electricity to split water into hydrogen and oxygen.
electron microscopy	A type of microscope that uses a beam of electrons to create an image of a specimen. Due to the very small wavelength of the electron, electron microscopes have much higher resolving power relative to a light microscope, revealing much finer detail of objects.
electron volt	An empirically-derived unit of energy defined as the amount of energy gained or lost by an electron moved across an electrical potential of one volt. It is approximately equal to 1.6×10^{-19} joules. It is often expressed in metric multiples (e.g., milli [m], mega [M] or giga [G]).
electronic converter	A technology based on semiconductor devices that change the characteristics of electric power, altering voltage levels or converting between alternating current and direct current.
embodied energy	The energy required to build or manufacture a device or structure, including the energy used to produce the materials in that device or structure.
energy services	Services made possible by energy use such as transportation, heating, light, etc.
energy surety	A guarantee of desired energy system attributes such as safety, security, reliability, sustainability, and cost effectiveness.
enhanced geothermal systems	An enhanced geothermal system is one which creates porosity in hot rock to allow the extraction of heat to drive power generation.
enhanced oil recovery	Techniques that use water, steam, chemical, carbon dioxide flooding, etc., to produce greater amounts of the original oil in a reservoir than would be producible by conventional techniques.

enthalpy	The amount of heat content used or released in a system at constant pressure.
enzyme	A macromolecule that acts as a catalyst for complex biological reactions.
exascale	A term representing a level of computer performance equal to or greater than 1,000 petaflops.
experience curve analysis	A method of projecting the reduction in technology costs over time, usually as a function of increasing volume of production, improvement in manufacturing processes, learning by doing, etc. External factors such as policy or other technology changes can also play a role.
expert elicitation	The use of experts familiar with a technology to supply subjective probability distributions of projected economic, technical, or other characteristics at some future date. Such a method can be used to provide risk and uncertainty estimates in technology forecasts.
fair-weather bias	A potential bias in results due to examining only clear sky conditions.
Fischer-Tropsh	A process that converts a feedstock such as natural gas or coal into a syngas, which is then converted into liquid hydrocarbons.
flaring	The controlled combustion of flammable gases at a refinery or at a wellhead. Often natural gas is flared as a result of the unavailability of a method for transporting such gas to markets.
flexible AC transmission systems	An electronic-based system used to help control of key AC transmission system parameters and increase power transfer capability.
flexible decision making	An approach that considers the full uncertainty in future value, and focuses on potential value if projects or technologies are successful. It relies upon iterative follow-on investment decisions that do not require large outlays of funding at early stages, to reduce uncertainty and increase rate of success.
flexible generators	A electric power generation unit that is readily available and under the direct control of the operator with the ability to change output levels.
flux	The rate of flow of a physical property per unit area.
free-electron laser	The use of very-high speed electrons moving through a regular alternating magnetic structure (undulator) to generate lasing with high peak brilliance. The radiation emitted is widely tunable, from microwave to X-ray band, by adjusting the energy of the electrons or the magnetic field strength of the undulator.
fuel cell	A device that produces electricity through an electrochemical process, usually from hydrogen or from methane, with oxygen, etc.
fuel scheduling	The scheduling of fuel supply for individual generators.
functional annotation	The process of attaching biological information to genomic elements including biochemical function, biological function, regulation, and expression.
gamma radiography	The use of gamma ray photons to image the internal structure of an opaque object.
gas-cooled fast reactor	A next generation reactor that uses helium as a coolant and relies on high- energy "fast" neutrons.

gene expression	The process by which the information contained in a gene is used to synthesize a functional gene product (RNA or protein). Overexpression of a gene results in the synthesis of too many copies of the functional product.
Generation III+ reactor	An advanced, third-generation light water reactor that incorporate new features such as improved safety features and standardized design.
genome	The complete set of DNA, including all of its genes, necessary to build and maintain an organism.
geoengineering	The deliberate, large-scale modification of the earth's natural systems.
geothermal power	Geothermal power uses heat from underground to generate electricity, heat buildings, or for other purposes.
gigabit	A multiple (10 ⁹) of the bit, the basic unit of digital information storage, having one of two values (zero or one).
gigaton	One billion metric tons
gigawatt	One billion watts or one thousand megawatts (also GW)
gross domestic product	The total value of goods and services produced by labor and property located in a country.
heat island	An urban area characterized by temperatures higher than those of the surrounding non-urban area. As urban areas develop, buildings, roads, and other infrastructure replace open land and vegetation. These surfaces absorb more solar energy, which can create higher temperatures in urban areas.
heat pump	Technologies that move thermal energy opposite to the direction of normal heat flow, such as by absorbing heat from a cold area and transferring it to a warmer one. During the heating season, heat pumps move heat from the cool outdoors into the warm indoors and during the cooling season, heat pumps move heat from the cool indoors into the warm outdoors.
hierarchical control	A classification of coordination and control of generators and other power system assets based on a top-down relationship.
high-temperature superconductor	A material that shows superconductivity (i.e., zero electrical resistance) at temperatures much higher than traditional superconductors.
higher heating value	The value of the heat of combustion of a fuel that takes into account the heat of vaporization of water.
high-performance computing	The practice of achieving high computing power through massive parallelization of processors to solve very complex problems.
homogeneous charge compression ignition	A type of internal combustion engine process where a well-mixed combination of fuel and air are compressed to the point of ignition without using a spark plug or fuel injector to initiate combustion.
horizontal drilling	A drilling technique where the drill is directed horizontally.
hybrid electric vehicles	A vehicle in which a power plant (e.g., internal combustion engine or fuel cell) powers an electric propulsion system, either exclusively or in parallel with a mechanical drivetrain.

hydraulic fracturing	Fracturing of rock at depth with fluid pressure to increase rock porosity. Hydraulic fracturing at depth may be accomplished by pumping water into a well at very high pressures which can then enable oil or gas production from an otherwise bound source or enable flow of water through a thermal reservoir for geothermal energy production. Under natural conditions, vapor pressure may rise high enough to cause fracturing in a process known as hydrothermal brecciation.
hydrodynamics	A field of physics that deals with the motion of fluids and the forces acting on objects immersed in fluids.
hydropower	The use of flowing water to produce electrical energy.
induced seismicity	Earthquake activity that results from human activity such as the subsurface injection of fluid at a rate or pressure such that the rock is caused to move along a pre-existing fault plane.
inductor bank	A passive electrical component used to improve the quality of power delivery by sinking reactive power.
information and communication technology network	An integrated system of telecommunications, computer networks, and software that enable users to access, store, transmit, and manipulate information.
Integrated Assessment Model	Scientific modeling most often used for environmental analysis that integrates multiple academic disciplines.
integrated gasification combined cycle	A power generation plant that gasifies coal with the resulting synthetic gas used to fire a combined-cycle unit to produce electricity.
interchange scheduling	The scheduling of energy exchange between grid control areas.
interferometer	A measurement device that superimposes electromagnetic waves in order to extract information about the waves via their interference (constructive or destructive) with one another. Typically one of the waves interacts with an object that modifies the wave, thereby providing information about the properties of the interacting object.
intermediate-load power plant	A plant that is normally operated to follow load as it changes through the day.
interval meter	An electrical meter that records power consumption over periodic intervals.
lisotope	A variant of an element differing in the number of neutrons (the atomic mass), but not the number of protons (the atomic number).
kilowatt	One thousand watts (also kW)
kilowatt-hour	A measure of electricity defined as a unit of work or energy, measured as one kilowatt (1,000 watts) of power expended for one hour. One kilowatt- hour (kWh) is equivalent to 3,412 British thermal units (also kWh).
large-eddy simulation	A mathematical model of turbulence used in computational fluid dynamics to simulate, for example, combustion, acoustics, and turbulence.
lead-cooled fast reactor	A next generation reactor that uses lead-bismuth eutectic as a coolant and relies on high energy "fast" neutrons.

levelized cost of energy	A metric of the total cost of energy (most often applied to electricity) production divided by the asset lifetime, and includes capital depreciation, fixed and variable operations and maintenance, fuel costs, and potentially other costs or credits (such as carbon offsets).
life cycle	All stages of a product's life, from raw materials extraction to manufacturing, use, and final disposal or recycling.
life-cycle assessment	A methodology that assesses the energy, materials and potentially other inputs, outputs, and impacts of a product or process. The assessment spans the entire useful life, from raw material extraction through end-of-life management (repurposing, recycling or disposal).
light-emitting diodes	A semiconductor that emits light when an electric current passes through it.
light water reactors	A nuclear reactor that uses water as the primary coolant and moderator, with slightly enriched uranium as fuel.
light-duty vehicles	Vehicles weighing less than 8,500 pounds (including automobiles, motorcycles, and light trucks).
lignocellulosic biomass	Plant dry matter (biomass) composed of carbohydrate polymers (cellulose, hemicellulose) tightly bound to an aromatic polymer (lignin).
lipid	An organic compound comprised of fatty acids that are insoluble in water.
liquefied natural gas	Methane that has been changed from gas phase to liquid phase as a result of a reduction of temperature or an increase in pressure or a combination of both.
liquefied petroleum gas	A group of hydrocarbon gases, primarily propane, normal butane, and isobutene, derived from crude oil refining or natural gas processing.
low temperature combustion	A term that covers a number of advanced combustion technologies that reduce nitrogen oxide and particulate emissions.
lower heating value	The value of the heat of combustion of a fuel that does not take into account the heat energy put into the vaporization of water (heat of vaporization).
lumen	An empirical measure of the quantity of light. It is based upon the spectral sensitivity of the photosensors in the human eye under high (daytime) light levels.
magnetic resonance spectroscopy	A measurement technique that exploits the quantized spin of an atomic nucleus (nuclear magnetic resonance spectroscopy) or electron (electron paramagnetic resonance spectroscopy) to interrogate the physical and chemical properties of a system.
marine and hydrokinetic power	Power generation using the energy of waves, tides, and river and ocean currents.
mass spectrometry	An analytical technique used to identify the amount and type of chemical species in a sample by measuring the mass-to-charge ratios.
material criticality	A designation of materials that are most important to the economy and are at risk of supply disruption.
Materials Genome Initiative	A multiagency initiative to improve the process for discovering, developing, and manufacturing advanced materials through advanced computational capabilities, data management, and integrated engineering, with a goal of developing advanced materials twice as fast and at a fraction of the cost of conventional approaches.
megawatt-hour	One thousand kilowatt-hours or one million watt-hours (also MWh)

megawatt	One million watts of electricity (also MW)
mesoscale	The length scale between the nanoscale and the macroscale (approximately 100 to 1,000 nanometers), where the properties of bulk objects, defined by classical mechanics, emerge from properties of the atomic and molecular components, defined by quantum mechanics.
metabolic pathway	A series of connected biochemical reactions occurring within a cell.
metal organic framework	Compounds consisting of metal atoms or clusters linked by organic molecules to form one-, two-, or three-dimensional structures that typically have very high internal surface area.
methanol	A light, volatile alcohol (CH ₃ OH) that can be blended with gasoline or used directly as a motor fuel. It is used as a fuel for many motor racing events.
metrology	The science of measurement, embracing both experimental and theoretical determinations at any level of uncertainty in any field of science and technology.
microbial dark matter	The unseen majority of microbial life that is not currently amenable to laboratory cultivation and therefore direct study by observation.
molten carbonate fuel cell	A type of fuel cell that contains a molten carbonate electrolyte. Carbonate ions (CO_3^{-2}) are transported from the cathode to the anode. Operating temperatures are typically near 650°C.
N-1 reliability criteria	A bulk power system operating and planning criteria to ensure reliability in the event of a single contingency such as the loss of a large power plant or transmission line.
nanoscale	Structures having a length scale of approximately 1-100 nanometers. One nanometer is 10 ^{.9} meters.
nanoscience	The multidisciplinary study of structures and materials at the nanoscale.
nanotechnology	The manipulation of matter on an atomic, molecular, and supramolecular scale.
natural gas hydrates	Cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas; also referred to as methane hydrates.
nuclear fusion	A reaction wherein two or more atoms collide and combine to create a new, heavier element. For elements lighter than iron, this process releases energy.
ocean acidification	The ongoing decrease in ocean pH levels due to the uptake of increased levels of carbon dioxide in the earth's atmosphere.
ome	In biology, the totality of objects within a given field of study, e.g. genome (the genetic material of an organism), proteome (the collection of proteins expressed by a genome), metabolome (the complete set of small molecule chemicals found within an organism), or transcriptome (the set of RNA molecules in an organism).
omics	An informal term referring to any field of biology ending in "-omics", (e.g., genomics, proteomics, or metabolomics).
options space analysis	A method of comparing a set of technologies that contribute to a particular desired service in a specific sector (such as transportation) across a range of characteristics and trade-offs.

organic aerosol	A material comprised of a gaseous suspension of microscopic solid or liquid particles composed of organic matter. A secondary organic aerosol is particulate matter composed of compounds formed from the atmospheric transformation of organic species.
particle accelerator	A device capable of accelerating charged particles to high energies using electromagnetic fields.
peak load	The maximum electric load during a specified period of time for a given power system.
peaking power plant	A power plant, typically gas turbines, diesels, or pumped-storage hydroelectric, normally used during the peak-load periods.
petaflop	A trillion flop, or floating point operations per second, a measure of computer performance.
phase angle	The difference in timing between when the voltage peaks and when the current peaks for alternating current at a given point in the electric power system.
phasor management unit	A device which measures the voltage, current, and phase at a point on the electrical grid that uses a common time source for synchronization; also known as a synchrophasor.
phosphor	Generally, a substance that exhibits luminescence.
phosphoric acid fuel cell	A type of fuel cell in which the electrolyte consists of concentrated phosphoric acid (H_3PO_4). Protons (H^+) are transported from the anode to the cathode. The operating temperature range is generally 160°C-220°C.
photoelectrochemical water splitting	A process where hydrogen is produced from water using sunlight and specialized semiconductors called photoelectrochemical materials, which use light energy to directly dissociate water molecules into hydrogen and oxygen.
photoelectrodes	A semiconducting electrode in a photoelectrochemical cell that, when impinged by a photon, creates a negatively charged electron and a positively charged hole that are used at the surface of the cathode and anode, respectively, to perform chemical reduction and oxidation, respectively.
photoionization	lonization of an atom or molecule produced as a result of interaction with electromagnetic radiation.
photosynthesis	The process by which plants and other organisms use light to convert water and carbon dioxide into chemical energy that fuels the activities of the organism and, most commonly, oxygen.
photovoltaic	An electronic device consisting of layers of semiconductor materials fabricated to form a junction (adjacent layers of materials with different electronic characteristics) and electrical contacts and being capable of converting incident light directly into electricity.
photovoltaic effect	The creation of a voltage or electric current in a material exposed to light.
photovoltaics	The method of converting solar energy into usable electrical energy using semiconducting materials that exhibit the photovoltaic effect.
phylum	In biology, a taxonomic rank, below kingdom and above class, wherein a group of organisms are defined as having a "certain degree" of morphological or developmental similarity, or a "certain degree" of evolutionary relatedness.

piezoelectricity	A property of certain solid materials to internally accumulate electrical charge when mechanically stressed.
plasma	An aggregate state of matter comprised of ionized atoms and their free electrons.
plasma wakefield acceleration	A method for accelerating charged particles to very high energy over relatively short distances by creating a charge wake in a plasma using high energy electrons or a laser pulse.
platinum group metals	A group of metals with similar physical and chemical properties to platinum. They are iridium, osmium, palladium, platinum, rhodium and ruthenium. Common uses in vehicles are for emissions control and fuel cell catalysts.
plug-in electric vehicles	A hybrid electric vehicle with batteries that can also be recharged by an external electricity source.
plug-in hybrid electric vehicles	A vehicle that combines a conventional internal combustion engine with an electric propulsion system with batteries that can also be recharged by an external electricity source.
plug-loads	The energy used by equipment using an electric outlet.
point sources	Any discernible, confined, and discrete source of pollutants.
polarization	A property of electromagnetic radiation that describes the constrained set of orientations of the electric or magnetic field vector. Examples include linear and elliptical. Polarization results from the fact that light behaves as a two-dimensional transverse wave.
polygeneration	A process with three or more energy outputs such as electricity, fuel, and heat.
polymer electrolyte membrane fuel cell	A type of acid-based fuel cell in which the transport of protons (H+) from the anode to the cathode is through a solid, aqueous membrane impregnated with an appropriate acid. The electrolyte is a called a polymer electrolyte membrane. The fuel cells typically run at low temperatures (<100°C).
portfolio analysis	A time-dependent system of relationships among competing and complementary energy technologies, the larger energy system, the economy, land use, water, atmospheric composition, and climate.
power use effectiveness	A measure of efficiency for computer data centers. It is calculated as the total facility power consumption divided by the power consumed by the computer equipment.
pre-mixed charge compression ignition	A technique where the fuel, air, and some exhaust gas are mixed before compression and ignition.
primary energy	Energy in the form that it is first accounted for in a statistical energy balance, before any transformation to secondary or tertiary forms of energy.
process intensification	Any technique or apparatus, especially in the chemicals sector, that reduces equipment size and complexity, energy consumption, and/or the environmental impacts of manufacturing processes.
prosumer	A consumer of electric power that can also produce it.
pumped hydro storage	A technology that uses electricity to pump water into an elevated reservoir to store energy and runs the water through a hydroelectric turbine to release energy.
pyrolysis	The decomposition of biomass at high temperatures in the absence of oxygen. It can be used to generate syngas or pyrolysis oils, etc.

quads	Quadrillion British thermal units
radial lines	A classification of the way a conventional electricity distribution system is typically connected to deliver electricity.
radiative transfer	The physical phenomenon of energy transfer via absorption, emission, and scattering as electromagnetic radiation travels through a medium.
radical	A typically highly reactive chemical species (atom, molecule, ion) having an unpaired valence electron.
ramp rates	The rate that a source of electric power can change its output.
rare earth material	A class of seventeen elements in the periodic table, specifically the fifteen lanthanides (lanthanum through lutetium) plus scandium and yttrium.
reactivity controlled compression ignition	A variant of homogeneous charge compression ignition where a higher reactivity fuel is combined with a premixed mixture of a lower reactive fuel, air and exhaust gases.
reflectometry	A non-destructive experimental technique used to probe the properties of a medium by measuring the energy reflected when the wave encounters a material interface different from the initial medium.
reliability (electric grid)	A measure of power system performance; the ability to continue meeting electricity demands.
reserve requirements	The amount of excess available capability of an electric power system over the projected peak load for a utility system that act as a back up in case of an unexpected outage of an operating generation unit.
residual oil zone	Areas of immobile crude oil below the oil-water contact zone.
resilience	The ability of the electric power system to withstand minor disturbances, mitigate the impact of major disturbances, and recover to normal operations after disturbances.
roll-to-roll processing	A class of substrate-based manufacturing processes in which additive and subtractive processes are used to build structures in a continuous manner. Typical roll-to-roll operations include casting, extrusion, coating, and printing of two-dimensional processes.
round-trip efficiencies	The percentage of energy that can be retrieved after it has been stored.
R-Value	A measure of a material's resistance to heat flow in units of Fahrenheit degrees x hours x square feet per Btu. The higher the R-value of a material, the greater its insulating capability.
scintillation	The emission of light from a material upon absorption of radiation, for example a photon, electron, ion, or neutron.
semiconductor	An elemental or compound material having electrical conductivity between that of a conductor and an insulator.
small angle neutron scattering	An experimental technique wherein incident neutrons are elastically scattered (i.e., the energy of the incident and scattered electrons are the same) at small (0.1-10°). angles from the sample, enabling structural analysis at mesoscopic length scales (1-100 nanometers).
small modular reactors	Nuclear power plants that smaller in size than conventional nuclear power plants. Typically, they are 300 MWe or less in capacity.

smart grid technologies	A category of technologies that improve the monitoring, analysis, and control of the grid, leveraging advances in information and communication technologies.
sodium-cooled fast reactor	A next generation reactor that uses liquid metallic sodium as a coolant and relies on high-energy "fast" neutrons.
solar thermochemical hydrogen	A thermochemical process for extracting hydrogen from water using concentrated sunlight as the heat source.
solid oxide fuel cell	A type of fuel cell in which the electrolyte is a solid, nonporous metal oxide with temperatures of operation typically 800°C-1000°C.
solid-state distribution transformer	A technology that combines high-powered semiconductor devices with the function of a conventional distribution transformer to provide new capabilities.
solid-state lighting	Refers to lighting using light-emitting diodes, which are semiconductors that emit light when an electric current passes through them.
spallation	A process by which neutrons and other particles are ejected from a heavy metal target due to impacts from a high-energy particle beam.
spectral lines	The discrete energies in an otherwise continuous spectrum that are absorbed or emitted by an atom or molecule and that are characteristic of that atom or molecule.
state variable	One of a set of variables used to describe the mathematical state of a dynamical system.
state-of-charge window	An indicator of the remaining charge in the batteries for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles.
steam methane reforming	A method for producing hydrogen, carbon monoxide, or other useful products by reacting high-temperature steam with natural gas.
stochastic optimization	The minimization (or maximization) of a function in the presence of randomness in the optimization process.
storage ring	A circular particle accelerator capable of storing a continuous or pulsed particle beam (typically protons, electrons, or positrons) for long periods of time. Typically used to store electrons that produce synchrotron radiation for an X-ray light source or in a particle collider where two counter rotating stored particle beams are collided at discrete locations.
superconducting magnetic energy storage	A device that stores electric energy in a magnetic field generated from a direct current circulating in a superconducting coil.
superconducting radiofrequency	The science and technology of applying electrical superconductors to radiofrequency technology. When used to build an RF cavity, the negligible electrical resistance of the superconducting material leads to cavities capable of storing energy with almost no loss and very narrow bandwidth.
superconductor	A material that exhibits no electrical resistance below a characteristic temperature.
supercritical fluid	A substance at a temperature and pressure above its critical point, where distinct liquid and gas phases do not exist.
supervisory control and data acquisition systems	A technology used to monitor and control equipment and systems remotely.

sustainability analysis	A methodology that looks at the environmental, life-cycle, climate, and other impacts of different technologies.
sustainable manufacturing	The creation of manufactured products through economically-sound processes that minimize environmental impacts while conserving energy and natural resources.
synchronous generator	A classification of electric power generators that converts mechanical energy into alternating current where the frequency of the output is synchronized with the speed of the rotor.
synchrotron radiation	Electromagnetic radiation produced as a result of very high speed (relativistic) charged particles being accelerated in a curved path.
synthetic biology	An interdisciplinary branch of biology that is focused on the design and construction of new biological parts, devices, and systems, and the modification of existing, natural biological systems for useful purposes.
system congestion	A condition that occurs when there is insufficient available transfer capacity on an electric grid to implement all of the preferred schedules for electricity transmission simultaneously.
Système International	The International System of Units (Système International d'Unités), the modern form of the metric system, comprises a coherent system of units of measurement built on seven base units, used to define twenty-two named units and derive many more unnamed units.
systems biology	The study of the complex interactions between biological components, for example molecules, cells, organisms, or species.
Technology Readiness Levels	A method of estimating technology maturity and uses a scale from 1 (basic science) to 9 (mature technology).
technology roadmapping	A methodology to provide information to inform technology decision- making by identifying technologies and gaps, tracking performance of technologies, and identifying opportunities to leverage RDD&D investments.
terawatt-hour	One trillion watt-hours (also TWh)
tesla	The Système International (SI) derived unit of magnetic flux density.
thermal energy storage system	A technology where thermal energy is stored in a medium such as molten salt, that can be later used to power a turbine to produce electricity, or in ice, that can be later used to offset air conditioning needs.
thermochemical	The chemistry of heat and heat-assisted chemical reactions.
thermodynamic limit	The upper limit on conversion efficiency for turning heat energy into useful work.
thermoelectric generators	Devices that can convert heat differentials in a material directly into electricity through the Seebeck effect.
tight oil (gas)	Oil (natural gas) produced from petroleum-bearing formations with low permeability such as the Eagle Ford, the Bakken, Haynesville, and other formations that must be hydraulically fractured to produce oil (natural gas) at commercial rates. Shale oil (natural gas) is a subset of tight oil (natural gas).
Tokamak	A device capable of confining a plasma using magnetic fields in the shape of a torus. It is a type of magnetic confinement device being explored for harnessing thermonuclear fusion as a power source.
tomography	The process of imaging a 3D object by sections using a penetrating wave.

transactive energy	An advanced control and coordination concept to manage the generation, consumption, or flow of electric power within an electric power system through the use of economic or market-based constructs while considering grid reliability constraints and other objectives.
transformer	A component of the electric power system used to change the voltage of alternating current.
transmission	The high voltage portion of the electricity delivery system used to connect electric suppliers to demand centers across large geographic regions.
transmission electron microscopy	An imaging technique in which a beam of electrons passes through and interacts with an ultra-thin sample, providing atomic-scale resolution of the material structure.
transporter protein	A protein in an organism that functions to move material from one place to another.
transuranic element	An element having an atomic numbers greater than that of uranium (92). Such elements are also sometimes referred to as super-heavy elements.
tribology	The science and technology of interacting surfaces, usually considering the friction and wear between them, and the processes of lubrication.
tritium	A rare, radioactive isotope of hydrogen having one proton and two neutrons in its atomic nucleus.
troposphere	The lowest layer of the earth's atmosphere.
unconventional oil and gas	An umbrella term that refers to resources such as shale gas, shale oil, tight gas, and tight oil that cannot be produced economically through standard drilling and completion practices.
unit commitment	An optimization problem used to determine the operation schedule of individual generators to meet varying loads under different constraints and environments.
variable frequency drive	An adjustable speed motor system that uses changes in electric frequency and voltage to manage motor speed and torque based on application demand.
variable generators	An electric power generation unit whose output changes with time due to factors outside the direct control of the operator, such as wind or solar energy.
vehicle-to-building	A system that allows the electricity stored in a plug-in hybrid electric vehicle, hybrid electric vehicle, or fuel cell electric vehicle (with hydrogen as electricity precursor) to be utilized by a building during periods of high demand or power outage.
vehicle-to-grid	A system that allows the electricity stored in a plug-in hybrid electric vehicle, hybrid electric vehicle, or fuel cell electric vehicle (with hydrogen as electricity precursor) to be utilized by the power grid during periods of high demand.
volt/VAR optimization	An advanced grid application that optimizes voltage profiles and reactive power flows in distribution systems to achieve a variety of objectives.
voltage collapse	An undesirable condition of the electric power system where there is a loss in stability and a blackout occurs when system voltages decrease catastrophically.
waste heat recovery	The capture and useful application of energy that would otherwise be rejected to the environment as waste heat.

watt	The Système International (SI) unit of power, defined as one joule per second.
wedge analysis	A framework for comparing different climate change mitigation activities on the basis of their greenhouse gas reduction potential represented as "wedges."
wide bandgap semiconductors	A semiconductor that has a bandgap of typically three electron volts or more, compared to silicon with a bandgap of 1.1 electron volts. This larger bandgap enables a semiconductor device using this material to operate at much higher voltages, frequencies, and temperatures than silicon-based devices, allowing more powerful electronic devices to be built.
wind turbine	Wind energy conversion device that produces electricity; typically three blades rotating about a horizontal axis and positioned up-wind of the supporting tower.

^{*} The definitions provided in this glossary are specifically for the context in which these terms are used within the Quadrennial Technology Review 2015. In other contexts, these terms may be used differently. A variety of sources were referenced in the development of this glossary, including: "Glossary." U.S. Energy Information Administration, 2015, http://www.eia.gov/tools/glossary/; "Glossary of Energy-Related Terms." U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, 2015, http://energy.gov/eere/energybasics/articles/glossaryenergy-related-terms; and many other public sources.

Acronyms

\$/km \$/kWh ¢/M L	dollars per kilometer dollars per kilowatt-hour	ASCPMM	advanced sensors, controls, platforms and modeling for manufacturing
\$/MBtu	dollars per million British thermal	ASAI	average service availability index
	units	ASTA	Advanced Superconducting Test Accelerator
3D	3-dimensional	ASTM	American Society for Testing and
AC	alternating current		Materials
ACCEL	Accelerating Competitiveness	ATF	Accelerator Test Facility
	Program	ATLAS	Argonne Tandem Linac Accelerator
ACTT	Advanced Computing Tech Team	AUSC	advanced ultra-super critical
AM	additive manufacturing		automated vehicle
AEO	Annual Energy Outlook (of the EIA)		Argonne Wakefield Accelerator
AEP	annual energy production		Facility
AER	all-electric range	BAU	business-as-usual
AERI	atmospheric emitted radiance interferometers	BECCS	bioenergy with carbon capture and storage
AHT	absorption heat transformer	BELLA	Berkeley Lab Laser Accelerator
AI	aluminum		Center
ALCC	ASCR Leadership Computing Challenge	BES	U.S. DOE Office of Basic Energy Sciences
ALCF	Argonne Leadership Computing Facility	BESAC	Basic Energy Sciences Advisory Committee
ALD	atomic layer deposition	BESC	BioEnergy Science Center
ALS	Advanced Light Source	BGCCS	biomass gasification with carbon
AMI	advanced metering technology		capture and sequestration
AMP	Advanced Manufacturing	BIPV	building integrated photovoltaics
	Partnership	BLIP	Brookhaven Linac Isotope Producer
ANL	Argonne National Laboratory	BNL	Brookhaven National Laboratory
API	American Petroleum Institute	BOEM	Bureau of Ocean Energy
APS	Advanced Photon Source		Management
APU	auxiliary power unit	ВОР	blowout preventer
ARM	Atmospheric Radiation Measurement Climate Research Facility	BP BRCs	British Petroleum Bioenergy Research Centers
ARPA-E	Advanced Research Projects	вто	U.S. Department of Energy Building Technologies Office
ARRA	American Reinvestment and	BTRIC	Buildings Technology Research and
	Recovery Act	PTC	Rillion-Ton Study
ASCAC	Advanced Scientific Computing Advisory Committee	Btu	British thermal unit

CO₂ Enhanced Oil Recovery

CO ₂ -eq	CO ₂ -equivalent global warming potential
COE	cost of energy
COP	crude oil price
COPV	composite overwrapped pressure vessel
CORAL	Collaboration of Oak Ridge, Argonne, and Livermore
CRADA	Collaborative Research and Development Agreement
CRF	Combustion Research Facility
SD	compression, storage and dispensing
CSP	concentrating solar thermal power
CSPAD	Cornell-SLAC hybrid Pixel Array Detector
СТ	combustion turbine
CTL	coal to liquids
CVD	chemical vapor deposition
CVR	conservation voltage reduction
CXI	Coherent X-ray Imaging
D&D	demonstration and deployment
DARPA	Defense Advanced Research Agency
C	direct current
V	demand-controlled ventilation
DEC	direct energy conversion
DG	distributed generation
DHS	U.S. Department of Homeland Security
DIII-D	DIII-D Tokamak
DLP	digital light processing
DMDII	Digital Manufacturing and Design Innovation Institute
OME	dimethyl ether
OMLS	direct metal laser sintering
OMS	distribution management systems
DMT	dry metric ton/tonne
DMZs	demilitarized zones
	deoxyribonucleic acid
	U.S. Department of Energy
DOE-EERE	U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy
OOE-FE	U.S. Department of Energy's Office of Fossil Energy
DOE-IE	U.S. Department of Energy's Office of Indian Energy Policy and Programs

CO,-EOR

DOE-NE	U.S. Department of Energy's Office of Nuclear Energy
DOE-OE	U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability
DOE-SC	U.S. Department of Energy's Office of Science
DR	demand response
DSM	demand-side management
E10	a blend of 10% ethanol and 90% gasoline by volume
E85	a blend of 85% ethanol and 15% gasoline by volume
EBM	electron beam melting
EDT	electric drive technologies
EERE	U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy
EFRC	Energy Frontier Research Centers
EGS	enhanced geothermal systems
EI	energy intensity
EIA	U.S. Energy Information Agency
ELM	edge-localized mode
EMF	electromagnetic fields
EMIS	electromagnetic isotope separator
EMP	electromagnetic pulse
EMS	energy management system
EMSL	Environmental Molecular Sciences Laboratory
EOR	enhanced oil recovery
EPA	U.S. Environmental Protection Agency
EPRI	Electric Power Research Institute
ERCOT	Electric Reliability Council of Texas
EROI	energy return on investment
ESBWR	Economic Simplified Boiling Water Reactor
ESIF	Energy Systems Integration Facility
ESM	Earth System Model
ESNet	Energy Sciences Network
EUE	expected unserved energy
eV	electron volt
EV	
EVSE	electric vehicle supply equipment
	Contor for Example Simulation of
	Combustion in Turbulence
ExMatEx	Co-design Center for Materials in Extreme Environments

FACET	Facility for Advanced Accelerator Experimental Tests
FACTS	flexible alternating current transmission systems
FASTMath	Frameworks, Algorithms, and Scalable Technologies for Mathematics
FC	fuel cell
FCEV	fuel cell electric vehicle
FCL	fault current limiter
FCV	fuel cell vehicle
FDM	fused deposition modeling
FERC	Federal Energy Regulatory Commission
FLISR	fault location isolation and service restoration
flops	floating point operations per second
FNAL	Fermi National Accelerator Laboratory
FORGE	Frontier Observatory for Research in Geothermal Energy
FRP	fiber-reinforced polymer
F-T	Fischer-Tropsch
FY	fiscal year
g/kWh	grams per kilowatt-hour
gal/MWh	gallons per megawatt-hour
GaN	gallium nitride
Gbps	gigabits per second
GCAM	Global Change Assessment Model
GDP	gross domestic product
GE	General Electric
GeV	gigaelectron volt
GFR	gas-cooled fast reactor
gge	gallon of gasoline equivalent
GHG	greenhouse gas
GLBRC	Great Lakes Bioenergy Research Center
GMD	geomagnetic disturbance
GPS	global positioning system
GSA	U.S. General Services Administration
GT	gas turbine
Gt	gigaton
GtC	gigaton of carbon
GtCO ₂	gigaton of carbon dioxide
GW	gigawatt
GWh	gigawatt-hour

GWP	global warming potential	ISO	independent system operator
НС	hydrocarbon	ISO	International Organization for
HCCI	homogeneous charge compression	ІТ	Standardization
HDV	heavy-duty vehicles	ITER	International Thermonuclear
He-3	helium-3		Experimental Reactor
HES	hydrogen energy storage	JBEI	Joint Bioenergy Institute
HEV	hybrid electric vehicles	JCAP	Joint Center for Artificial
HFC	hydrofluorocarbon		Photosynthesis
HFIR	High Flux Isotope Reactor	JCESR	Joint Center for Energy Storage
HHV	higher heating value	JGI	loint Genome Institute
HILF	high-impact, low-frequency	kBtu	thousand British thermal units
HPC	high-performance computing	kBtu/hr	thousand British thermal units per
HPCEE	High Performance Computer for Energy and the Environment	kBtu/sa ft	hour thousand British thormal units per
HPCIC	HPC Innovation Center	KD10/39.11.	square foot
нт	high temperature	kg	kilogram
HTS	high-temperature superconductors	klm	kilolumen
HVAC	heating, ventilation, and air	kms	kilometers
		kMWh	thousand megawatt hours
HVAC	high voltage alternating current	kV	kilovolt
HVDC	high-voltage direct current	kW	kilowatt
IACMI	Manufacturing Innovation	kWh	kilowatt-hour
IAM	integrated assessment model	LANL	Los Alamos National Laboratories
ICE	internal combustion engine	LAP	laser-plasma accelerator
ICEV	internal combustion engine vehicle	LBNL	Lawrence Berkeley National
ІСТ	information and communications		
	technologies		
IDPRA	Isotope Development and		
	Production for Research and		
			Linac Coherent Light Source
	Institute of Electrical and		Linac conterent Light Source-In
IEEE	Electronics Engineers		levelized cost of electricity
IGCC	integrated gasification combined		light duty vehicles
	cycle		light-omitting diada
IGSM	Integrated Global Systems Model		lead-cooled fact reactor
ILC	International Linear Collider		Large Hadron Collider
ILL	Institut Laue-Langevin		Large Hadron Comden
INCITE	Innovative and Novel Computational Impact on Theory and Experiment	Li/LMRNMC	lithium metal batteries with lithium- and manganese-rich high-energy
INL	Idaho National Laboratory		cathode
IOR	improved oil recovery	LIFT	Lightweight Innovations for
IPCC	Intergovernmental Panel on Climate	Li-ion	lithium-ion
	Change		Lawrence Livermore National
IPF	Isotope Production Facility	_=	Laboratory
		lm/W	lumens per watt

LMD	laser metal deposition	NEA	Nuclear Energy Agency of the
LMRNMC	lithium- and manganese-rich high-		OECD
	energy cathode	NERC	North American Electric Reliability
	loss of load probability	NERSC	National Energy Research Scientific
	laminated object manufacturing		Computing Center
LPA	laser-plasma accelerator	NETL	National Energy Technology
LPG	liquefied petroleum gas	NIMH	nickel-metal hydride
LPTs	large power transformers		near-infrared
LTC	low-temperature combustion	NIST	National Institute of Standards and
LUEI	land use energy intensity		Technology
LWR	light water reactors	NNI	National Nanotechnology Initiative
M&V	measurement and verification	NNSA	U.S. National Nuclear Security
MCFC	molten carbonate fuel cell		Administration
MDF	Materials Demonstration Facility	NOx	nitrogen oxides
MDF	Manufacturing Demonstration	NPC	National Petroleum Council
MDV	Facility medium-duty vehicles	NRC	U.S. Nuclear Regulatory Commission
MEA	membrane electrode loading	NREL	National Renewable Energy
MEL	miscellaneous electric loads		Laboratory
MESP	minimum ethanol selling price	NSF	National Science Foundation
Mg	magnesium	NSLS-II	National Synchrotron Light Source-
MGI	Materials Genome Initiative for		
	Global Competitiveness	NSRCs	Nanoscale Science Research Centers
мнк	marine and hydrokinetic	NSTX-U	National Spherical Torus
MIT	Massachusetts Institute of Technology		Experiment
MITEI	Massachusetts Institute of	NSUF	Nuclear Scientific User Facilities
	Technology Energy Initiative	NTRC	National Transportation Research Center
MJM	multi-jet modeling	O&M	operations and maintenance
ММТ	million metric ton/tonne	OE	U.S. Department of Energy, Office
MOF	metal organic framework		of Electricity Delivery and Energy
MON	motor octane number		Reliability
MOSFET	metal-oxide-semiconductor field- effect transistor	OECD	Organisation for Economic Cooperation and Development
MOSIS	Silicon Metal Oxide Semiconductor	OG&E	Oklahoma Gas & Electric
MRI	Implementation System	OLCF	Oak Ridge Leadership Computing
MT	metric ton/tonne		organic light-emitting diode
MV	medium voltage	ORNI	Oak Ridge National Laboratory
MW	megawatt	от	operational technology
MWe	megawatt electric	PAFC	phosphoric acid fuel cell
MWh	megawatt-hour	PBIH	powder bed and inkiet head
NAS	National Academy of Sciences	PC	pulverized coal
NaS	sodium sulfur	PCCI	pre-mixed charge compression
NASA	National Aeronautics and Space	DCT	ignition
NCNR	NIST Center for Neutron Research		thermostat

PEC	photoelectrochemical	RDD&D	research, development, demonstration, and deployment
PEMPC	cell	REACT	Rare Earth Alternatives in Critical
PEV	plug-in electric vehicle	RESU	residential energy storage unit
priops	petanops perfluerequifenie acid	RE	radiofrequency
PFSA		RHIC	Relativistic Heavy Ion Collider
		RIAM	regional integrated assessment
	platinum group metals		model
	pug-in hybrid electric vehicle	RICE	reciprocating internal combustion
			engine
	Pennsylvania New Jersey and	RNA	ribonucleic acid
РЈМ	Maryland Regional Transmission	ROI	return on investment
	Operator	RON	research octane number
РМ	particulate matter	ROZ	residual oil zones
PM ₁₀	particulate matter less than 10	Ru	ruthenium
PM	micrometers in diameter particulate matter less than 2.5	SAIDI	system average interruption duration index
DMU	micrometers in diameter	SAIFI	system average interruption frequency index
	Decific Northwest National	SANS	small angle neutron scattering
PINIL	Laboratory	sc	U.S. DOE Office of Science
Poly/Comp	polymer composites	SCADA	supervisory control and data
POTW	publicly owned treatment work	SC ASCD	acquisition
PP	plaster-based 3D printing	SC-ASCR	Scientific Computing
PPPL	Princeton Plasma Physics Laboratory	SC-BER	U.S. DOE Biological and
PQ	power quality	SC DES	LLS DOE Office of Pasia Energy
PUE	power use effectiveness	SC-BES	Science
PV	photovoltaic	SCC	social cost of carbon
PWR	pressurized water reactor	SC-FES	U.S. DOE Office of Fusion Energy
QCD	quantum chromodynamics		Science
QER	Quadrennial Energy Review	SC-HEP	U.S. DOE Office of High Energy Physics
OTP		SciDAC	Scientific Discovery through
quad	guadrillion British thermal units	SCIERC	Advanced Computing
QUEST	Quantification of Uncertainty in	SC-NP	U.S. DOE Office of Nuclear Physics
GOLDI	Extreme Scale Computations	sCO ₂	supercritical carbon dioxide
R&D	research and development	SDAV	scalable data management, analysis
R2R	roll-to-roll		and visualization
RAP	resilience analysis process	SEP	Superior Energy Performance
RC	Rankine cycle engine	SED	sodium-cooled fast reactor
RCCI	reactivity controlled compression ignition	SGIG	Smart Grid Investment Grant
RCSP	Regional Carbon Sequestration Partnerships	SHS	selective heat sintering
RD&D	research, development, and	Si	silicon
	demonstration	SI	spark ignition

Si/LMRNMC	lithium- and manganese-rich high-	TWh/year	terawatt-hours per year
	energy cathode with silicon alloy	UC	unit of capacity
a'a	anodes	UCC	ultra-conductive copper
SIC	silicon carbide	UCPTE	Union for the Coordination of
SIEGate	Secure Information Exchange Gateway		Production and Transmission of Electricity
SLA	stereolithography	UE	unit of energy
SLAC	SLAC National Accelerator	UNF	used nuclear fuel
SLS	selective laser sintering	UNFCCC	United Nations Framework Convention on Climate Change
SMES	superconducting magnetic energy	UOG	unconventional oil and gas
	storage	URCI	universal remote circuit interrupter
SMR	small modular reactors	USB	universal serial bus
SMR	steam methane reforming	USDA	U.S. Department of Agriculture
SNCR	selective non-catalytic reduction	USGS	U.S. Geological Survey
SNL	Sandia National Laboratory	UV	ultraviolet
SNS	Spallation Neutron Source	V&V	verification and validation
SO ₂	sulfur dioxide	V2B	vehicle-to-building
SOC	state-of-charge	V2G	vehicle-to-grid
SOFC	solid oxide fuel cell	V2I	vehicle-to-infrastructure
SO _x	sulfur oxides	V2V	vehicle-to-vehicle
SPP	Strategic Partnership Projects	VAR	volt-ampere reactive
SRF	superconducting radio frequency	VERA	Virtual Environment for Reactor
SSDT	solid state distribution transformer		Application
SSRLS	Stanford Synchrotron Radiation Light Source	VFD	variable frequency drive
SST	solid-state transformer	VOC	volatile organic carbon
ST	steam turbine	VOCs	volatile organic compounds
STP	set top boxes (for TVs)	VV0	volt/volt ampere reactive
SubTER	Subsurface Technology and	W/ka	watts per ka
	Engineering Research	WACC	weighted average capital cost
SUPER	Institute for Sustained Performance,	WAG	water-alternating-gas
	Energy, and Resilience	WBG	wide bandgap
T&D	transmission and distribution	Wh/kg	watt-hours per kg
ТВ	terabyte	Wh/l	watt-hours per liter
TBtus	trillion British thermal units	WHP	waste heat to power
ТСЕР	Texas Clean Energy Project	WHR	waste heat recovery
Tcf	trillion cubic feet	WNUF	Wireless National User Facility
TEDF	lechnology and Engineering Development Facility	ZNE	residential zero-net-energy
TEG	thermoelectric generators		customer
ті	technology innovation		
TJNAF	Thomas Jefferson National Accelerator Facility		
TMF	The Molecular Foundry		
TR	technology roadmapping		
TRLs	Technology Readiness Levels		
TWh	terawatt-hour		

List of Figures

Figure Number and Title	Page
Executive Summary	
Figure ES.1 Sankey Diagram of the U.S. Energy System Depicting Major Areas of Coverage by the Technical QTR Chapters 3—8	4
Chapter 1	
Figure 1.1 The Sankey Diagram depicts the flow of energy resources (left) to end-use sectors (right)	12
Figure 1.2a U.S. Primary Energy (a) Supply and (b) Consumption in the End Use Sectors	13
Figure 1.2b U.S. Electric Power by (a) Total Primary Input and Electricity Generation by Source; and (b) Electricity End Use by Sector	13
Figure 1.3a Building Sector Energy by (a) Primary Energy Supply and (b) Energy End Uses as a percent of total U.S. building energy supply and use	14
Figure 1.3b Industry Sector Energy by (a) Primary Energy Supply and (b) Energy End Uses and as a percent of total U.S. industry energy supply and use	14
Figure 1.3c Transportation Sector Energy by (a) Primary Energy Supply and (b) Energy End Uses and as a percent of total U.S. transportation energy supply and use	14
Figure 1.4 U.S. Primary Energy Use over Time in Quads	15
Figure 1.5 EIA Projections for Growth of Energy Demand (in quads) in OECD and Non-OECD Markets to 2040	18
Figure 1.6 Energy Prices by Year for the Coal, Natural Gas, and Oil Markets	20
Figure 1.7 U.S. CO_2 Emissions by (a) Primary Energy Source as a percent of total U.S. energy-related CO_2 Emissions (in million metric tonnes); and (b) End Use Sector	22
Figure 1.8 Percentage of Gross Sales Invested in R&D for Selected Sectors of the U.S. Economy and U.S. Clean Energy Venture Capital Investment	24
Figure 1.9 Learning Curves for Selected Technologies	25
Chapter 2	
Figure 2.1 Multiple Scales of the Integrated Electrical System	39
Figure 2.2 Potentially Net-Negative Carbon Flows in a Hybrid Polygeneration CBTLE-CCS System	42
Chapter 3	
Figure 3.1 Estimated U.S. Energy Use in 2014	54

Figure 3.1 Estimated U.S. Energy Use in 2014

Figure 3.2 Traditional Electricity Delivery System	55
Figure 3.3 Evolution of the Electric Power Grid	56
Figure 3.4 Spending on Smart Grid Technologies 2008–2013, with Projections to 2017	58
Figure 3.5 Comparison between Voltage Signals from the Event as Captured by SCADA versus PMU Data for Western Electricity Coordinating Council Wind Farm Oscillations	58
Figure 3.6 Weather-Related Grid Disruptions, 2000–2012	59
Figure 3.7 Example of Analysis using Synchrophasor Data: August 14, 2003 Blackout	61
Figure 3.8 Illustrative Sequence of Cascading Events in the 2011 Southwest Blackout	62
Figure 3.9 California ISO Projected Electricity Supply	63
Figure 3.10 Comparison of Key Attributes of Current and Future Systems	64
Figure 3.11 Grid Architecture Structure Types	65
Figure 3.12 Fundamental Changes in Power System Characteristics	66
Figure 3.13 Data Flows from Transmission Owners to Regional Hubs, Between Reliability Coordinators, and Between Transmission Operators	70
Figure 3.14 Pathway to Speed Improvements in Analytical Decision Making	71
Figure 3.15 Times Associated with Clearing a Fault	72
Figure 3.16 Stages of Adoption of Transactive Operations for Industry	74
Figure 3.17 Excessive Transformer Heating from Reversed Power Flows	75
Figure 3.18 Conceptual Diagram for Solid-State Distribution Transformer Function	76
Figure 3.19 Different Microgrid Configurations	81
Figure 3.20 Applications of Electric Energy Storage Technologies	82
Figure 3.21 Scales of Power Systems Operations and Planning	85
Figure 3.22 2014 Reported Power Outages by Eight Possible Causes	87
Figure 3.23 Cross-Organizational Chain of Trust	90
Chapter 4	
Figure 4.1 Requirements and criteria have expanded over time.	103
Figure 4.2 SaskPower Boundary Dam CCS Project: Pushing CCS Forward Internationally	104
Figure 4.3 Southern Company Kemper Project	105
Figure 4.4 Potential for Bringing Down Nth-of-a-Kind Cost Compared to First-Generation CCS Technology	106
Figure 4.5 Cost Projections for Advanced Fossil-CCS Plants	108
Figure 4.6 Regional Carbon Sequestration Partnerships	109
Figure 4.7 U.S. Nuclear Capacity and Generation Since 1980	112
Figure 4.8 Core Damage Frequency (CDF) Estimates of U.S. Reactor Types	113
Figure 4.9 Land-Based Wind Changes in LCOE by Sensitivity	120

Figure 4.10 Offshore Wind Changes in LCOE by Sensitivity	121
Figure 4.11 Scale of Biopower Plants in the United States	122
Figure 4.12 Biomass Gasification with CO ₂ Capture and Combined-Cycle Power Generation	124
Figure 4.13 Utility PV Cost Reductions Since 2010 and Required Reductions for Cost Competitiveness	125
Chapter 5	
Figure 5.1 Buildings Use More Than 38% of all U.S. Energy and 76% of U.S. Electricity	145
Figure 5.2 Use of ENERGY STAR® technologies would reduce residential energy consumption 30%, best available technology 50%, goals of ET 52% and theoretical limits 62%.	146
Figure 5.3 Use of ENERGY STAR® technologies would reduce commercial energy consumption 21%, best available technology 46%, goals of ET 47% and theoretical limits 59%.	146
Figure 5.4 Only 44% of the energy in sunlight is visible light.	149
Figure 5.5 Types of Building Heating Equipment	152
Figure 5.6 Use of the most efficient wall, window, and HVAC equipment now available could reduce residential cooling 61%.	155
Figure 5.7 Use of the most efficient wall, window, and HVAC equipment now available could eliminate residential heating.	155
Figure 5.8 Use of the most efficient wall, window, and HVAC equipment now available could reduce commercial cooling 78%.	156
Figure 5.9 Use of the most efficient wall, window, and HVAC equipment now available could reduce commercial heating 77%.	156
Figure 5.10 Most light fixtures are in residences, but the bulk of lighting energy is in commercial buildings.	158
Figure 5.11 The efficiency of the human eye is highest for green light at 683 lumens per watt.	159
Figure 5.12 Energy Savings from Lighting Retrofits	161
Figure 5.13 The price and performance of LEDs have steadily improved since 2009.	162
Figure 5.14 A combination of improved lighting devices and controls meeting 2020 program goals (ET) can reduce residential lighting energy 93% of the theoretical limit.	163
Figure 5.15 A combination of improved lighting devices and controls meeting 2020 program goals (ET) can reduce commercial lighting energy 81% of the theoretical limit.	163
Figure 5.16 The "other" category of demand in buildings is created by a huge variety of devices—many of which are miscellaneous electric loads.	167
Figure 5.17 Future grid systems and smart building controls can communicate in ways that improve overall system efficiency and reliability.	169
Figure 5.18 More than seven quads of energy could be saved in buildings by cost effective technologies by 2030.	173
Chapter 6	
Figure 6.1 Manufacturing Share of the Nation's Overall Energy Consumption and Breakdown of Manufacturing Primary Energy Consumption by Subsector (2010)	183
Figure 6.2 Levels of System Integration in Manufacturing	184

Figure 6.3 Constellation Diagram Showing Connections Between the Fourteen Manufacturing Technologies Analyzed in Technology Assessments	185
Figure 6.4 Sankey Diagram of Primary Energy Flow in the U.S. Manufacturing Sector (2010)	187
Figure 6.5 Sankey Diagram of U.S. Manufacturing Sector Process Energy Flow in 2010	187
Figure 6.6 Projected Annual Energy Savings (TBtu/year) for Fleet-wide Adoption of Additive Manufactured Components in Aircraft, Assuming Slow, Midrange and Rapid Adoption Scenarios	194
Figure 6.7 Delphi Diesel Engine Pump Housing Fabricated via Selective Laser Melting	195
Figure 6.8 Bandwidth Diagrams Illustrating Energy Savings Opportunities in Four Energy- Intensive U.S. Manufacturing Industries	196
Figure 6.9 CHP systems produce thermal energy and electricity concurrently from the same energy input, and can therefore achieve higher system efficiencies than separate heat and power systems.	197
Figure 6.10 Theoretical Efficiencies (electric generation only) for Various CHP Configurations, Ranging from Single-Cycle Systems to Double- and Triple-Cycle Systems that Make Use of Multiple Generation Technologies	198
Figure 6.11 Medium-term (from 2015 to 2025) Criticality Matrix for Elements Important to Wind Turbines, Electric Vehicles, Photovoltaic Cells, and Fluorescent Lighting	206
Figure 6.12 Energy Savings Opportunities for One Pound of Carbon Fiber Reinforced Polymer Composite, Broken Down by Subprocess	214
Figure 6.13 Potential Cost Reduction Strategies for Composite Overwrapped Pressure Vessels to Meet the 2020 U.S. DRIVE Cost Target	214
Chapter 7	
Figure 7.1 Sankey Diagram of Transportation Fuel Use	227
Figure 7.2 Shale Resources Remain the Dominant Source of U.S. Natural Gas Production Growth	230
Figure 7.3 Expected Gains in Tight Oil Production Drive Projected Growth in Total U.S. Crude Oil Production	230
Figure 7.4 BP Deepwater Horizon Oil Spill April 20, 2010	231
Figure 7.5 Gas Hydrate Resource Pyramid	234
Figure 7.6 Emerging Issues of UOG Development	235
Figure 7.7 Overall Pathway for Production of Fuels from Biomass	241
Figure 7.8 R&D options are available to address most products from the whole barrel of oil.	242
Figure 7.9 Life-Cycle Greenhouse Gas Emissions of Selected Pathways	243
Figure 7.10 Total Estimated Sustainable Bioenergy Resource Potential Supply Curve at Marginal Prices Between \$20 and \$200 per Dry Metric Ton in 2022	243
Figure 7.11 Growth in U.S. Ethanol Production Capacity	245
Figure 7.12 Historical and Projected Volumes of Biomass Available at a Delivered Cost of \$80/ Dry Metric Ton for Various Biomass Types, Accommodating Multiple Conversion Processes	246
Figure 7.13 Historical and Projected Delivered Woody Feedstock Costs, Modeled for Pyrolysis Conversion	247

Figure 7.14 Correlation Between Lignin and Energy Content in Biomass Samples	248
Figure 7.15 Conversion Pathways from Feedstock to Products	250
Figure 7.16 Cost Projection Breakdown for the Fast Pyrolysis Design Case, 2009-2017	251
Figure 7.17 Producing oxygenated chemicals from olefins involves increasing the molecular weight via oxidation.	253
Figure 7.18 Hydrogen Offers Important Long-Term Value as a Clean Energy Carrier	256
Figure 7.19 Existing Centralized Hydrogen Production Facilities in the United States	257
Figure 7.20 Many possible pathways for production and delivery of hydrogen exist.	258
Figure 7.21 Hydrogen Production and Delivery RDD&D Priorities and Key Focus Areas	259
Figure 7.22 Current Range of Hydrogen Production Costs	261
Figure 7.23 RDD&D Timeline for Hydrogen Production and Delivery	263
Chapter 8	
Figure 8.1 Composition of 2014 Energy Use in Transportation	277
Figure 8.2 Well-to-Wheels Petroleum Use and GHG Emissions for 2035 Mid-Size Cars	279
Figure 8.3 Potential Benefits of Advanced Transportation Technologies	280
Figure 8.4 Overview of Key Transportation Technologies and Performance Targets Based on DOE Assessment of Current RDD&D Activities	282
Figure 8.5 Catalyzed Particulate Filter Air Flow Modeling	284
Figure 8.6 Complex In-cylinder Flow During Intake Stroke in Diesel Engine	285
Figure 8.7 Vehicle-level Technology Contributions to Efficiency	288
Figure 8.8 Trends of Lightweight Materials Use in Vehicles	290
Figure 8.9 Weight Reduction Opportunities if the Indicated Material was Applied to the Greatest Extent Possible	292
Figure 8.10 Battery Performance Advancements that are Needed to Enable a Large Market Penetration of PEVs	293
Figure 8.11 Modeled Cost and Energy Density of PEV Batteries Developed and Tested	294
Figure 8.12 Advanced Battery Technology Low-cost Pathway	295
Figure 8.13 Schematic Diagram of a PEV	297
Figure 8.14 Breakdown of the 2014 Projected Fuel Cell Stack Cost at 1,000 and 500,000 Systems Per Year	301
Figure 8.15 Fuel Cell Performance Advancements Needed to Enable a Large Market Penetration of FCEVs	302
Figure 8.16 Energy per Passenger-mile by Mode in 2002 and 2012 with Percent Change from 2002 to 2012 Shown Above the 2012 Bars	306
Figure 8.17 Transportation as a System of Systems	311

Chapter 9

Figure 9.1 Locations of Current Energy Frontier Research Centers (EFRC) and Partnering Institutions	324
Figure 9.2 The structure of four representative MOFs demonstrates the large diversity within this class of materials.	325
Figure 9.3 (a) A solar fuel-generating device would mimic the natural photosynthesis carried out in a leaf, capturing solar energy and converting it into chemical energy stored as a liquid fuel. (b) The titanium dioxide (TiO_2) protective layer stabilizes the silicon photoanode against corrosion so that hydroxide ions (OH-) in the electrolyte can be continuously oxidized to oxygen gas (O_2).	327
Figure 9.4 Optimization of microbial metabolism leads to enhanced production of advanced biofuels such as isopentenol.	328
Figure 9.5 (a) Formation and destruction of the resonance stabilized QOOH ($c-C_7H_9O_2$) radical intermediate.	333
Figure 9.6 (a) The 132-meter LCLS Undulator Hall (b) Artists concept showing a CO molecule made of a carbon atom (black) and an oxygen atom (red), reacting with an oxygen atom.	335
Figure 9.7 Neutron tomographic imaging techniques available at the DOE-SC neutron scattering scientific user facilities SNS (a) and HFIR (c) were used by Morris Technologies to evaluate internal stresses in turbine blades produced by additive manufacturing (b).	337
Figure 9.8 Nanocrystals of indium tin oxide (blue) embedded in a glassy matrix of niobium oxide (green) form a composite material that can switch between visible or near-infrared light transmitting and blocking states by application of an electric potential.	339
Figure 9.9 Control of the synthesis results in a diversity of self-assembled structures formed by sticky epoxy droplets: (a) array of "mushrooms," (b) wavy colloidal "fur," (c) dense fiber network, and (d) a 3D reconstruction of the dense fiber network.	341
Figure 9.10 (a) Samples for metagenomic analyses collected from numerous sites across the globe and sequenced at the JGI have detected numerous previously unknown microbial species. (b) The results shine a metagenomic spotlight on previously unknown areas of the phylogenetic tree, thereby broadening our view of the diversity of the microbial world.	343
Figure 9.11 (a) Under normal conditions, a cloud droplet (and cloud ice particle) requires a microscopic particle on which water vapor can condense. It was assumed that only a small fraction of airborne particles have the right chemistry and/or geometry to condense water vapor. (b) Using samples collected by the DOE ARM facility and chemical imaging and microspectroscopic techniques at the EMSL, it was discovered that nearly all classes of particles can serve as cloud condensation nuclei for droplet and ice but with variation in formation efficiency that depends on organic coatings. This new information will be used to improve model parameterizations and reduce uncertainties in climate predictions.	345
Figure 9.12 Analysis of an eleven-year record of spectral radiance data from ARM sites in Oklahoma and Alaska confirmed theoretical predictions that higher concentrations of atmospheric CO_2 result in increased absorption of infrared energy, and hence atmospheric warming. Until now, the measurement accuracy combined with the length of the data record was inadequate to "prove" beyond doubt that increasing CO_2 must relate to global warming via infrared heating, thus making this analysis groundbreaking. (a) The ARM Oklahoma site. (b) One of the two AERIs that were used to collect the eleven-year data record at both sites.	347
Figure 9.13 The semiconductor indium nitride, which typically emits infrared light, will emit green light if reduced to a one nanometer-wide wire.	350

Figure 9.14 The features and implied energy prices of the stochastic programming formulation 352 is shown for the state of Illinois.

Figure 9.15 Dresser-Rand is simulating equipment that could enable CCS at a significantly lower cost than that offered by conventional equipment. Below is a visualization from a simulation of NASA Glenn Research Center's transonic fan stage experiment prior to stall.	353
Figure 9.16 The CSPAD camera at the LCLS produces 150 TB molecular "snapshots."	355
Figure 9.17 Using VERA, CASL investigators successfully performed full core physics power- up simulations (right) of the Westinghouse AP1000 PWR core.	356
Figure 9.18 The BELLA laser (a) is a Ti:Sapphire chirped-pulse amplification laser capable of pulsed peta-watt level peak power at a frequency of a single hertz. The work was selected as one of ten Best Physics Papers of 2014 by Scientific American. Simulations (b) run at NERSC show a laser plasma wakefield as it evolves in a nine-centimeter long tube of plasma. The charge "wake" (three are shown) allows electrons to "ride" the wake to greater and greater energies.	360
Figure 9.19 Optical fibers give off a green glow as they carry light pulses from the scintillator material to an external photomultiplier counting array in the wavelength-shifting optical fiber neutron detector.	362
Figure 9.20 The EMIS for Stable Isotope Enrichment at ORNL	364
Figure 9.21 (a) Inside the DIII-D Tokamak. (b) The position of approximately one hundred magnetic sensors (red dots) recently installed around the plasma. (c) Simulations of the cross-section of the DIII-D plasma show the response typical of non-suppression (c, left) and ELM suppression (c, right), in agreement with experimental measurements.	365
Chapter 10	
Figure 10.1 Overall Flowchart of the RDD&D Decision-Making Process	380
Figure 10.2 Illustrative Comparison of Life-Cycle GHG Emissions of Various Electricity Generation Technologies	385
Figure 10.3 Life Cycle Water Consumption Estimates for Various Electricity Generation Technologies	387
Figure 10.4 Critical Materials in the Medium Term (2015-2025)	390
Figure 10.5 Example of Options Space Visualization for the Electricity Sector	392
Figure 10.6 Stabilization Wedges Concept	393
Figure 10.7 Efficiency Supply Curve for Baseline Assumptions in 2030 for Selected Building Technologies	400
Figure 10.8 Examples of techniques for displaying multiple metrics simultaneously include (a) radar plot and (b) color-coded stop light matrix.	402

List of Tables

Table Number and Title	Page
Chapter 1	
Table 1.1 Changes in Energy Supply and End-Use Demand from 2010 through 2014	18
Chapter 2	
Table 2.1 Crosscutting Technology Table	46
Chapter 3	
Table 3.1 Moving from Traditional to Modern Electric Power Systems—RDD&D Needs	68
Table 3.2 Key Monitoring and Control Attributes for the Evolving Power System	69
Table 3.3 Estimated Number of Nodes/Control Points per Entity Type	73
Table 3.4 Cost and Performance Targets for Electric Energy Storage Technologies	83
Table 3.5 Cybersecurity R&D Parameters	89
Table 3.6 Fundamental Changes in Power System Characteristics	93
Table 3.7 Summary of RDD&D Opportunities	94
Chapter 4	
Table 4.1 Electric Power Capacity and Production, 2010 and 2014	102
Table 4.2 Nuclear Power Capacity and Production, 2010 and 2014	111
Table 4.3 Technical Challenges for Fuel Cell Types	129
Table 4.4 Cost Targets versus Current Status - Medium-Scale (0.2-5 MW) Fuel Cells	129
Table 4.5 Opportunities in Clean Electric Power Technology Development	137
Chapter 5	
Table 5.1 Sample ET Program 2020 Goals	147
Table 5.2 Energy Flows in Building Shells	148
Table 5.3 Non-Vapor Compression Heat Pump Technologies	153
Table 5.4 LED Efficiencies	162
Table 5.5 Computers and Electronic Devices	165
Table 5.6 Efficiencies of Electrical Devices	166
Table 5.7 Fundamental Research Challenges	174
Table 5.8 Increasing Efficiency of Building Systems and Technologies	175

Chapter 6

Table 6.1 Characteristics of Common Industrial Processes that Require Process Heating	188
Table 6.2 RDD&D Opportunities for Process Heating and Projected Energy Savings	189
Table 6.3 Energy Use of Major Motor-Driven Systems in U.S. Manufacturing	190
Table 6.42010 Production, Calculated Onsite Energy Consumption, and Energy SavingsPotential for Eleven Chemicals	192
Table 6.5 Additive Manufacturing Process Technologies and Materials Compatibilities	194
Table 6.6 Life-Cycle Energy Comparison for an Aluminum Diesel Engine Pump HousingManufactured via Gravity Die Casting and Selective Laser Melting	195
Table 6.7 Technical Potential and Energy and Cost Savings for High Power-to-Heat CHP Operation	198
Table 6.8 Strategic R&D Opportunities and Performance Targets for CHP	199
Table 6.9 Examples of Manufacturing Technologies with Strong Potential for Life-Cycle Impacts	205
Table 6.10 Key Elements for Energy-Related Technologies	207
Table 6.11 Current Energy Demands for Primary and Secondary Aluminum Ingot	208
Table 6.12 Estimate of Waste Heat that Could be Recovered with Thermoelectric Technology for Various Process Industries	210
Table 6.13 Materials Challenges and Energy Savings Opportunities for Selected Harsh ServiceConditions Application Areas	211
Table 6.14 Energy Savings Opportunities for Selected Application Areas	212
Table 6.15Manufacturing Technologies Assessed in QTR Chapter 6: Innovating Clean EnergyTechnologies in Advanced Manufacturing	216
Chapter 7	
Table 7.1 Market Size of U.S. Liquid Fuels and Products	229
Table 7.2 Emerging Issues Around Hydrocarbon Production	235
Table 7.3 Current and Future Potential Impacts of the Bioeconomy	244
Table 7.4 Summary of Cost Contributions (\$/gallon of product) for the Algal Lipid UpgradingDesign	249
Table 7.5 Timing for Research Needs and Priorities	255
Table 7.6 Hydrogen Delivery Cost as a Function of Dispensed Gas Pressure and DeliveryPathway as Reported from the Hydrogen Delivery Scenario Analysis Model	262
Table 7.7 Summary of RDD&D Opportunities	269
Chapter 8	
Table 8.1 Annual Petroleum Use and Emissions by Mode (2012)	278
Table 8.2 Combustion and Vehicle Efficiency Impact Summary	283
Table 8.3 Fuel-Vehicle Co-optimization Impact Summary (LDV combustion)	285
Table 8.4 Fuel-vehicle Co-optimization Impact Summary (Lightweighting)	289

Table 8.5 Materials Properties, Cost, and Lightweighting Potential Relative to Mild Steel	290
Table 8.6 Vehicle Weight in a Typical Mid-size Passenger Car Without Passengers or Cargo	291
Table 8.7 Plug-in Electric Vehicle Impact Summary	293
Table 8.8 Fuel Cell Electric Vehicle Impact Summary	300
Table 8.9 Status and Targets for Automotive Fuel Cell System	302
Table 8.10Hydrogen Storage Targets for FCEVS and Projected Hydrogen Storage SystemPerformance for Type IV Tanks and Materials-Based Systems	304
Table 8.11 Estimated Possible Energy Intensity Gains Through 2050 in Other Modes	307
Chapter 9	
Table 9.1 Current List of DOE Designated User Facilities	330
Table 9.2 A Subset of More Than One Hundred Shared R&D Facilities Currently Operating atDOE National Laboratories	332
Table 9.3 2015 ALCC Awards Relevant to Energy Technology	351
Chapter 10	
Table 10.1 National Average Energy Efficiencies, Technology Shares for Each Fuel Type, andCriteria Air Pollutant Emission Factors of the U.S. Power Sector in 2010	386
Table 10.2 Representative Land Use Energy Intensity Estimates for a Variety of ElectricityGenerating Technologies	388
Table 10.3 Range of Material Requirements for Select Passenger Car Technologies	389
Table 10.4 Range of Materials Requirements for Various Electricity Generation Technologies	390
Table 10.5 Portfolio-Level Questions	403
Table 10.6 Representative Criteria and Decision Questions for Systems/Technologies	403
Table 10.7 Representative Dynamic Factors Impacting Technology RDD&D and Questions	404
Table 10.8 Representative Metrics for Evaluating Energy Technology RDD&D	405
Table 10.9 Notional Times Required for Stages of RDD&D	406