
	 	 	 	
	 	 	

	 	
	
	

	
	 	 	 	

	 	 	
	 	 	 	

Quantum Dot (QD) Down-converters:
 
Quantum Yield, Stability, Scale-up
 

Jennifer Hollingsworth (PI)
 
Han Htoon (co-PI)
 
Noah Orfield (PD)
 

Somak Majumder (PD)
 
Los	 Alamos	 National Laboratory
 

Center for Integrated Nanotechnologies
 

Funding:
 
QD	 materials optimization &
 
validation for SSL – DOE EERE
 



	 	 	 	
	

	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	

	 	 	
	

	
	 	 	 	 	

Applied R&D needs for	 on-chip QD phosphors: 
• High QY	 (>90%) 
• Minimal/no thermal quenching 
• Reliability under conditions of elevated temperature (to 115 ºC), 

photon	 flux (1-5	 W•mm-2)	 and humidity (to 85%)	 

Opportunity:	Take 	advantage 	of 	QD 	traits 	that 	enable a 	large 	color 
gamut and	 improved	 color quality for efficiency gains 

Key technical challenge:	High 	QY 	paired 	with 	lifetime 	reliability 	under 
high	 flux and	 high	 temperature 

Our demo warm-white	 
“giant”-QD	 LED 



    
   

 

	
	

	
	 	

	
	
	 	 	 	 	

	 	
	

	 	 	
	 	

	

	 	
	 	

	 		

	 	 	
	 	

	

	
	 	 	

	

	 	 	
	 	

	 	 	

	
	

Long history in creating stable QDs 

CdSe core 
CdS shell 

II.	 Non	 self-

reabsorbing
 
A. Large
 

“Stokes shift”
 
gQD J. Am. 

Chem. Soc. 2008 

gQD 
ACS Appl. Mater. 
Interfaces 2015 

gQD J. Am. 
Chem. Soc. 2012 
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I.	 Superior photo-
stability at single-
emitter	 level 
A. Non-blinking 
B. Non-bleaching 

gQD J. Am. Chem. Soc. 2008 

III.	 Solid-state 
efficiency 
A. Non self-absorbing
 
B. Non-radiative 

processes suppressed	 
(Auger, 	energy-transfer) 
C. Large absorption 

cross-section (“antenna 
effect”) 

• Patented novel functionality: Thick-shell “Giant” Quantum Dots 
(gQDs) US Patent 7,935,419 



	 	 	 	 	 	 	 	 	 	 			

	 	 	 	

	 	
	 	

	 	 	
	 	

	 	 	
	 	

	
	

	 	
	 	 	

	

	

Mishra et al. Nature	Commun.
Just accepted 2017

Excitation:
>300	W/mm2	 cw laser

Does approach apply to other QDs? 
• Yes, and shell thickness and electronic structure seem to be overriding
 
parameters 

CdSe/CdS size &	 shape-tuned tetrapods	 – InP/CdS Type II	 thick-shell	 QDs	 – 
2-color blinking suppression Blinking-suppressed infrared emission 

Dennis et al. Nano Lett. 2012 

Image removed 

PbSe/CdSe	 Quasi Type	 II thick-shell	 QDs	 –
 
Blinking/extreme bleaching-suppressed infrared emission
 

Image removed 



	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	

Unexpected effect of core size 
• Same total	 particle volume,	 different core size è different Auger 
suppression 

Revisiting 
CdSe/CdS… 

And,	 large core + thick shell:	 Biexciton (BX) QYs approach 100%
 

Mangum	 et al. Nanoscale 2014
 



  

	 	 	 	 	 	
	
	 	
	 	
	 	 	 	 	
	 	 	 	

 

	
	

	

	
	

	 	

	
	

	

	

	 	 	
e

7000 

6000 

5000 

4000 

3000 

2000 

1000 

0 

H
z 

PL-Intensity 
Time Traces 

PL Lifetime-
Intensity 

Distributions In
te
ns
ity

 

Lifetime (ns) 

-3 -2 -1 
x10

1 1.01 0.99 0.28 1.01 1.03 1.01 

g(2) Correlation	 Data 

100 

0.6 
µs

PL Decay Lifetime 

S 
Cd 

S 

gQDs for SSL? 
Challenge: 	Efficiency 

• Why do non-blinking gQDs have <100% QY? 
*	 New technique:	Correlated 	optical/structural 	characterization 
*	 New understanding:	Orfield et 	al.	 ACS Nano 2016 

- No dark gQDs 
- QYs by “pinning” to charge states
 
- No fundamental limit to gQD	 QYs
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Fine	 Atomic Structure	 and
 
Elemental Composition (Mean QY = 43%)
 



	 	 	 	 	 	 	
	 	

	 	 	 	 	
	

	 	 	 	 	 	

  gQDs for SSL? 
Challenge: 	Efficiency 

• Challenge addressed through changes to synthesis è 75-90% QYs 
*	 Advanced characterization:	Imaging, 	compositional 

analyses reveal synthesis-dependent internal structure 
*	 New result:	 

- Ultra-bright gQDs have more perfect internal structure 

Moderate	 QY 

Alternative
 
synthesis
 

High	 QY 



	 	 	 	
	 	 	 	

	 	 	 	 	 	 	

  gQDs for SSL? 
Challenge: 	Efficiency 

• Why are new gQDs brighter? 
*	 Emit from neutral exciton state 
*	 Moderate-QY gQDs emit from neutral and charged states 

Alternative
 
synthesis
 

Moderate	 QY High	 QY
 



  

	 	 	 	 	 	
	 	 	 	 	

	 	 	

gQDs for SSL? 
Challenge: 	Stability 

• Our initial criterion: Room-T	 single-dot bleaching and blinking
 
*	 Moderate	 and high-QY gQDs exhibit similar behavior
 

73% of QDs >0.90 

Alternative 
synthesis 

Moderate	 QY High	 QY
 



	
	 	 	

	 	
	 	 	 	

	 	 	 	 	
	

	
	

	 	 	 	

	
	

	 	 	

Lifetime tests 
HTOL	 device testing
 

• Temperature and flux 
*	 Device	 performance	 is chemistry/structure	 dependent 

(a)	 Mod-QY gQD maintains QY after curing in silicone and 
after >300 h HTOL lifetime testing (85	 0C,	 175 mA) 

(b)	 Hi-QY gQD does not 
Mod-QY 
gQD 

0	 h 
Cured QY 
(T0) 

168	 h 
QY 
(T/T0) 

336	 h 
QY 
(T/T0) 

Hi-QY 
gQD 

0	 h 
Cured QY 
(T0) 

168	 h 
QY 
(T/T0) 

336	 h 
QY 
(T/T0) 

Soln QY 36% 41% 37%
 
(40%) (1.0) (1.14) (1.03)
 

Soln QY 57% NA 34% 
(85%) (1.0) (0.60) 



	 	
	 	 	

	 	 	 	 	 	
	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	

    
  

  

  

	

	

Lifetime tests 
Single-dot stress tests 

• Temperature and flux 
*	 Emission recovery after combined temperature	 and flux 
stressors is chemistry/structure dependent 

(a)	 Mod-QY gQD PL recovers; most brighten! 
(b)	 Hi-QY gQD PL does not recover; many 100% bleached 

Out-and-back recovery comparison 

• High flux = 15 W•mm-2 

• Moderate-QY (50%) gQD 
• High-QY (80%) gQD Moderate-QY 

gQD 

High-QY
gQD 



	 	
	 	 	

	 	 	 	 	
	

	 	 	 	
	 	 	 	 	 	 	 	

    

	

	

	

Lifetime test 
Single-dot stress tests 

• Temperature and flux 
(a)	 Mod-QY gQDs withstand flux and heat; no	 gQD is	 

completely bleached 
(b)	 Hi-QY gQDs permanently photobleach after brief 

exposure to flux (1 or 10 W/mm2)	 and heat (100	 0C) 

Single-dot heat/flux stress tests: Long-term thermal exposure 

0.1	 W/mm2,	 100 0C 

10	 W/mm2,	 100 0C 

Moderate-QY gQD 



  
	 	 	 	 	

	 	 	
	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	

Two photobleaching mechanisms 
Different processes lead to lifetime instability 

• Mod-QY gQDs → “A-Type” 
(a)	 Bleaching through increased dot charging 
(b)	 Never completely bleach, 

but neutral (brighter) exciton	 ceases 
to contribute to PL over time 



  
	 	 	 	 	

	 	 	
	 	 	 	 	

	 	 	 	 	 	 	

Two photobleaching mechanisms 
Different processes lead to lifetime instability
 

• Hi-QY gQDs → “B-Type” 
(a)	 Bleaching through increased surface trapping 
(b)	 Neutral exciton dominates PL, but then fails catastrophically 



   

   

Progress toward practical gQD
performance via closed-loop approach 

Contacts: Jennifer Hollingsworth, jenn@lanl.gov and Han Htoon, htoon@lanl.gov
(

mailto:htoon@lanl.gov
mailto:jenn@lanl.gov


   
 

	 	 	 	 	 	
	 	

 

Anneal
1 h

Anneal
2.5 h

n = number of
monolayers (ML)

Scale-up & reproducibility 

Automated	parallel 	reactor 	system
 

Core/Shell 

…designed to make multi-step synthetic processes 
scalable and reproducible 
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