David Manz, PNNL, PM Carl Miller, PNNL Ken Masica, LLNL Dan Quinlan, LLNL John Munro, ORNL Mark Pleszkoch, ORNL

Supply Chain Integration For Integrity (SCI-FI)

Cybersecurity for Energy Delivery Systems Peer Review August 5-6, 2014

Summary: Supply Chain Integration For Integrity

• Objective

- The nation has identified supply chain security as a crucial part of securing critical infrastructure
- Detect compromise of supply chain **integrity** for energy delivery systems

• Schedule

- January 2013 December 2015
- November 2014: Proof of concept root of trust
- January/Sept 2015: Mid-term/ final releases of software analysis into Rose
- April 2015: Demonstration of hardware analysis performance
- End: A suite of open source tools, demonstrations, and technology

- Total Value of Award: \$3M
- % Funds expended to date: 56%
- Performer: PNNL
- **Partners:** ORNL, LLNL, PGE, vendors (including Itron)

Advancing the State of the Art (SOA)

- An interdisciplinary approach addressing challenges of the supply chain in an integrated manner. The project is divided into three prongs:
 - Evaluate **policy and architecture** for built-in supply chain integrity of trusted components
 - Analyze software and firmware
 - Address hardware supply chain concerns

Advancing the State of the Art (SOA)

• Policy

 ORNL is *developing the policy* and processes needed to contextualize the hardware and software/firmware analysis tools and techniques created by PNNL and LLNL

• Software/Firmware

 LLNL is *extending analysis capabilities* for both embedded field device firmware and energy management system application software

• Hardware

 PNNL is *researching tools and techniques* needed to explore, identify, and attribute components of the state machines that integrated circuits are built upon to ensure accuracy and integrity of the hardware

Policy Scope

- Use an experience-based threat model to understand and assess supply chain risks
 - Vendor, parts supplier, third-party suppliers and services
 - Utility operations, renewable power sources, end-users
 - Organized crime, hostile governments, terrorist organizations
- Identify segments of energy delivery system (EDS) supply chain amenable to implementing controls for trusted environment
 - Use of certificates for hardware and software procurement
 - Use of keys and certificates for (limited) chain of custody tracking
- Immediate supply chain concerns for hardware
 - Secure boot
 - Work in trusted environment
- Immediate supply chain concerns for software
 - Initial procurement and installation
 - Maintenance and upgrades

Policy Approach: TPM Framework

• Concerns that can be addressed

- Secure boot
- Authorization
- Authentication
- Remote attestation
- Mechanisms for using keys and certificates to support supply chain integrity
- Secure updates
- Chain of custody
- Framework can be implemented in hardware or software
- Use zones and conduits model to represent control, information, and ownership groupings in EDS of networked processors to implement Trusted Platform Module (TPM) framework
 - Zones contain TPM components such as processors with their Trust Anchors and Trusted Computing Base
 - Greatest effort to establish and maintain trust must be expended in zones
 - An example: need separate zones for control centers for different functions/activities
 - Control
 - Engineering support
 - Business and administrative functions
 - Conduits handle transmission of encrypted data between zones

Software Scope

- Security of the power grid must begin with the manufacturer of the components used to build and maintain the power grid
 - Target detection of backdoors
 - Analysis of difference in firmware versions
 - Input/Output mapping and tainted flow analysis
 - Detection of anti-disassembly technology
 - Building analysis tool set for open distribution to utilities and vendors
 - Test suite of source code and binaries for evaluation of analysis technologies

Software Approach

• Software Analysis

- Analysis of firmware (expect Advanced RISC Machine, but can also handle x86 and Power-PC)
- Formal methods expertise to provide proof-based reasoning
- Mixed concrete and symbolic interpretation to support static analysis
- Abstract interpretation to support more efficient reasoning using abstract domains (state-of-the-art form of analysis for verification of safety properties)
- Model checking to explore code paths (currently shared memory parallel)
- Tools to support analysis of Trusted Computing implementations (work with ORNL)
- Explore using high performance computing resources (distributed and shared memory parallel)

Hardware Scope

- Integrated circuits (ICs)—that control our PCs, servers, SCADA systems, and the Smart Grid—are designed in the U.S. but put into silicon overseas
 - The components that make up our national power grid and other critical systems are un-vetted and lack a trusted chain of custody
 - This supply chain gap puts systems that use these ICs at risk for modification or injection attacks
- Performance of current non-destructive internal chip analysis methods are prohibitively time consuming
 - Analysis could take thousands of years for a chip with just 70 states

Hardware Approach

- By performing an *intelligent* brute force exploration of an integrated circuit, we can much more expeditiously build a picture of the state machine upon which the IC was designed – looking at the logic that drives the hardware rather than the physical hardware.
 - We can then use that state machine to confirm the functions of the IC

Design

Implementation

Intelligent Brute Force Exploration

Original Design

- After pin-profiling, actively interface with the I/O pins to some limited depth ("confidence level") to explore the inner workings of the IC
 - Use the recorded I/O values to create an initial state tree structure
- Perform an initial exploration of the tree
 - Identify loops, terminators, and equivalent states which can significantly reduce the number of nodes • with unexplored children
- Obtain state information for unexplored leaf nodes, which are then treated as roots of new subtrees and explored in a similar distributed fashion and recombined with initial, reduced tree, then reduced again

Challenges to Success

• Appropriate validation

- Committee; utility feedback (BPA alliance, NIST framework, PGE); vendor engagement (Itron)
- Chip scalability and functional identification
 - Simulation demonstration
 - Iterative improvements to hardware demonstration
 - Library creation of sub-components
- Extending software analysis to EDS domain
 - Device firmware releases are packaged, compressed, and signed differently; SME was brought on to solve this issue in order to proceed with the primary software analysis goals of the project
- Policy focus: vast area
 - Survey landscape
 - Identify TPM, as applicable, with a specific focus for delivery

Progress to Date

ORNL

- Drafted report outlining the relevant information in support of SCI-FI policy recommendations
- Proposed a Transitive Root of Trust (TRoT) model for the EDS using Trusted Computing Group TPM framework

• LLNL

- Full representation of low level virtual machine (LLVM) code generation from binary executables
- Demonstrated LLVM-based tools operating on binaries as part of technique to leverage third party program analysis tools that were not designed for binaries but work on binary executables

• PNNL

- Identified and solicited industry vendor participation as part of the project team
- Successfully performed pin profiling on a simple integrated circuit
- Rediscovered a 50-state FSM on simulated integrated circuit with full correctness and completeness to a confidence level of 20 in under 5 minutes

Collaboration/Technology Transfer

- Key partners identified in energy delivery domain
 - Partners provide stakeholdership and advice early in the project
 - Partners are the key consumers and end users of the developing science and technology
- Advisory Committee
 - November 2013: Teleconference
 - January 2014: Teleconference follow-up with Itron
 - June 2014: Itron visit
- Science and technology will be made widely available (open source) to ensure the broadest utilization and response possible

Next Steps for this Project

- Approach through the end of project
 - Continue to engage vendor and industry stakeholders
 - Integration options
 - Demonstrations
 - Proofs of concept
 - Demonstrate a prototype trusted network TRoT
 - Demonstrate rediscovery of a medium sized IC and corresponding state machine
 - Final release of work into ROSE
 - Document results and transitions