3M and Minnesota

We could use “warm” OLED lighting!
OLED SSL Components

Manufacture barrier films
Validate performance
Provide low cost

Key to low cost: R2R processing

Flexible Barrier Substrate
- WVTR
- Optical
- Temperature stability
- Mechanical
- TCO? (Patterned?)
- Light extraction? (int vs ext?)

Barrier Adhesive
- WVTR
- Edge protection
- Optical
 - T_{vis}, haze, index
- PSA, UV, or thermal?
- Environmental durability

Barrier Film Encapsulation
- WVTR
- Optical
 - Bottom emitter – reflective
 - Top emitter - T_{vis}, haze
 - Transparent device
- Light extraction?

Encapsulating Barrier Film
Barrier Adhesive
Flexible Barrier Substrate
Issues Affecting Roll-to-Roll Manufacturing

• Process stability, control

• Cleanliness

• Web handling / roll formation

• Temperature stability / dimensional stability

• Static charge management

• Moisture management

• Product / material characterization

OLED dark spots
Reprinted from Kim, Kim, Tak, Lee. (2006) APL 89 132108, with the permission of AIP Publishing
3M Vacuum Processed Barrier Film

- Multi-layer construction
 - Substrate
 - Oxide layers
 - Polymer layers

- Flexible substrate
 - Roll-to-roll component manufacturing
 - Enables roll-to-sheet or roll-to-roll OLED fab

- Oxide provides barrier
 - High transparency & clarity
 - Low haze
 - Good flexibility

- Polymers planarize and protect

- Tortuous path from multi-dyads
 - Can increase barrier performance
3M Barrier Film Commercialization

Display Materials and Systems Division

- **3M™ Quantum Dot Enhancement Film**
- **3M™ Flexible Transparent Barrier Film (FTB)**
 - WVTR < $1 \times 10^{-3} \text{ g/m}^2/\text{day} @ 20^\circ\text{C}$
- **Barrier Adhesive, OLED Encapsulation**

Renewable Energy Division

- **3M™ Ultra Barrier Solar Film**
 - WVTR < $5 \times 10^{-4} \text{ g/m}^2/\text{day} @ 23^\circ\text{C} 85\%\text{RH}$
- **Ultra Barrier Solar Film for OPV & Perovskite PV**

© 3M 2017. All Rights Reserved.
Barrier Films – Display Product Offerings and Development

Commercialized

- **FTB3-50**
 - Liner
 - Polymer
 - Barrier Oxide
 - Polymer
 - 2 or 5 mil PET
 - ~ 50 um
 - ~ 125 um
 - WVTR < 1x10^-3 g/m^2/day @ 20C
 - Mocon Permatran 700

- **FTB3-125**
 - Liner
 - Polymer
 - Barrier Oxide
 - Polymer
 - 2 or 5 mil PET
 - ~ 270 um
 - WVTR < 1x10^-3 g/m^2/day @ 20C
 - Mocon Permatran 700

- **BPS-270**
 - Liner
 - Polymer
 - Barrier Oxide
 - Polymer
 - Substrate
 - OCA
 - Substrate
 - Hardcoat
 - Liner
 - ~ 270 um
 - WVTR < 1x10^-3 g/m^2/day @ 20C
 - Mocon Permatran 700

Developmental

- **FTB3-50a**
 - Liner
 - Barrier Adhesive
 - Polymer
 - Barrier Oxide
 - Polymer
 - 2 or 5 mil PET
 - ~ 62 um
 - ~ 138 um

- **FTB3-125a**
 - Liner
 - Barrier Adhesive
 - Polymer
 - Barrier Oxide
 - Polymer
 - 2 or 5 mil PET
 - ~ 62 um
 - ~ 138 um
 - WVTR < 1x10^-3 g/m^2/day @ 20C
 - Mocon Permatran 700

- **FTB6-125L**
 - Liner
 - Barrier Adhesive
 - Polymer
 - Barrier Oxide
 - Polymer
 - Substrate
 - OCA
 - Substrate
 - Hardcoat
 - Liner
 - ~ 125 um

- **FTBA-12**
 - Liner
 - Barrier Adhesive
 - Polymer
 - Substrate
 - ~ 62 um
 - ~ 138 um
 - WVTR < 2 g/m^2/day @ 20C
OLED Barrier Characterization

- Develop technology/product
- Test technology/product
 - WVTR
 - Optical
 - Mechanical
 - Chemical
 - Electrical

- Do these tests validate device performance?
- Lifetime
- Brightness
- Uniformity
- Form Factor
Characterizing Barrier Performance - WVTR

Water Vapor Transmission Rate
(g/m²/day)

\[WVTR = \frac{m_p}{A \times t} \rightarrow 10^{-6} \frac{g}{m^2/\text{day}} \]

Direct WVTR Measurement
Mocon Aquatran 2, SEMPA HiBarSens2

Indirect WVTR Correlation
Mass Spectroscopy, i.e. Vinci QHV-4

Indirect WVTR Prediction
Optical or electrical Ca test

Measure \(H_2O \) (or \(O_2 \)) TR

Measure test gas (He, etc.), correlate to \(H_2O \)

Measure OD vs time, model WVTR – oCa

Measure \(\sigma \) vs time, model WVTR – eCa (NREL)
3M Optical Calcium Test

1) Deposit Ca (1000Å thick) on glass slides

2) Encapsulate with barrier film and barrier adhesive

3) Measure optical density at t = 0 hr

4) Place in 60°C / 90%RH and periodically remove for scanning

5) Use image analysis software to measure
 • Optical density \rightarrow WVTR
 • Moisture edge ingress
 • Defects
 • Barrier uniformity
Barrier Film Characterization by Optical Ca test

- **OD Loss (%)**
- **Time at 60C/90%RH (hrs)**

OD Loss (%)
- 5%
- 10%
- 15%
- 20%
- 25%
- 30%
- 35%
- 40%
- 45%
- 50%

Time at 60C/90%RH (hrs)
- 0
- 200
- 400
- 600
- 800
- 1000
- 1200
- 1400

10^-5 g/m^2-day
10^-6 g/m^2-day

Pictures of samples after 136 hours at 60C/90%RH
- 2 mil PET
- 1 mil Barrier PSA
- Glass
- 2-Ply Laminate

2 mil PET
1 mil Barrier PSA
Glass

3M

© 3M 2017. All Rights Reserved.
OLED Barrier Characterization

- Develop technology/product
- Test technology/product
 - WVTR
 - Optical
 - Mechanical
 - Chemical
 - Electrical
- Do these tests validate device performance?
 - Lifetime
 - Brightness
 - Uniformity
 - Form Factor
In-device characterization

Manufacturing success
• Product performance
• End-use performance
• Reliability
• Reproducibility
• Customer acceptance

Beyond steady state WVTR
• Handle-ability
• Form factor (rolls vs sheets)
• Mechanical durability
• In-device flexibility
• Optical interactions
• Permeation dynamics
• Defect distribution
• Device lifetime

• Sustainable Development Technology Canada
 • OTI Lumionics Inc. — OLED Lighting Pilot Production Line
 • SDTC Investment: $5,700,000
 Total Project Value: $17 million
 • Consortium Members: OTI Lumionics, 3M, Dr. Reddy’s Laboratories, NSG-Pilkington, TE Connectivity, Teknion, Lumentra

• Fraunhofer FEP
• DOE SSL Proposal

How could barrier films be used?

- Direct encapsulation
 - Glass
 - OLED
 - Adhesive

- Barrier substrate
 - Glass
 - OLED
 - Adhesive
 - Barrier

- Encapsulating foil
 - Adhesive
 - OLED
 - Barrier
 - Barrier substrate

© 3M 2017. All Rights Reserved.
OLED Barrier Characterization

- Develop technology/product
- Test technology/product
 - WVTR
 - Optical
 - Mechanical
 - Chemical
 - Electrical

- Do these tests validate device performance?
 - Lifetime
 - Brightness
 - Uniformity
 - Form Factor
Suggested Areas for Research

- WVTR measurement techniques
 - Faster methods with lower detection limits
 - Commercially available systems and standards

- In-line characterization techniques
 - Faster methods for validating control, performance

- Flexibility characterization techniques
 - Commercially available systems and standards

- Edge ingress & edge sealing
- Defects
 - Elimination, reduction, rapid detection
- Substrates
 - Low cost
 - Heat stable
- Electrical interconnects for flexible devices
- Large area transparent conductors
 - ITO alternatives
 - Pattern-able
Disclaimer

Product Use: All statements, technical information and recommendations contained in this document are based upon tests or experience that 3M believes are reliable. However, many factors beyond 3M’s control can affect the use and performance of a 3M product in a particular application, including the conditions under which the product is used and the time and environmental conditions in which the product is expected to perform. Since these factors are uniquely within the user’s knowledge and control, it is essential that the user evaluate the 3M product to determine whether it is fit for a particular purpose and suitable for the user’s method of application.

Warranty and Limited Remedy: Unless stated otherwise in 3M’s product literature, packaging inserts or product packaging for individual products, 3M warrants that each 3M product meets the applicable specifications at the time 3M ships the product. Individual products may have additional or different warranties as stated on product literature, package inserts or product packages. 3M MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY IMPLIED WARRANTY ARISING OUT OF A COURSE OF DEALING, CUSTOM OR USAGE OF TRADE. User is responsible for determining whether the 3M product is fit for a particular purpose and suitable for user’s application. If the 3M product is defective within the warranty period, your exclusive remedy and 3M’s and seller’s sole obligation will be, at 3M’s option, to replace the product or refund the purchase price.

Limitation of Liability: Except where prohibited by law, 3M and seller will not be liable for any loss or damage arising from the 3M product, whether direct, indirect, special, incidental or consequential, regardless of the legal theory asserted, including warranty, contract, negligence or strict liability.