

Jennifer Hollingsworth (PI) Han Htoon (co-PI) Noah Orfield (PD) Somak Majumder (PD)

Los Alamos National Laboratory Center for Integrated Nanotechnologies

Funding:

QD materials optimization & validation for SSL – DOE EERE

. DEPARTMENT OF

Applied R&D needs for <u>on-chip</u> QD phosphors:

- High QY (>90%)
- Minimal/no thermal quenching
- Reliability under conditions of elevated temperature (to 115 °C), photon flux (1-5 W•mm⁻²) and humidity (to 85%)

<u>Opportunity</u>: Take advantage of QD traits that enable a large color gamut and improved color quality for efficiency gains

<u>Key technical challenge</u>: High QY paired with lifetime reliability under high flux and high temperature

Our demo warm-white "giant"-QD LED

Long history in creating stable QDs

 Patented novel functionality: Thick-shell "Giant" Quantum Dots (gQDs) US Patent 7,935,419

Does approach apply to other QDs?

 Yes, and shell thickness and electronic structure seem to be overriding parameters

CdSe/CdS size & shape-tuned tetrapods – 2-color blinking suppression

PbSe/CdSe Quasi Type II thick-shell QDs – Blinking/extreme bleaching-suppressed infrared emission

Image removed

Unexpected effect of core size

 Same total particle volume, different core size → different Auger suppression

And, *large core + thick shell*: Biexciton (BX) QYs approach 100% Mangum et al. *Nanoscale* 2014

gQDs for SSL?

1.0

Challenge: Efficiency

- Why do non-blinking gQDs have <100% QY?
 - * New technique: Correlated optical/structural characterization
 - * New understanding: Orfield et al. ACS Nano 2016
 - No dark gQDs
 - QYs by "pinning" to charge states
 - No fundamental limit to gQD QYs

Challenge: Efficiency

- * Advanced characterization: Imaging, compositional analyses reveal synthesis-dependent internal structure
- * New result:
 - Ultra-bright gQDs have more perfect internal structure

Challenge: Efficiency

- Why are new gQDs brighter?
 - * Emit from neutral exciton state
 - * Moderate-QY gQDs emit from neutral and charged states

Challenge: Stability

Our initial criterion: Room-T single-dot bleaching and blinking
 * Moderate and high-QY gQDs exhibit similar behavior

Moderate QY

High QY

HTOL device testing

- Temperature and flux
 - * Device performance is chemistry/structure dependent

 (a) Mod-QY gQD maintains QY after curing in silicone and after >300 h HTOL lifetime testing (85 °C, 175 mA)
 (b) Hi-QY gQD does not

Mod-QY gQD	0 h Cured QY (T ₀)	168 h QY (T/T ₀)	336 h QY (T/T ₀)	
Soln QY (40%)	36% (1.0)	41% (1.14)	37% (1.03)	
Hi-QY gQD	0 h Cured QY (T ₀)	168 h QY (T/T ₀)	336 h QY (T/T ₀)	

Single-dot stress tests

- Temperature and flux
 - * Emission recovery after combined temperature and flux stressors is chemistry/structure dependent
 - (a) Mod-QY gQD PL recovers; most brighten!
 - (b) Hi-QY gQD PL does not recover; many 100% bleached

Out-and-back recovery comparison

- High flux = $15 \text{ W} \cdot \text{mm}^{-2}$
- Moderate-QY (50%) gQD
- High-QY (80%) gQD

Single-dot stress tests

- Temperature and flux
 - (a) Mod-QY gQDs withstand flux and heat; no gQD is completely bleached
 (b) Hi-QY gQDs permanently photobleach after brief exposure to flux (1 or 10 W/mm²) and heat (100 °C)

Single-dot heat/flux stress tests: Long-term thermal exposure

Two photobleaching mechanisms

Different processes lead to lifetime instability

• Mod-QY gQDs \rightarrow "A-Type"

 (a) Bleaching through increased dot charging
 (b) Never completely bleach, but neutral (brighter) exciton ceases to contribute to PL over time

Two photobleaching mechanisms

Different processes lead to lifetime instability

• Hi-QY gQDs \rightarrow "B-Type"

- (a) Bleaching through increased surface trapping
- (b) Neutral exciton dominates PL, but then fails catastrophically

Progress toward practical gQD performance via closed-loop approach

Contacts: Jennifer Hollingsworth, jenn@lanl.gov and Han Htoon, htoon@lanl.gov (

Scale-up & reproducibility

Automated parallel reactor system

...designed to make multi-step synthetic processes scalable and reproducible