2017 U.S. Department of Energy Solid-State Lighting R&D Workshop Feb. 2, 2017: Long Beach, CA, USA

Nitride-based tunnel junctions by MOCVD

T. Takeuchi, S. Kamiyama, M. Iwaya, I. Akasaki

Meijo University, Nagoya University

Minimizing efficiency droop

Stimulated emission

Carrier density clamped

GaInN VCSELs Current confinement by TJ

Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

J. T. Leonard,^{1,a)} E. C. Young,¹ B. P. Yonkee,¹ D. A. Cohen,¹ T. Margalith,¹ S. P. DenBaars,^{1,2} J. S. Speck,¹ and S. Nakamura^{1,2}

¹Materials Department, University of California, Santa Barbara, California 93106, USA
²Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA

Cascaded LED

Large input power with multiple V_{th}

Tandem LEDs Series connection by TJ

GaN-based three-junction cascaded light-emitting diode with low-resistance InGaN tunnel junctions

Fatih Akyol^{1*}, Sriram Krishnamoorthy¹, Yuewei Zhang¹, and Siddharth Rajan^{1,2}

¹Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH 43210, U.S.A. ²Department of Material Science and Engineering, Ohio State University, Columbus, OH 43210, U.S.A.

	Al/Ni/Au	
	200 nm n-GaN	
TJ	3 nm In _{0.3} Ga _{0.7} N	1
ord	100 nm p- GaN	
LED	SQW blue LED	
	300 nm n-GaN	
TJ	3 nm In _{0.3} Ga _{0.7} N	
Ord	100 nm p- GaN	
210	SQW blue LED	
LED	100 nm n-GaN	
TJ	3 nm In _{0.3} Ga _{0.7} N	
1.st	100 nm p- GaN	
I ED	SQW blue LED	AL/NJ/AU
LED	100 nm n-GaN	Al/NI/Au
	F.S. Ga-polar n-GaN	

Filling in green gap

Low-temperature-grown p-side structure

required to suppress thermal damages in long wavelength active regions

Effect of thermal annealing induced by p-type layer growth on blue and green LED performance

Wonseok Lee, Jae Limb, Jae-Hyun Ryou, Dongwon Yoo, Theodore Chung, Russell D. Dupuis*

Center for Compound Semiconductors, School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA 30332-0250, USA

Improvement of green LED by growing p-GaN on $In_{0.25}GaN/GaN$ MQWs at low temperature

Min-Suk Oh^a, Min-Ki Kwon^a, Il-Kyu Park^a, Sung-Ho Baek^a, Seong-Ju Park^{a,*}, S.H. Lee^b, J.J. Jung^b

n-GaN/tunnel junction/p-GaN grown at low temperature could be a solution.

Our approach for Nitride-based tunnel junctions

- Our approach
 - MOCVD & GaInN

MOCVD

- suitable for mass production
- poor Mg doping characteristics
 - Hydrogen passivation
 - Turn-off delay

GalnN

- leverage polarization doping
- narrow band gap

- Today's content
 - 1 Lateral Mg activation
 - ② GaInN tunnel junction
 - 3 Graded tunnel junction

1Lateral Mg activation

TJ on LED: n-p-n structure - Poor hydrogen diffusions reported in n-type materials

ex. Si : J. I. Pankove, et al., Appl. Phys. Lett. 47 (1985)748. InP : G. R. Antell, et al., Appl. Phys. Lett. 53 (1988) 758.

- Insufficient Mg activation could happen due to the poor diffusions

Modified Mg activation: thermal annealing through the sidewalls: Hydrogen could diffuse along lateral directions

1Lateral Mg activation

Modified Mg activation: under various annealing time and temperature

Mg activation proceeded along lateral directions

Y. Kuwano et al. Jpn. J. Appl. Phys. 52 (2013) 08JK12

2 GaInN tunnel junctions

GaInN TJ on std-sized LED

to estimate voltage drop at TJs by comparing with std. Ni/Au p-contact LED

Tunnel junction: Si-doped GaN (<u>2~3e20</u>) Mg-doped GaInN (<u>1~2e20</u>)

InN mole fraction dependence of voltage drop at the TJs

InN mole fraction	GalnN thickness (nm)
0	7.5
0.1	7.5
0.2	3
0.3	3
0.35	3
0.4	2

M. Kaga et al. Jpn. J. Appl. Phys. 52 (2013) 08JH06 D. Minamikawa et al. PSS (b) 252 (2015) 1127

2 GaInN tunnel junctions

I-V curves of various GaInN TJs on LEDs

higher InN mole fraction in TJs \Rightarrow lower voltage drop

Resistivity of 35 and 40% GaInN TJs seems comparable to that of conv. p-contact (at low current density)

2 Mg profiles in GaInN tunnel junctions

Another reason for lower resistivity of TJs with higher InN mole fraction

steeper Mg turn-off profile \Rightarrow thinner tunneling thickness

In surfactant and/or low temperature growth suppress Mg segregation

cf. K. Tomita et al., JAP 104, 014906 (2008)

3Graded tunnel junctions

Graded GaInN tunnel junctions for minimizing "energy spikes"

D. Takasuka et al., APEX 9 (2016) 081005

3Graded tunnel junctions

I-V curves (under high current density) of graded GaInN TJs on micro-LEDs

Our lowest voltage was obtained from **both-side graded**

Comparison with std. Ni/Au p-contact

The same characteristics: $r_s=2.3\times10^{-4}\,\Omega cm^2$

Summary

Low resistive MOCVD-grown nitride-based tunnel junctions

- Specific series resistance: 2.3×10⁻⁴ Ωcm²
 - Lateral Mg activation
 - Graded GaInN (~40%) tunnel junctions
- Nitride-based tunnel junction is ready to be used in various optoelectronic devices.

Micro-LED array with TJs

Micro-LED indicator with TJs