Advances in Organic Materials for White OLEDs

Mark Thompson
University of Southern California

Stephen Forrest
University of Michigan
0.33, 0.63
0.17, 0.38
0.16, 0.37
0.16, 0.29
0.15, 0.22
0.14, 0.13
0.16, 0.10

1931 CIE chart

sRGB
NTSC

0.35, 0.61
0.42, 0.57
0.62, 0.38
0.65, 0.35
0.67, 0.33
0.68, 0.32
Color Mixing to Achieve White Emission

- Color mixing
- Side-by-side arrangement of RGB elements
- Transparent devices can be stacked
 - Pixels on top of pixels with a common substrate
 - Large sheets of transparent R, G and B OLEDS can be stacked to achieve white
- Mixed emitters in a single device
 - Simplifies device
 - Color balance achieved automatically
 - Several possible architectures
- In all cases the White OLED lifetimes are limited by the blue components
Efficiency and Operational Lifetime of PHOLEDS

Phosphorescent dopants

<table>
<thead>
<tr>
<th>Color</th>
<th>CIE</th>
<th>LE (cd/A)</th>
<th>(t_{50}) (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>[0.64, 0.36]</td>
<td>30</td>
<td>900,000</td>
</tr>
<tr>
<td>Green</td>
<td>[0.31, 0.63]</td>
<td>85</td>
<td>400,000</td>
</tr>
<tr>
<td>Blue</td>
<td>[0.14, 0.12]</td>
<td>High</td>
<td>short</td>
</tr>
</tbody>
</table>

Universal Display Corp.

Commercial lighting panels use sky-blue dopant to extend lifetime, but the WOLED lifetime is still limited by blue.
Efficiency and Operational Lifetime of PHOLEDs

Phosphorescent dopants

<table>
<thead>
<tr>
<th>Color</th>
<th>CIE</th>
<th>LE (cd/A)</th>
<th>t_{50} (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>[0.64, 0.36]</td>
<td>30</td>
<td>900,000</td>
</tr>
<tr>
<td>Green</td>
<td>[0.31, 0.63]</td>
<td>85</td>
<td>400,000</td>
</tr>
<tr>
<td>Blue</td>
<td>[0.14, 0.12]</td>
<td>High</td>
<td>short</td>
</tr>
</tbody>
</table>

Triplet exciton lifetime – μs

Is there enough energy in the T_1 exciton to break bonds?

<table>
<thead>
<tr>
<th>Color</th>
<th>λ_{max} (nm)</th>
<th>Energy (eV / kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>600</td>
<td>2.07 / 48</td>
</tr>
<tr>
<td>Green</td>
<td>520</td>
<td>2.40 / 56</td>
</tr>
<tr>
<td>Blue</td>
<td>460</td>
<td>2.70 / 63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>Energy (eV / kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-H</td>
<td>3.6-4.1 / 85-100</td>
</tr>
<tr>
<td>C-C</td>
<td>3.0-4.0 / 70-95</td>
</tr>
<tr>
<td>C-N</td>
<td>3.0-4.0 / 70-95</td>
</tr>
<tr>
<td>Ir-C</td>
<td>3.4 / 80</td>
</tr>
</tbody>
</table>

Make emitters with bonds at the upper ends of the ranges. Is that good enough?
Degradation Routes

- Energetically Driven
 - Lifetime: R>G>B
- Two particle interactions lead to luminance loss
 - Exciton on phosphor, polaron on host
 - Exciton-exciton also possible

Fitting kinetic data through several half-lives suggests that bimolecular process (TTA and TPA) are the most important.

\[\text{Rate}_{\text{annihilation}} = k[T_1][T_1,P^-] \]

Spreading the recombination zone: Dopant/Host Grading

\[Rate_{\text{annihilation}} = k[T_1][T_1, P^-] \]

Stacked devices reduce the current in each PHOLED by 2X.
Can we be more proactive about preventing bimolecular decay pathways?

Y. Zhang, et al., *Nature Comm.* (2014), DOI: 10.1038/ncomms6008
The Problem of TTA or TPA

- Desirable blue emission
 1. Electrical excitation
 2. Blue Emission
 3. TTA / TPA
 4. Vibronic relaxation
 5. Dissociative reaction (Bond cleavage)
 6. Non-radiative/radiative decay

- Dissociative reaction (degradation)
 1. → 3 → 4

- High-energy states management
 1. → 3 → 4' → 5'

- To increase lifetime: decrease bimolecular collisions/processes
 - Lower [exciton] and [polaron], but this increases voltage

- Grading is good, but how do we improve on it?
 - New, more stable blue phosphors and host materials (on going)
 - Relax the hot-polaron before it decays (managers)
Blue PHOLED measured at initial luminance of 1,000 cd/m²

<table>
<thead>
<tr>
<th>Device</th>
<th>Driving J [mA/cm²]</th>
<th>EQE [%]</th>
<th>LT80 [hr]</th>
<th>ΔV [V]</th>
<th>CIE @5 mA/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONV</td>
<td>6.7±0.1</td>
<td>8.0</td>
<td>93±9</td>
<td>0.4±0.1</td>
<td>[0.15,0.28]</td>
</tr>
<tr>
<td>GRAD</td>
<td>5.7±0.1</td>
<td>8.9</td>
<td>173±3 (+86%)</td>
<td>0.9±0.1</td>
<td>[0.16,0.30]</td>
</tr>
<tr>
<td>M3</td>
<td>5.3±0.1</td>
<td>9.0</td>
<td>334±5 (+260%)</td>
<td>1.5±0.2</td>
<td>[0.16,0.30]</td>
</tr>
</tbody>
</table>
Need lots of new stuff to extend lifetime:
- Stable emitters, hosts, blockers, transporters
- Managers to help protect the hosts and emitters
- New device structure ideas to maximize external efficiency
Phosphorescent OLED Efficiency:

$$\Phi_{EL} = \Phi_{PL} \chi \eta_r \eta_e$$

- **$\Phi_{EL/PL}$** luminescent quantum efficiencies
- **χ** fraction of usable excitons
- **η_r** carrier recombination efficiency
- **η_e** out coupling efficiency

- Good devices: Φ_{PL}, χ, $\eta_r \rightarrow 1$
- **Φ_{EL}** limited by η_e:
 - $\eta_e \uparrow$ mA/cm2 ↓ lifetime ↑
Non-Isotropic Emitter Orientation

Consider the orientation of the transition dipole relative to the substrate.

- Anisotropy factor:

\[
\Theta = \frac{p_z}{p_x + p_y + p_z} = \frac{p_\perp}{p_{\parallel} + p_\perp}
\]

p_z strongly couples to plasmon modes, p_x and p_y do not couple to plasmon modes.

Orientation and EQE

Isotropic
Ir(ppy)$_3$

Non-isotropic
Ir(ppy)$_2$(acac)

η_{EQE}

PL Quantum Yields (q_{PL})

Orientation factor (Θ)

Alignment of emitters in doped films

• Linear fluorescent molecules

\[
\text{BDASBi}
\]

in CBP, $\Theta = 0.09$

W. Bruetting, et. al, APL (2010)

• TADF emitters

\[
\text{Cis-BOX2}
\]

in CBP, $\Theta < 0.05$, $\eta_{\text{EXT}} = 33\%$

C. Adachi, et. al, APL (2016)

• Square planar platinum complexes

$\Theta = 0.59$

$\Theta = 0.67$

Oriented Emitters: tris-ligand Ir based emitters

<table>
<thead>
<tr>
<th>Emitter</th>
<th>Host</th>
<th>Orientation (% vertical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir(dhfpy)$_2$(acac)</td>
<td>NPD</td>
<td>25%</td>
</tr>
<tr>
<td>Ir(ppy)$_2$(acac)</td>
<td>CBP</td>
<td>23%</td>
</tr>
<tr>
<td></td>
<td>TCTA/ B3PYMPM</td>
<td>23%</td>
</tr>
<tr>
<td>Ir(ppy)$_2$(tmd)</td>
<td>TCTA/ B3PYMPM</td>
<td>22%</td>
</tr>
<tr>
<td>Ir(MDQ)$_2$(acac)</td>
<td>NPD</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td>NPD/ B3PYMPM</td>
<td>20%</td>
</tr>
<tr>
<td>Ir(bt)$_2$(acac)</td>
<td>NPD</td>
<td>24%</td>
</tr>
<tr>
<td>Ir(chpy)$_3$</td>
<td>BPhen</td>
<td>22%</td>
</tr>
<tr>
<td>Ir(mphmq)$_2$(tmd)</td>
<td>NPD/ B3PYMPM</td>
<td>18%</td>
</tr>
<tr>
<td>Ir(mphq)$_2$(acac)</td>
<td>NPD/ B3PYMPM</td>
<td>23%</td>
</tr>
<tr>
<td>Ir(phq)$_3$</td>
<td>NPD/ B3PYMPM</td>
<td>30%</td>
</tr>
<tr>
<td>Ir(piq)$_3$</td>
<td>NPD</td>
<td>22%</td>
</tr>
<tr>
<td>Ir(bppo)$_2$(acac)</td>
<td>CBP</td>
<td>22%</td>
</tr>
<tr>
<td>Ir(ppy)$_3$</td>
<td>CBP</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td>CBP</td>
<td>33%</td>
</tr>
</tbody>
</table>

Why do dopant align in an isotropic matrix?

- Electrostatic interactions between host and guest
- Dopant aggregations induced by high dopant dipole moment
- Vacuum/Organic boundary induces molecular orientation with aliphatic (acac) groups directed toward vacuum.

- Chemical anisotropy can drive alignment
- Near horizontal alignment is possible for linear molecules
- Can we achieve the same high degree of alignment for high performance Ir based phosphors?