Update from the National Toxicology Program's Workshop on Electric Light-Related Exposures

Windy A Boyd, PhD/MPH
Office of Health Assessment and Translation
Division of the National Toxicology Program
National Institute of Environmental Health Sciences
Outline

Background on NTP, ORoC, and OHAT

NTP’s interest in electric light-related exposures

NTP workshop update

Current NTP activities
Evaluates agents of public health concern

Interagency program
- Headquartered at the National Institute of Environmental Health Sciences (NIEHS)
- National Institute for Occupational Safety and Health (NIOSH)
- National Center for Toxicological Research (NCTR)

Research
- Thousands of agents evaluated in comprehensive toxicology studies

Literature analysis activities
- Office Report on Carcinogens (ORoC)
- Office of Health Assessment & Translation (OHAT)

National Toxicology Program (NTP)

- US Department of Health and Human Services (DHHS)
 - NIH
 - CDC
 - FDA
 - NIEHS
 - NIOSH
 - NCTR

NTP’s interest in electric light-related exposures

Defining the candidate substance is a challenge

- **Light at night (LAN)** nominated to ORoC (cancer) and OHAT (non-cancer endpoints)
 - IARC concluded that “shiftwork that involves circadian disruption” is probably carcinogenic to humans (Group 2A)
 - Urged to include more than shiftwork due to widespread LAN
- ORoC solicited public comment on “shiftwork involving light at night”
 - NTP Board of Scientific Counselors endorsed concept although challenging
 - First step to identify “candidate substance”
- NTP held **public workshop** at NIEHS March 10-11, 2016
Evaluating health hazards

Strategies for synthesizing evidence across large, complex database

Environmental disruptors
- Shift work
- Phase shift/jet lag
- ALAN
- Sleep disruption
- Meal timing

Biomarkers of circadian disruption
- Hormones
- Clock gene changes
- Epigenetic effects

Adverse health outcomes?
- Cancer
- Non-cancer

Human epidemiological studies of health outcomes
Animal models, mechanistic studies: humans, animals, *in vitro*
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Blask, PhD, MD</td>
<td>Tulane University</td>
</tr>
<tr>
<td>Randy Nelson, PhD</td>
<td>The Ohio State University</td>
</tr>
<tr>
<td>Andrew Coogan, PhD</td>
<td>Maynooth University, Ireland</td>
</tr>
<tr>
<td>Satchin Panda, PhD</td>
<td>The Salk Institute</td>
</tr>
<tr>
<td>Mariana Figueiro, PhD</td>
<td>Rensselaer Polytechnic Institute</td>
</tr>
<tr>
<td>Michael Smolensky, PhD</td>
<td>University of Texas-Houston Health Sciences Center</td>
</tr>
<tr>
<td>Michael Gorman, PhD</td>
<td>University of California, San Diego</td>
</tr>
<tr>
<td>Richard Stevens, PhD</td>
<td>University of Connecticut</td>
</tr>
<tr>
<td>Janet Hall, MD</td>
<td>NIEHS</td>
</tr>
<tr>
<td>Fred Turek, PhD</td>
<td>Northwestern University</td>
</tr>
<tr>
<td>Johnni Hansen, PhD</td>
<td>Danish Cancer Society</td>
</tr>
<tr>
<td>Roel Vermeulen, PhD, MSc</td>
<td>Utrecht University</td>
</tr>
</tbody>
</table>
Workshop Takeaways
World map of artificial brightness as a ratio to natural sky brightness (Falchi et al. 2016)
Clocks are everywhere

EXTERNAL CUES
- Light
- Food

CLOCK OSCILLATOR
- SCN
- extra SCN

CLOCK OUTPUT
- Melatonin
- Sleep/Wake
- Feed/Fast
- Metabolic Pathways
- Hormones

PERIPHERAL TISSUES

Endocrine or autonomic innervation
Shiftwork study design considerations

Primary shiftwork exposure metrics (1,8)

CHRONOTYPE

- Disturbed social pattern (1)
- Disturbed lifestyle aspects (1,3,6)
- Disturbed sleep pattern (1,2)
- Disturbed eating pattern (1,3)
- Disturbed light exposure (1,4)
- Disturbed vigilance and cognition (10,11)

STRESS SYMPTOMS (1)
- Reproductive factors (1,6)
- Physical activity (1,2,3)
- BMI (9)

µ USE OF TOBACCO /ALCOHOL (1,3)
- Melatonin (5,6)
- Circadian disruption (6)
- Uncoupling peripheral clocks (6)
- Gut microbiome (7)

Δ DIET (1,3,6,9)
- Light at night
 - Circadian disruption (6)
 - Melatonin (5,6)
 - Sun exposure (1,4)
 - Vitamin D

MEASUREMENT METHODS

- Questionnaire (1)
- Actigraphy sensor (2)
- 24-hour recall log (3)
- Light Sensor (4)
- Biomarkers: Urine (5)
- Biomarkers: Blood (6)
- Biomarkers: Feces (7)
- Employer registration data (8)
- Anthropometry (9)
- Psychomotor vigilance task (10)
- Memory tests (11)
Animal models of shiftwork

Exposure Components
- Timing of Activity
- Timing and Duration of Sleep
- Light: Dark Cycle/Light-at-Night
- Timing of Feeding

Mechanisms
- Desynchronization of Circadian Oscillators
- Disruption of Homeostasis
- Endocrine Disruption
- Increased Inflammation

Outcomes
- Cancer
- Neurobehavioral
- Cardiometabolic
- Reproductive

Factors:
- Age
- Sex
- Chronicity and Type of Exposure
- Circadian Phenotype
- Background Photic Exposure
Proposed title: *Health consequences of electric lighting practices in the modern world*
• Increase visibility of pervasive exposures and potential health effects
 – >150 attendees, in person or via webinar
 – Videos of presentations and discussions available
 • http://ntp.niehs.nih.gov/go/workshop_ALAN
 – Workshop report to be submitted for publication early 2017
• Follow up on new research activities identified at workshop
• ORoC health hazard evaluation of cancer outcomes in progress
 – Separate assessments of human data for each exposure scenario
 • Night shift work, light exposures, transmeridian travel
 • Social jet lag, use of consumer electronics
 – Also summarize biomarker studies of circadian disruption in humans

• Considerations for OHAT non-cancer evaluations
 – French ANSES report on night shift work
 – Compelling evidence in experimental models but lack of epidemiological studies
• Need better measures of light, not just satellite data
 – Validation of detailed questionnaires
• Lack of epidemiological evidence of light effects
 – Add measures of light exposures to large cohort studies
• Lack of biomarkers of exposure and effects
• Need to compare diurnal animal models to nocturnal animals
 – Also melatonin-sufficient models
• Evaluate experimentally-induced diseases (e.g. exposures to known toxicants) under different light conditions
• Organizers (NIEHS)
 – Windy Boyd*
 – Ruth Lunn
 – Kris Thayer
• Moderators
 – Tania Carreón-Valencia (NIOSH)
 – Claire Caruso (NIOSH)
 – Michael Twery (NHLBI)
• Rapporteurs
 – Gloria Jahnke (NIEHS)
 – Tina Lawson (NIOSH)
 – Katie Pelch (NIEHS)
 – Kyla Taylor (NIEHS)
 * Also served as a moderator

• Technical support
 – Andy Ewens (ILS)
 – Sandy Garner (ILS)
 – Whitney Mitchel (ICF)
 – Pam Schwingl (ILS)*
 – Courtney Skuce (ICF)

• Administrative support
 – Ella Darden (ILS)
 – Anna Lee Mosley (Kelly Services)
 – Tracy Saunders (ILS)

• Webcast support
 – Nathan Mitchiner (NETE Solutions)

• NTP Web Team
Questions/Comments?

http://ntp.niehs.nih.gov/go/workshop_ALAN