Advances in Organic Materials for White OLEDs

Mark Thompson University of Southern California

Stephen Forrest University of Michigan

Universal**PHOLED**®

Technology and Materials

UNIVERSAL DISPLAY

Color Mixing to Achieve White Emission

- Color mixing
- Side-by-side arrangement of RGB elements
- Transparent devices can be stacked
 - Pixels on top of pixels with a common substrate
 - Large sheets of transparent R, G and B OLEDS can be stacked to achieve white
- Mixed emitters in a single device
 - Simplifies device
 - Color balance achieved automatically
 - Several possible architectures
- In all cases the White OLED lifetimes are limited by the blue components

Efficiency and Operational Lifetime of PHOLEDs

Phosphorescent dopants

Color	CIE	LE (cd/A)	t ₅₀ (hrs)		
Red	[0.64, 0.36]	30	900,000		
Green	[0.31, 0.63]	85	400,000		
Blue	[0.14, 0.12]	High	short		
Liniversal Display Corp					

Commercial lighting panels use sky-blue dopant to extend lifetime, but the WOLED lifetime is still limited by blue.

Efficiency and Operational Lifetime of PHOLEDs

Phosphorescent dopants

Color	CIE	LE (cd/A)	t ₅₀ (hrs)
Red	[0.64, 0.36]	30	900,000
Green	[0.31, 0.63]	85	400,000
Blue	[0.14, 0.12]	High	short

Triplet exciton lifetime – μ s

Is there enough energy in the T_1 exciton to break bonds?

Color	λ _{max} (nm)	Energy (eV / kcal)	Bond	Energy (eV / kcal)
Red	600	2.07 / 48	C-H	3.6-4.1 / 85-100
Green	520	2.40 / 56	C-C	3.0-4.0 / 70-95
Blue	460	2.70 / 63	C-N	3.0-4.0 / 70-95
			Ir-C	3.4 / 80

Make emitters with bonds at the upper ends of the ranges. Is that good enough?

several half-lives suggests that bimolecular process (TTA and TPA) are the most important.

 $Rate_{annhilation} = k[T_1][T_1, P^-]$ ISC N.C. Giebink, *et. al, J. Appl. Phys.* (2008)

Spreading the recombination zone: Dopant/Host Grading

Y. Zhang, et al., *Nature Comm.* (2014), DOI: 10.1038/ncomms6008

Grading: 10 X Lifetime Improvement Over Standard

Y. Zhang, et al., *Nature Comm.* (2014), DOI: 10.1038/ncomms6008

The Problem of TTA or TPA

- 1) Electrical excitation
- 2) Blue Emission
- 3) TTA / TPA
- (3)' Vibronic relaxation
- (4) Dissociative reaction (Bond cleavage)
- 4)' High energy particle management
- (5)' Non-radiative/radiative decay
- Desirable blue emission (1 \rightarrow (2)
- Dissociative reaction (degradation) $(1 \rightarrow (3 \rightarrow (4))$
- High-energy states management $(1 \rightarrow (3 \rightarrow (4)) \rightarrow (5))$
- To increase lifetime: decrease bimolecular collisions/processes
 - Lower [exciton] and [polaron], but this increases voltage
- Grading is good, but how do we improve on it?
 - New, more stable blue phosphors and host materials (on going)
 - Relax the hot-polaron before it decays (managers)

Blue PHOLED measured at initial luminance of 1,000 cd/m²

	J.J.TO.1	0.0	004±0 (120070)	1.0±0.2	[0.10,0.00]
M3	5 3+0 1	90	334 + 5 (+260%)	1 5+0 2	[0 16 0 30]
GRAD	5.7±0.1	8.9	173±3 <mark>(+86%)</mark>	0.9±0.1	[0.16,0.30]
CONV	6.7±0.1	8.0	93±9	0.4±0.1	[0.15,0.28]
Device	Driving J [mA/cm ²]	EQE [%]	LT80 [hr]	ΔV [V]	CIE @5 mA/cm ²

Need lots of new stuff to extend lifetime:

- Stable emitters, hosts, blockers, transporters
- Managers to help protect the hosts and emitters
- New device structure ideas to maximize external efficiency

Phosphorescent OLED Efficiency:

$$\Phi_{EL} = \Phi_{PL} \chi \eta_r \eta_e$$

- $\begin{array}{ll} \varPhi_{EL/PL} & \text{luminescent quantum efficiencies} \\ \chi & \text{fraction of usable excitons} \\ \eta_r & \text{carrier recombination efficiency} \end{array}$
- η_e out coupling efficiency
- Good devices: $\Phi_{PL}, \chi, \eta_r \rightarrow 1$
- $-\Phi_{\rm EL}$ limited by $\eta_{\rm e}$:
- $η_e$ ↑ *mA/cm*² ↓ lifetime ↑

Non-Isotropic Emitter Orientation

Consider the orientation of the transition dipole relative to the substrate. • Anisotropy factor: $\Theta = \frac{p_z}{p_x + p_y + p_z} = \frac{p_\perp}{p_{||} + p_\perp}$

 p_z strongly couples to plasmon modes, p_X and p_Y do not couple to plasmon modes

T.D. Schmidt et al., Appl. Phys. Lett. 99, 163302 (2011)

Orientation and EQE

S.-Y. Kim et al., Adv. Funct. Mater. 2013, 23 3896

Alignment of emitters in doped films

• Linear fluorescent molecules

in CBP, $\Theta = 0.09$ W. Bruetting, *et. al, APL* (2010)

• TADF emitters

$$\beta \rightarrow \beta \rightarrow \beta \rightarrow \beta \rightarrow \beta \rightarrow \beta$$
 in CBP, $\Theta < 0.05$, $\eta_{EXT} = 33\%$
C. Adachi, *et. al, APL* (2016)

• Square planar platinum complexes

 $\Theta = 0.59$

 $\Theta = 0.67$

Vertical!

S.R Forrest and J. Kim, Univ. Mich. (2016)

Oriented Emitters: tris-ligand Ir based emitters

Emitter	<u>Host</u>	Orienta	Drientation (% vertical)			
lr(dhfpy) ₂ (acac)	NPD	25%				
lr(ppy) ₂ (acac)	CBP	23%	[and a		
	CBP	23%		The second		
	TCTA/ B3PYMPM	24%	lr	RACC		
	TCTA/ B3PYMPM	23%		TACK		
lr(ppy) ₂ (tmd)	TCTA/ B3PYMPM	22%	lr(chpy)₃	i A i		
lr(MDQ) ₂ (acac)	NPD	24%				
	NPD/ B3PYMPM	20%		Hatter by		
	NPD	24%	N.	WHOO -		
lr(bt) ₂ (acac)	BPhen	22%	lr			
lr(chpy) ₃	NPD	23%	L 3	stree		
lr(mphmq) ₂ (tmd)	NPD/ B3PYMPM	18%	lr(piq)₃			
lr(mphq) ₂ (acac)	NPD/ B3PYMPM	23%	$\lceil \land \rceil$	A. H.		
lr(phq) ₃	NPD/ B3PYMPM	30%		The second		
lr(piq) ₃	NPD	22%	Ir			
lr(bppo) ₂ (acac)	CBP	22%	3	ALAK		
lr(ppy) ₃	CBP	31%	lr(ppy)₃	2 d		
	CBP	33%				

Graf, A. et al., J. Mater. Chem. C, 2014, 2, 10298-10304

Why do dopant align in an isotropic matrix?

- Electrostatic interactions between host and guest
- Dopant aggregations induced by high dopant dipole moment
- Vacuum/Organic boundary induces molecular orientation with aliphatic (acac) groups directed toward vacuum.

- Chemical anisotropy can drive alignment
- Near horizontal alignment is possible for linear molecules
- Can we achieve the same high degree of alignment for high performance Ir based phosphors?

M.J. Jurow, et al., Nat. Mater., 2015, doi:10.1038/nmat4428