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Minimizing efficiency droop

Stimulated emission
Carrier density clamped

GalnN VCSELs
Current confinement by TJ

Demonstration of a lll-nitride vertical-cavity surface-emitting laser

with a lll-nitride tunnel junction intracavity contact

J. T. Leonard,™® E. C. Young," B. P. Yonkee,! D. A. Cohen," T. Margalith,’

S. P. DenBaars,"? J. S. Speck,” and S. Nakamura™?

'Materials Department, University of California, Santa Barbara, California 93106, USA
*Department of Electrical and Computer Engineering, University of California, Santa Barbara,
California 93106, USA

12P'N-DBR "B i n*“GaN
=(Ta;04/5i0,; )=} n-Alg.4GageN
SiN,
.7QW (A3nm, B1nm)

Cascaded LED

Large input power with multiple V4,

Tandem LEDs
Series connection by TJ

GaN-based three-junction cascaded light-emitting diode
with low-resistance InGaN tunnel junctions
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Filling in green gap

Low-temperature-grown p-side structure
required to suppress thermal damages in long wavelength active regions

Effect of thermal annealing induced by p-type layer growth on blue and  Improvement of green LED by growing p-GaN on Ing,>sGaN/GaN

green LED performance MQWs at low temperature
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n-GaN/tunnel junction/p-GaN grown at low temperature could be a solution.



Our approach for Nitride—based tunnel junctions

= OQur approach ® Today’s content
= MOCVD & GalnN

@ Lateral Mg activation

= MOCVD
= suitable for mass @ GalnN tunnel junction
production
" poor Mg doping (® Graded tunnel junction
characteristics

= Hydrogen passivation
= Turn-off delay

m GalnN

= |everage polarization
doping

= pnarrow band gap



(PLateral Mg activation

TJ on LED: n-p-n structure
- Poor hydrogen diffusions reported in n-type materials

ex. Si: J. |. Pankove, et al., Appl. Phys. Lett. 47 (1985)748.
InP : G. R. Antell, et al., Appl. Phys. Lett. 53 (1988) 758.

- Insufficient Mg activation could happen due to the poor diffusions

Modified Mg activation: thermal annealing through the sidewalls:
Hydrogen could diffuse along lateral directions
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(PLateral Mg activation

Modified Mg activation: under various annealing time and temperature
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Y. Kuwano et al.
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2)GalnN tunnel junctions

GalnN TJ on std-sized LED

to estimate voltage drop at TJs by comparing with std. Ni/Au p-contact LED

- GaN contaclaver -
- GaN(S00mm) INN mole fraction dependence
: :I_ Tunnel of voltage drop at the TJs
-Ga.In, junction
p-GaN(100nm) - _
p-AlGaN(20nm) i GalnN
SQW GalliGalnlt = InN mole thickness
LED 300x300 pm?2 fraction (m)
n-GaN(3um) ~structure
0 7.5
undoped-GaN(3um) 0.1 7.5
C-plane sapphire substrate 0.2 3
0.3 3
0.35 3
Tunnel junction: 0.4 2
Si-doped GaN (2~3e20)
Mg-doped GalnN (1-2e20) M. Kaga et al. Jpn. J. Appl. Phys. 52 (2013) 08JH06

D. Minamikawa et al. PSS (b) 252 (2015) 1127



2)GalnN tunnel junctions

-V curves of various GalnN TJs on LEDs
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higher InN mole fraction in TJs = lower voltage drop

Resistivity of 35 and 40% GalnN TJs seems comparable
to that of conv. p-contact (at low current density)



@Mg profiles in GalnN tunnel junctions

Another reason for lower resistivity of TJs with higher InN mole fraction

steeper Mg turn-off profile = thinner tunneling thickness
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In surfactant and/or low temperature growth suppress Mg segregation

cf. K. Tomita et al., JAP 104, 014906 (2008)



InN mole fraction

InN mole fraction

@)Graded tunnel junctions

Graded GalnN tunnel junctions for minimizing “energy spikes”

Design of InN mole fraction in TJ
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@)Graded tunnel junctions

|-V curves (under high current density) Comparison
of graded GalnN TJs on micro-LEDs with std. Ni/Au p-contact
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Our lowest voltage was obtained The same characteristics:

from both-side graded ,=2.3x104 Qcm?
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Summary

m | ow resistive MOCVD-grown nitride-based tunnel junctions
m Specific series resistance: 2.3x104 Qcm?
m [ ateral Mg activation
m Graded GalnN (~40%) tunnel junctions

m Nitride-based tunnel junction is ready to be used in various
optoelectronic devices.

Micro-LED array with TJs Micro-LED indicator with TJs
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