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Outline 

1. Introduction
– History

– Is sun light the best for humans and plants?

2. LED Lighting
– Tunnel-Junction (TJ) blue/green LEDs with EQE

over 70%/50%

– Micro LED, green LED for red LED

3. Laser Lighting
– High Power Semipolar LDs

– Li-FI with LEDs and LDs
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1) INTRODUCTION

Introduction 
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GaN/InGaN on Sapphire Research 

Year Researcher(s) Achievement 

1969 Maruska & Tietjen GaN epitaxial layer by HVPE 

1973 Maruska et al. 1st blue Mg-doped GaN MIS LED 

1983 Yoshida et al. High quality GaN using AlN buffer by MBE 

1985 Akasaki & Amano et al. High quality GaN using AlN buffer by MOCVD 

1989 Akasaki & Amano et al. p-type GaN using LEEBI (p is too low to fabricate devices)

1991 Nakamura Invention of Two-Flow MOCVD 

1991 Moustakas High quality GaN using GaN buffer by MBE 

1991 Nakamura High quality GaN using GaN buffer by MOCVD 

1992 Nakamura et al. 
p-type GaN using thermal annealing,
Discovery hydrogen passivation (p is high enough for devices)

1992 Nakamura et al. InGaN layers with RT Band to Band emission 

1994 Nakamura et al. InGaN Double Heterostructure (DH) Bright Blue LED (1 Candela) 

1995 Nakamura et al. InGaN DH Bright Green LED 

1996 Nakamura et al. 1st Pulsed Violet InGaN DH MQW LDs 

1996 Nakamura et al. 1st CW Violet InGaN DH MQW LDs 

1996 Nichia Corp. Commercialization White LED using InGaN DH blue LED 
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Contributions towards efficient blue LED 

AlN Buffer by Akasaki & Amano, 1985GaN Buffer by Nakamura, 1991 

InGaN Emitting 

(Active) Layer  

by Nakamura & Mukai, 1992 

p-type GaN activated by

Electron Beam Irradiation 

by Akasaki & Amano, 1989 

p-type GaN activated by thermal

annealing by Nakamura et al., 1992 

Hydrogen passivation was clarified 

as an origin of hole compensation 

Sapphire substrate 

n-type GaN
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First Source of Light for Life: Our Sun 
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Conventional White LED (Blue LED + Phosphor) 

Narukawa et al., J. Phys. D: Appl. Phys. 43 (2010) 354002 

Strong Blue LED light disrupts the circadian cycle 
or suppresses melatonin? 
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Plant Factory using Blue/Red LEDs in Clean Room 

Growth rate is 2.5 times (the latest: 5 times) higher. 

Yield from the plants is 50% to 90% 

Water usage is only 1% compared with in the field 
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What’s VP3? 

VP3 = Violet and 3 Phosphor 

Green 

Blue 

Red 
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GaN on GaN  
Tri-LED Die 

(Emit Violet Light) 
Phosphor Particles 

suspended in a 
polymer convert 

Violet to 

1 2 

3 
Resulting in Full-visible-spectrum light 



What’s VP3? 

VP3 = Violet and 3 Phosphor 
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Soraa’s New Helia Bulb Lamp 
http://www.digitaltrends.com/home/soraa-helia/#/7 
2017 CES Innovation award(January 4, 2017) 

 

Using Soraa’s BlueFree LEDs, David says the Helia emits 
almost zero blue light while still retaining a “soft white 
color.” The bulb adapts to your home’s sunrise and 
sunset times as well as your habits to trigger the night 
mode. Helia also provides “plenty of blue light” in the 
morning to wake you up. 
Read more: http://www.digitaltrends.com/home/soraa-
helia/#ixzz4UvVGdiro  
Follow us: @digitaltrends on Twitter | DigitalTrends on 
Facebook 
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PP. 276 Nature, Vol. 519,  19 March 2015 
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TUNNEL-JUNCTION (TJ) 

BLUE/GREEN LEDS WITH OVER 

70%/50% EQE

LED Lighting: Tunnel Junction Devices 

14 
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GaN Tunnel Junction Advantages 

By Professor Jim Speck 

Use of MBE for N-GaN 

regrowth (eliminate H) 

Tunnel junction 

eliminates need for 

standard p-contacts 

Transparent Conducting 

Oxide LED 
Tunnel Junction LED 

• Increased lnternal Quantum Efficiency (IQE) for LEDs

• Could lower voltage in edge emitting laser diodes

• Reduction in optical loss and increase of design space for GaN VCSELs

• Increase in process design space due to buried p-GaN

15 
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• Combination of MOCVD and MBE allows for high

quality MOCVD InGaN active regions with high doping

density of MBE

• p-type GaN is activated under NH3 MBE growth

conditions 

Tunnel junction 

at regrowth 

interface 

Tunnel Junction LEDs 

16 

Multiple patents 

pending 
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Electrons tunnel directly from 
valence band in p-type layer to 
conduction band in n-type layer 

Reverse bias operation decreases 

tunnel distance 

Tunnel Junction LEDs 

h
+ 

e
- 

-0.5 V Bias

15 nm p-GaN 2×1020  cm-3 

Mg 

15 nm n-GaN 1×1020  cm-3 

Si 

tunneling distance ~5.5 nm 

17 
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Ti/Au 

Ti/Au 

TJ (202 1) LED 

202 1  Free Standing GaN 

InGaN MQW Active Region 
100 nm p-GaN:Mg 
10 nm p+-GaN:Mg 
20 nm n+-GaN:Si 

100 nm n-GaN:Si 

n-GaN:Si

• Small area LED highlight

voltage drop in tunnel junction

• LED with small n-contact

illustrates current spreading

abilities

0.1 mm2 chip at 20 A/cm2

18 
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Multi-Junction LEDs (Triple Contact Design) 

• Thin metal current spreading layer for top LED

• Two contacts so each active region can be operated independently or in series

19 
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Dual Wavelength (202 1) LEDs 

20 
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Multiple Junction LED Voltage 

• LED turns on near sum of photon

energies

21 
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n-GaN:Si

Patterned Sapphire Substrate LEDs 

• c-plane PSS LEDs are industry standard for LEDs

• Pattern improves light extraction and LED quality

InGaN Active Region 

p-GaN:Mg

p+-GaN:Mg 

PSS Substrate 

22 
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n-GaN:Si

Patterned Sapphire Substrate LEDs 

• c-plane PSS LEDs are industry standard for LEDs

• Pattern improves light extraction and LED quality

InGaN Active Region 

p-GaN:Mg

p+-GaN:Mg 

PSS Substrate 

n+-GaN:Si 

n-GaN:Si
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n-GaN:Si

Patterned sapphire LED epi-wafers 

24 

InGaN Active Region 

p-GaN:Mg

p+-GaN:Mg 

PSS Substrate 

Pd/Au 

Al/Ni/Au 

• c-plane PSS LEDs are industry standard for LEDs

• Pattern improves light extraction and LED quality
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Tunnel junction regrowths 

MBE 

regrowth 

• Initial tunnel junction devices had higher voltages compared with reference
samples than devices on nonpolar and semipolar planes

25 
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Acid treatments prior to regrowth 

• HF treatment provides lowest voltage for c-plane TJs

3.08 V at 20 A/cm2

Patent Pending: “III-Nitride tunnel junction improvement through reduction of the magnesium memory effect”
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TJ Flip chip LEDs 

TJ Flip Chip LEDs 

Conventional Flip Chip LEDs 

27 
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High reflectivity coating 
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Flip chip LED design 

• HR coating and metal surrounds

mesa to reflect more light

• LEDS are flipped onto a patterned

SiC submount

• Wire bonded to header

Patent Pending: “III-Nitride flip chip LED with dielectric based mirror” 

29 
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Tunnel Junction Blue LED 

Peak EQE 78%, peak WPE 72% 
World Record-Low Droop compared to commercial LED 

Commercial LED 

UCSB TJ LED 

0.1 mm2 (1 mA = 1 A/cm2)

“Silver free III-nitride flip chip LED with wall plug efficiency over 70% utilizing GaN tunnel junction” 

B.P. Yonkee, E.C. Young, S.P. DenBaars, S. Nakamura and J. S. Speck, Apply. Phys. Lett., 109
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1800 um by 2.5um Laser Dimension 

• Tunnel junction could allow for novel laser designs employing n-GaN cladding on both sides

• Highly doped p-GaN has a resistivity of ~ 1 Ωcm, giving 1 × 10-5 Ωcm2 resistivity per 100nm p-GaN

• Lower doping used for low optical loss gives higher resistivity

31 

Tunnel Junction Edge Emitting Laser 
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 Tunnel-junction 525 nm Green LEDs on PSS 

Peak EQE 50%, peak WPE 40% 

Commercial PSS green LED epi-wafer 

32 

0.1 mm2 (1 mA = 1 A/cm2)
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TUNNEL-JUNCTION (TJ) 

BLUE/GREEN LEDS WITH OVER 

70%/50% EQE

LED Lighting: Micro LED, and  Green LED 
for Red LED 

33 
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(95% Power Lost) (90% Power Lost) 

Figure courtesy of Chris Pynn 

n 
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RGB µLED displays can be much more efficient. 

35 

 Self-emissive – no loss through filters

 Inorganic material (GaN) – more efficient
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Electroluminescence reveals emission patterns. 

10 A/cm2

36 
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Small µLEDs maintain high EQE. 

• The max EQE for all µLEDs are

similar (40-50%).

• Reduction of the EQE is due to

sidewall damage as µLEDs have

higher perimeter to area ratios. 

• Smaller µLEDs exhibit less droop,

which is due to better current 

spreading.

At 900 A/cm2

10 µm 20 µm 40 µm 

60 µm 

80 µm 

100 µm 
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Growth of Green LEDs with 3 Step 

Active Region  
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Previous high efficiency green LED 

Current 

(mA) 

Voltage (V) Wavelength 

(nm) 

EQE% FWHM 

(nm) 

Packaged LED 20 3.54 526.6 30.2 33 

A.Alhassan et al., Optics Express. 24(16), 17868-17873 (2016)

0.1 mm2 (1 mA = 1 A/cm2)
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Active region study 

Patterned Sapphire Substrate (PSS) 

GaN: Si 5 × 1018 cm−3 

GaN UID 

In0.25GaN0.78 QW 

HT GaN barrier 

3 nm  

10 nm  

3 um 

5 × MQW 

S.L In.05GaN.95 /GaN: Si 5 × 1018 cm−3
300 nm 

10 nm at ∆T = 75Co 

Al0.30GaN0.70 cap layer 2 nm  

• Further study of the surface morphology of MQW

Pits ~ 6e8 cm-2

• High density of v-defect in green MQW

Atomic-force microscopy (AFM) 

scan of the last GaN barrier 
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Understanding V-defect problem 

Threading 

dislocation 

{1011} 

{0001} 

GaN 

V-defect

• V-defect initiates at threading dislocation (TD).

• Kinetically controlled by reduced Ga incorporation

which is the primary cause for V-defect.

• Growth rate of {0001} plane > {1011} planes

 Increase surface mobility to overcome the problem.

• Lower V/III ratio.

• Higher temperature.

• H2 carrier gas.

Limitation. 

• Temperature difference ∆T = 75oC.

• Thin GaN barrier.

Cross-sectional schematic of V-defect 



Solid State Lighting & Energy Electronics Center 

UCSB   

3 step Active region 

Patterned Sapphire Substrate (PSS) 

3 um GaN: Si 5 × 1018 cm−3

10 nm GaN UID 

3 nm In0.25GaN0.78 QW 

3 nm 1stHT GaN barrier 

300 nm  S.L In.05GaN.95 /GaN: Si 5 × 1018 cm−3

∆T = 75Co 

2 nm Al0.30GaN0.70 cap layer 

• Growth of Active region in 3 steps with different carrier gas.

• QW and AlGaN cap layer growth in N2 environment.

• 1stHT GaN barrier with H2(200 sccm)+N2(1.9 slm) at ∆T = 75Co.

• 2ndHT GaN barrier with H2(1.9 slm)+N2(1.9 slm) at ∆T = 140Co.

7 nm 2ndHT GaN barrier ∆T = 140Co 
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Final device 

• Three steps photolithography

fabrication process.

• 0.1mm2 active area.

• Vertical transparent LEDs

packaging.

2 

A/cm2 

Patterned Sapphire Substrate (PSS) 

3 um GaN: Si 5 × 1018 cm−3

10 nm GaN UID 

3 nm In0.25GaN0.78 QW 

3 nm 1stHT GaN barrier 

300 nm  S.L In.05GaN.95 /GaN: Si 5 × 1018 cm−3

2 nm Al0.30GaN0.70 cap layer 

7 nm 2ndHT GaN barrier 

10 nm Al0.20GaN0.80 EBL 

70 nm GaN:Mg 7 × 1019 cm−3 

10 nm p+-GaN contact layer 

5 × MQW 
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3 vs 2 step Active region results 

• 0.1mm2 chip size.
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Green LED results 
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TUNNEL-JUNCTION (TJ) 

BLUE/GREEN LEDS WITH OVER 

70%/50% EQE

Laser Lighting:  

High Power Semipolar (202 1 ) LDs 

46 
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UCSB’s Vision 

LED based White Light is great, Laser based is even better! 

Sapphire 

Bulk GaN 

Phosphor Strip 

Laser 

LED 

28 mm2

0.3 mm2

Device 60 W Incandescent 
Equivalent 

External Quantum Efficiency 
LED/Laser vs. Current Density 

LED 
Laser 

M. Cantore et al., UCSB

Commercial LED & Laser 

47 
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“Delivered” Lm/W and $/Lm for LD sources is increasingly 

appealing for specialty lighting applications 

Substantially more LD 
devices  per sq in of 
wafer (vs. LED) 

LDs are higher 
brightness by several 
orders of mag (vs. LED) 

LD WPE is increasing 
and cost is decreasing 

Small source -> simpler 
optics, novel phosphor 
designs 

Laser Light: Game-changing Radiance 

LED 

LD-
Phosphor 

LD 
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UCSB Blue Laser Structure 

Becerra et al. Appl. 

Phys. Expr. 9, 

092104 (2016). 

49 



Solid State Lighting & Energy Electronics Center 

UCSB   

Internal Loss and ηi for (𝟐𝟎𝟐 𝟏 ) LD 

𝛼𝑖 10 cm-1 ± 2 cm-1 

η𝑖  0.80 ± 0.1 

1

η𝑑
=

𝛼𝑖
η𝑖𝑙𝑛(1 𝑅 )

𝐿 +
1

η𝑖

From this fit, we 

calculate:  

Previous 

measurement on 

Violet Lasers on m-

plane at UCSB:  

<αi> =9.8cm-1 ηi =66% 
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Simulation of Confinement & Loss 

Layer Loss % 

p-metal 1.0% 

p-clad 7.7% 

p-SCH 4.0% 

EBL 9.5% 

subtotal: p-top 22.3% 

QW 52.6% 

subtotal: active region 53.3% 

n-SCH 3.1% 

n-clad 19.6% 

subtotal: n-bottom 24.4% 

Effective Index Confinement Factor Calculated 𝛼𝑖 Experimental 𝛼𝑖

2.47 0.36 7.65 cm-1 10 cm-1 ± 2 cm-1 
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2 QW Laser 

1200 μm x 5 μm LD λ=428nm 

Single facet, uncoated 

CW 

Pulsed 
(0.5% duty 

cycle) 

Rd (Ohms) 3.6 4.1 

Ith (mA) 214 231 

Jth (kA/cm2) 3.6 3.8 

Vth (V) 5.9 7.0 

Slope Eff. (W/A) 0.67 0.78 

Diff. Eff. 23% 27% 

2 facet Slope Eff. 1.34 1.56 

2 facet Diff. Eff. 46% 54% 

Becerra et al. Appl. Phys. Expr. 9, 092104 (2016).
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53 

10 times less loss for tunnel junction 

(TJ) contact layer compared with ITO 

7x enhancement in peak power with TJ 

Leonard, J. T. et al. Appl. Phys. Lett. 107, 011102 (2015). 
Leonard, J. T. et al. Appl. Phys. Lett. 107, 091105 (2015). 

Leonard, J. T., Young, E. C., Yonkee, B. P., Cohen, D. a., Margalith, T., DenBaars, S. P., Speck, 

J. S.., Nakamura, S., “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a

III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015). B    

Loss in ITO - 30 cm
-1

Loss in Tunnel Junction - 3 cm-1 
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VCSEL Results – Polarization 

Nonpolar VCSEL Array 

Conventional VCSEL Array 

Fiber-Coupled Measurement 

Polarization Ratio = 100%! 
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Li-Fi with LEDs and LDs 

Laser Lighting 
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56 2/08/12 

Source:www.electronicsbus.com 

• Li-Fi communication network

• Sensor, Alarm System, Social Preference

• Higher capacity than Wi-Fi.

Intelligent LED Light and Communication Systems 

Data Rate: LED Li-Fi>10xWi-Fi, Laser Li-Fi > 100~1000xWi-Fi

http://www.google.com/url?sa=i&rct=j&q=LED+COmmunication&source=images&cd=&cad=rja&docid=mIIL9ZRzAMgGzM&tbnid=eI5aihhcZ0FcGM:&ved=0CAUQjRw&url=http://electronicsbus.com/visible-light-communication-system/&ei=3Nt0UeqeAqLi2wWNwIDQAg&bvm=bv.45512109,d.aWM&psig=AFQjCNHT0-td0v0K8k99B0D9eVcHFgfggg&ust=1366699333577403
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Motivation 

• RF spectrum crisis

– Mobile data demands are

exponentially increasing but

spectrum efficiency is saturated

• Advantages of VLC

– ~hundereds THz of unlicensed

spectrum available

– No EM interference (EMI)

– High security

– Cost-efficient

57 
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Motivation 

Plastic fiber optics Underwater communication 

Satellite-to-satellite communication 

• RF spectrum crisis

– Mobile data demands are

exponentially increasing but

spectrum efficiency is saturated

• Advantages of VLC

– ~hundereds THz of unlicensed

spectrum available

– No EM interference (EMI)

– High security

– Cost-efficient

58 
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Bandwidth limits in VLC transmitter 

155-Mbit/s 622-Mbit/s

BW of ~ 20 MHz, 100 Mbps OOK BW of 200 ~ 800 MHz, 1.7 Gbps OOK 

BW of > 2 GHz, 4 Gbps OOK 

Commercial LED Single micro-LED 

Commercial LD Higher speed LD? 

H. L. Minh, et al., IEEE PTL, 2009

J. J. D. McKendry, et al., IEEE PTL, 2010 

C. Lee, et al., Opt. Express, 2015
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Records in III-nitride LDs and LEDs 

BWmax of LEDs: 1 GHz (carrier lifetime limit) 

BWmax of LDs: 5 GHz (photodetector bandwidth limit) 

60 
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Semipolar (20-2-1) Laser Diode 

CW operation 

Violet CW LD on (20-2-1) plane (2 µm x 1200 µm) 

CW data Ith (mA) Jth (kA/cm2) Vth (V) dP/dI (W/A) 

2µm x 1200µm 150 6.25 5.1 (4-pt) 0.35 

Only 1 nm wavelength shift 

Injection efficiency have good agreement with semipolar 

blue LD by D. Becerra et al., Appl. Phys. Express, 2016 C. Lee, et al., Appl. Phys. Lett., 2016
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Modulation bandwidth 

C. Lee, et al., Appl. Phys. Lett., 2016

3.65 GHz 

bandwidth 

PD response 

On-off keying (OOK) modulation 

After correcting PD response:  

Record BW > 5 GHz due to the noise 

floor 

5 Gbit/s OOK with clear open eyes 
(Higher data rate could be achieved by high 

speed PD and higher order modulation) 

Recovered LD response 

Measured by Ti:Sapphire modelocked laser 
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• LEDs – 14 MHz without phosphor and 2.5 MHz with phosphor

• LDs – 1.2 GHz without phosphor and 1.1 GHz with phosphor (limited by photodetector)

• LDs are ~1,000 times faster than LEDs for white lighting data transmission

15 

LDs for LiFi Applications 

63 
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White LED vs. LD VLC 

C. Lee, et al., Opt. Express, 2015

1 GHz APD limit 

𝜏 =73 ns 

YAG:Ce phosphor limit ~ 4 

MHz  
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Laser Diodes – Light of the Future 

Laser Headlights 

Laser Projectors 
100 inch TV 
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BMW with Laser Lighting Headlights 

BMW with laser headlights 

(available in US!) 
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Researchers at UCSB: SSLEEC in 2016 
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Photo by Tony Mastres 

thanks ! 
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