# ESSENCE -> GRIDSTATE

CEDS Program Review Robert Larmouth, PM, Craig Miller, PI December 2016

### PROJECT SUMMARY - ESSENCE

- Cost: \$2,813,548 Federal Share + \$1,125,239 cost share
- Partners: PNNL, CMU, Cigital, five (5) utility cooperatives
- Project Purpose: Anomaly detection and remediation for utility networks
- Five layer approach and objectives:
  - Real-time capture of utility network traffic without increasing attack surface (Layer 1)
  - High speed data processing dynamically reconfigurable (Layer 2)
  - Boolean composer to explicitly specify rules; network mapper to identify unfamiliar addresses; machine learning classifier (Layer 3)
  - Support for decision makers in analyzing anomalies for remediative action (Layer 4)
  - Making changes in the network in response to anomalous behavior (Layer 5)
- Results: all objectives met in layers 1-4; layer 5 needs additional work

### FIVE APPROACHES TO CYBER SECURITY



### FIVE APPROACHES TO CYBER SECURITY



# OPPORTUNITY FOR IMPROVEMENT



# HOW APPLICATIONS ARE BUILT



# ESSENCE TECHNICAL DEVELOPMENT



## ESSENCE TECHNICAL DEVELOPMENT



#### Data

#### LAYER 1 LEAD: BLACKBYTE PHILLIP CRAIG

#### Work to Date

New Device

Deployments: See Next Slide

Protocols

Sensus Meters

**MultiSpeak** 

**CMEP** 

DNP3 ← in process

ModBus ←in process







#### INFORMATION

#### LAYER 2 LEAD: IN2LYTICS MATT SHAWVER



#### INFORMATION

#### LAYER 2 LEAD: IN2LYTICS MATT SHAWVER





## LAYER 2 PERFORMANCE / GOALS

- SCADA
  - 5000 sensors, 2 second rate
- AMI
  - 500,000 sensors, 15 minute rate
- PMU
  - 500 sensors, 60x per second rate

- Goals
  - Support real-time and bulk load
  - Support immediate read
  - All data into the same DB
  - Don't lose any information
  - Fast <sensor, time range> queries
  - Be as disk space efficient as possible
  - Provide reasonable persistence guarantees
  - Idempotent writes
  - Rollback partially failed writes

I-REX VS CASSANDRA

- Most grid analytics problems are I/O performance bound...
- Benchmark
  - 1000 sensors
  - Recorded synchronously in groups of 5
  - 4 million values recorded per sensor
  - 4 billion total measured values
  - Values are random (not compressible)
  - Write all data, then read all data for one measurement

|                    | TDEV         | "Pig Doto"        | Improvement                       |
|--------------------|--------------|-------------------|-----------------------------------|
|                    | <u>T-REX</u> | <u>"Big Data"</u> | Improvement                       |
| Write (s)          | 63 (1 min)   | 70555 (19.5 hrs)  | 1120x                             |
| Write (values/s)   | 63,500,000   | 56,700            |                                   |
|                    |              |                   |                                   |
| Read (s)           | 0.7          | 9.7               | 14x                               |
| Read (values/s)    | 5,700,000    | 412,000           |                                   |
|                    |              |                   |                                   |
| Disk (GB)          | 19.61        | 54.83             | 3x                                |
| Disk (bytes/value) | 4.9          | 14.7              |                                   |
|                    |              |                   | 30x with real data<br>(estimated) |



- T-REX can provide single server performance that requires 100's of "big data" servers
- Full access to data from engineering tools and third party apps
  - Avoid collecting data from 100's of machines in the cloud
  - Enables forensics, real-time, and multi-vendor applications that are difficult/impossible in the cloud
- Small footprint on-premise deployment
  - Reduces cloud and system admin costs
  - Lower initial and recurring costs
  - Reliability: Less reliance on service providers (ISP, cloud)
  - Reliability: Smaller hardware footprint

#### ANALYSIS

#### LAYER 3 LEAD: CARNEGIE MELLON ZICO KOLTER

Goal: Unified Rules Syntax





# TESTING: ABEC FEEDER





### TEST FILE

Quads: time, node number, voltage, current, frequency, angle Control signal: time, node, control signal

June 2016
30 days x 24 hours x 12 mesurements per hour x 200 nodes = 1,728,000 records + 1000 control records

- 1. IMPORT FEEDER MODEL
- 2. MODIFY GRIDLAB-D TO EXPORT QUAD AT EACH TIME CLICK
- 3. MODIFY GRIDLAB-D TO EXPORT CONTROL SIGNALS

# GOING TO MARKET

V-dimension solutions









# GOING TO MARKET

77-dimension solutions







