

Innovations in Solid State Lighting

Shuji Nakamura, Steven DenBaars and James Speck

Solid State Lighting and Energy Electronics Center Materials and ECE Departments University of California, Santa Barbara

Outline

- 1. Introduction
 - History
 - Is sun light the best for humans and plants?

2. LED Lighting

- Tunnel-Junction (TJ) blue/green LEDs with EQE over 70%/50%
- Micro LED, green LED for red LED

3. Laser Lighting

- High Power Semipolar LDs
- Li-FI with LEDs and LDs

Introduction

2

GaN/InGaN on Sapphire Research

	Year	Researcher(s)	Achievement
$\left(\right)$	1969	Maruska & Tietjen	GaN epitaxial layer by HVPE
	1973	Maruska <i>et al.</i>	1 st blue Mg-doped GaN MIS LED
	1983	Yoshida <i>et al.</i>	High quality GaN using AIN buffer by MBE
	1985	Akasaki & Amano <i>et al.</i>	High quality GaN using AIN buffer by MOCVD
	1989	Akasaki & Amano <i>et al.</i>	p-type GaN using LEEBI (p is too low to fabricate devices)
	1991	Nakamura	Invention of Two-Flow MOCVD
	1991	Moustakas	High quality GaN using GaN buffer by MBE
	1991	Nakamura	High quality GaN using GaN buffer by MOCVD
	1992	Nakamura <i>et al.</i>	p-type GaN using thermal annealing, Discovery hydrogen passivation (p is high enough for devices)
	1992	Nakamura <i>et al.</i>	InGaN layers with RT Band to Band emission
	1994	Nakamura <i>et al.</i>	InGaN Double Heterostructure (DH) Bright Blue LED (1 Candela)
	1995	Nakamura <i>et al.</i>	InGaN DH Bright Green LED
	1996	Nakamura <i>et al.</i>	1 st Pulsed Violet InGaN DH MQW LDs
	1996	Nakamura <i>et al.</i>	1 st CW Violet InGaN DH MQW LDs
	1996	Nichia Corp.	Commercialization White LED using InGaN DH blue LED

GaN

InGaN

Contributions towards efficient blue LED

GaN Buffer by Nakamura, 1991

Solid State Lighting & Energy Electronics Center

First Source of Light for Life: Our Sun

Conventional White LED (Blue LED + Phosphor)

Strong Blue LED light disrupts the circadian cycle or suppresses melatonin?

Figure 2. The typical emission spectrum of a white LED using a YAG phosphor at 20 mA. T_{cp} is 6500 K.

Figure 3. The spectra of the ultra-high R_a white LED, the conventional white LED and CIE Standard Illuminates (D₅₀). All of T_{cp} are 5000 K.

Narukawa et al., J. Phys. D: Appl. Phys. 43 (2010) 354002

Plant Factory using Blue/Red LEDs in Clean Room

Growth rate is 2.5 times (the latest: 5 times) higher. Yield from the plants is 50% to 90% Water usage is only 1% compared with in the field

What's VP₃?

 $VP_3 = \underline{V}$ iolet and $\underline{3} \underline{P}$ hosphor

What's VP₃?

$VP_3 = \underline{V}$ iolet and $\underline{3} \underline{P}$ hosphor

Soraa's New Helia Bulb Lamp

http://www.digitaltrends.com/home/soraa-helia/#/7

THE BLUE LIGHT SOLUTION

Standard LED

Large Blue Light Peak Faded Colors & Whites Efficient "Sleep" LED

Moderate Blue Light Unnatural Yellow Tint Efficient

SORAA

No Blue Light Beautiful Colors & Whites Efficient

Soraa's New Helia Bulb Lamp

http://www.digitaltrends.com/home/soraa-helia/#/7 2017 CES Innovation award(January 4, 2017)

Using Soraa's BlueFree LEDs, David says the Helia emits almost zero blue light while still retaining a "soft white color." The bulb adapts to your home's sunrise and sunset times as well as your habits to trigger the night mode. Helia also provides "plenty of blue light" in the morning to wake you up.

Read more: <u>http://www.digitaltrends.com/home/soraa-helia/#ixzz4UvVGdiro</u>

Follow us: <u>@digitaltrends on Twitter</u> | <u>DigitalTrends on</u> <u>Facebook</u>

PP. 276 Nature, Vol. 519, 19 March 2015

THE MYOPIA BOOM

LED Lighting: Tunnel Junction Devices

GaN Tunnel Junction Advantages

- Increased Internal Quantum Efficiency (IQE) for LEDs
- Could lower voltage in edge emitting laser diodes
- Reduction in optical loss and increase of design space for GaN VCSELs
- Increase in process design space due to buried p-GaN

Tunnel Junction LEDs

- Combination of MOCVD and MBE allows for high quality MOCVD InGaN active regions with high doping density of MBE
- p-type GaN is activated under NH₃ MBE growth conditions

Tunnel Junction LEDs

tunneling distance ~5.5 nm

Electrons tunnel directly from valence band in p-type layer to conduction band in n-type layer

Reverse bias operation decreases tunnel distance

TJ (2021) LED

Solid State Lighting & Energy Electronics Center

0.1 mm² chip at 20 A/cm²

- Small area LED highlight voltage drop in tunnel junction
- LED with small n-contact illustrates current spreading abilities

Multi-Junction LEDs (Triple Contact Design)

- Thin metal current spreading layer for top LED
- Two contacts so each active region can be operated independently or in series

Dual Wavelength (2021) LEDs

Multiple Junction LED Voltage

 LED turns on near sum of photon energies

Patterned Sapphire Substrate LEDs

- c-plane PSS LEDs are industry standard for LEDs
- Pattern improves light extraction and LED quality

Patterned Sapphire Substrate LEDs

- c-plane PSS LEDs are industry standard for LEDs
- Pattern improves light extraction and LED quality

Patterned sapphire LED epi-wafers

- *c-plane* PSS LEDs are industry standard for LEDs
- Pattern improves light extraction and LED quality

Tunnel junction regrowths

• Initial tunnel junction devices had higher voltages compared with reference samples than devices on nonpolar and semipolar planes

Acid treatments prior to regrowth

3.08 V at 20 A/cm²

Patent Pending: "III-Nitride tunnel junction improvement through reduction of the magnesium memory effect"

TJ Flip chip LEDs

- · Omnidirectional reflector has higher reflectivity than silver
- Only a small fraction of aluminum contact area is needed

High reflectivity coating

Multilayer dielectric coating under wire bond pads increases reflectivity to over 97%

Flip chip LED design

- HR coating and metal surrounds mesa to reflect more light
- LEDS are flipped onto a patterned SiC submount
- Wire bonded to header

Patent Pending: "III-Nitride flip chip LED with dielectric based mirror"

Tunnel Junction Blue LED

Peak EQE 78%, peak WPE 72%

World Record-Low Droop compared to commercial LED

"Silver free III-nitride flip chip LED with wall plug efficiency over 70% utilizing GaN tunnel junction" B.P. Yonkee, E.C. Young, S.P. DenBaars, S. Nakamura and J. S. Speck, Apply. Phys. Lett., 109

- Tunnel junction could allow for novel laser designs employing n-GaN cladding on both sides
- Highly doped p-GaN has a resistivity of ~ 1 Ω cm, giving 1 × 10⁻⁵ Ω cm² resistivity per 100nm p-GaN
- Lower doping used for low optical loss gives higher resistivity

Tunnel-junction 525 nm Green LEDs on PSS

Commercial PSS green LED epi-wafer

Peak EQE 50%, peak WPE 40%

LED Lighting: Micro LED, and Green LED for Red LED

Displays are extremely energy inefficient.

Liquid Crystal Display

Efficient Light Source + Inefficient Filtering Process

> 5% Light Out (95% Power Lost)

Organic LED Display

No Filtering Process + Inefficient Light Source

10% Light Out (90% Power Lost)

Figure courtesy of Chris Pynn

RGB μLED displays can be much more efficient.

Electroluminescence reveals emission patterns.

Current crowds around the edges of larger LEDs at low current densities.

Confidential

106

Small µLEDs maintain high EQE.

Solid State Lighting & Energy Electronics Conter EDS exhibit less

Growth of Green LEDs with 3 Step Active Region

Previous high efficiency green LED

0.1 mm² (1 mA = 1 A/cm²)

	Current (mA)	Voltage (V)	Wavelength (nm)	EQE%	FWHM (nm)
Packaged LED	20	3.54	526.6	30.2	33

Active region study

• Further study of the surface morphology of MQW

Pits ~ 6e8 cm⁻²

Atomic-force microscopy (AFM) scan of the last GaN barrier

High density of v-defect in green MQW

Understanding V-defect problem

- V-defect initiates at threading dislocation (TD).
- Kinetically controlled by reduced Ga incorporation which is the primary cause for V-defect.
 - Growth rate of {0001} plane > {1011} planes
- □ Increase surface mobility to overcome the problem.
 - Lower V/III ratio.
 - Higher temperature.
 - H₂ carrier gas.

Limitation.

• Temperature difference $\Delta T = 75^{\circ}$ C.

Solid State Lighting & Energy Electronics Center

• Thin GaN barrier.

3 step Active region

- Growth of Active region in 3 steps with different carrier gas.
 - QW and AlGaN cap layer growth in N2 environment.
 - 1stHT GaN barrier with H₂(200 sccm)+N₂(1.9 slm) at $\Delta T = 75$ C^o.
 - $2^{nd}HT$ GaN barrier with H₂(1.9 slm)+N₂(1.9 slm) at $\Delta T = 140C^{\circ}$.

 $5 \times MQW$ -

Final device

10 nm p+-GaN contact layer
70 nm GaN: Mg 7 \times 10 ¹⁹ cm ⁻³
10 nm Al _{0.20} GaN _{0.80} EBL
7 nm 2 nd HT GaN barrier
3 nm 1 st HT GaN barrier
2 nm Al _{0.30} GaN _{0.70} cap layer
3 nm In _{0.25} GaN _{0.78} QW
10 nm GaN UID
300 nm S.L In _{.05} GaN _{.95} /GaN: Si 5×10^{18} cm ⁻³
3 um GaN: Si 5 \times 10 ¹⁸ cm ⁻³

Patterned Sapphire Substrate (PSS)

- Three steps photolithography fabrication process.
- 0.1mm² active area.
- Vertical transparent LEDs

packaging.

3 vs 2 step Active region results

• 0.1mm² chip size.

"Multi-step active region for high performance nitride LEDs" (patent pending)

Green LED results

	Current density (A/cm ²)	Voltage (V)	Wavelength (nm)	EQE%	FWHM (nm)
Packaged LED	20	4.6	525.4	33	34

Laser Lighting: High Power Semipolar $(20\overline{21})$ LDs

UCSB's Vision

LED based White Light is great, Laser based is even better!

Laser Light: Game-changing Radiance

Substantially more LD devices per sq in of wafer (vs. LED)

LDs are higher brightness by several orders of mag (vs. LED)

LD WPE is increasing and cost is decreasing

Small source -> simpler optics, novel phosphor designs

"Delivered" Lm/W and \$/Lm for LD sources is increasingly appealing for specialty lighting applications

UCSB Blue Laser Structure

Becerra et al. Appl. Phys. Expr. **9**, 092104 (2016).

Internal Loss and η_i for $(20\overline{2}\overline{1})$ LD

$$\frac{1}{\eta_d} = \frac{\langle \alpha_i \rangle}{\eta_i \ln(1/R)} L + \frac{1}{\eta_i}$$

From this fit, we calculate:

$\langle \alpha_i \rangle$	10 cm ⁻¹ ± 2 cm ⁻¹
η _i	0.80 ± 0.1

Previous measurement on Violet Lasers on mplane at UCSB: $<\alpha_i > = 9.8 \text{ cm}^{-1} \eta_i = 66\%$

Simulation of Confinement & Loss

Layer	Loss %
p-metal	1.0%
p-clad	7.7%
p-SCH	4.0%
EBL	9.5%
subtotal: p-top	22.3%
QW	52.6%
subtotal: active region	53.3%
n-SCH	3.1%
n-clad	19.6%
subtotal: n-bottom	24.4%

Effective Index	Confinement Factor	Calculated $\langle \alpha_i \rangle$	Experimental $\langle \alpha_i \rangle$
2.47	0.36	7.65 cm ⁻¹	10 cm ⁻¹ ± 2 cm ⁻¹

2 QW Laser

Becerra et al. Appl. Phys. Expr. 9, 092104 (2016).

InGaN m-plain VCSEL with tunnel junction intracavity contact

Leonard, J. T. et al. Appl. Phys. Lett. 107, 091105 (2015).

Loss in ITO - 30 cm⁻¹ Loss in Tunnel Junction - 3 cm⁻¹ Leonard, J. T. et al. Appl. Phys. Lett. 107, 011102 (2015).

10 times less loss for tunnel junction (TJ) contact layer compared with ITO

7x enhancement in peak power with TJ

Leonard, J. T., Young, E. C., Yonkee, B. P., Cohen, D. a., Margalith, T., DenBaars, S. P., Speck, J. S., Nakamura, S., "Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact," Appl. Phys. Lett. **107**(9), 091105 (2015).^B

VCSEL Results – Polarization

Conventional VCSEL Array

Nonpolar VCSEL Array

Fiber-Coupled Measurement Polarization Ratio = 100%!

Li-Fi with LEDs and LDs

Intelligent LED Light and Communication Systems

Source:www.electronicsbus.com

- Li-Fi communication network
- Sensor, Alarm System, Social Preference
- Higher capacity than Wi-Fi.

LiFi' uses LEDs for blazing fast data transfer

Nick Barber @nickib

Nov 7, 2013 4:45 AM

A new technology called LiFi can transfer data using LED lights. In this video, we'll watch a demo of a LiFi system made with off-the-shelf-parts, as it streams a vide.

Data Rate: LED Li-Fi>10xWi-Fi, Laser Li-Fi > 100~1000xWi-Fi

Motivation

- RF spectrum crisis
 - Mobile data demands are exponentially increasing but spectrum efficiency is saturated
- Advantages of VLC
 - ~hundereds THz of unlicensed spectrum available
 - No EM interference (EMI)
 - High security
 - Cost-efficient

Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Motivation

- RF spectrum crisis
 - Mobile data demands are exponentially increasing but spectrum efficiency is saturated
- Advantages of VLC
 - ~hundereds THz of unlicensed spectrum available
 - No EM interference (EMI)
 - High security
 - Cost-efficient

Plastic fiber optics

Underwater communication

58

Bandwidth limits in VLC transmitter

Commercial LED

Commercial LD

Single micro-LED

Higher speed LD?

H. L. Minh, et al., IEEE PTL, 2009 J. J. D. McKendry, et al., IEEE PTL, 2010 C. Lee, et al., Opt. Express, 2015

Records in III-nitride LDs and LEDs

 BW_{max} of LDs: 5 GHz (photodetector bandwidth limit)

Solid State Lighting & Energy Electronics Center

Semipolar (20-2-1) Laser Diode

C. Lee, et al., Appl. Phys. Lett., 2016

Modulation bandwidth

PD response

After correcting PD response: <u>Record BW > 5 GHz</u> due to the noise floor

5 Gbit/s OOK with clear open eyes (Higher data rate could be achieved by high speed PD and higher order modulation)

On-off keying (OOK) modulation

C. Lee, et al., Appl. Phys. Lett., 2016

LDs for LiFi Applications

- LEDs 14 MHz without phosphor and 2.5 MHz with phosphor
- LDs 1.2 GHz without phosphor and 1.1 GHz with phosphor (limited by photodetector)
- LDs are ~1,000 times faster than LEDs for white lighting data transmission

White LED vs. LD VLC

C. Lee, et al., Opt. Express, 2015

Laser Diodes – Light of the Future

Laser Headlights

Laser Projectors 100 inch TV

BMW with Laser Lighting Headlights

BMW (

BMW with laser headlights (available in US!)

Researchers at UCSB: SSLEEC in 2016

