Andy Bochman & Rita Wells Idaho National Laboratory

RENDER* Pilot Project ReACT **& ATAC***Frontier Projects

Cybersecurity for Energy Delivery Systems Peer Review August 5-6, 2014 *Pick Evaluation Novus for Digital Ago Energy

*Risk Evaluation Nexus for Digital -Age Energy Reliability **Response Analysis and Characterization Tool ***Attack Technology, Analysis and Characterization

Summary: RENDER

• Objective

 Establish a methodology and process to take exploits, malware, and vulnerabilities (EMV) selected by the RENDER working group and analyze for operational impact to the energy sector.

• Schedule

- Start: 10/1/2012 End: 6/30/2014
- Deliverables: Four Analysis Topic Reports;
 Final Concept of Operations Report
- RENDER is a capability to select, evaluate and analyze EMV, then collaborate with vendors and asset owners to determine impact to the grid of cyber attack

RENDER Working Group

- Total Value of Award: \$1M
- % Funds expended to date: 100%
 Performer: Idaho National Laboratory
- Partners: DOE-OE, Alstom, Schneider/Telvent, Siemens, Ameren, Dominion

State of the Art & Challenges

- Currently: Evaluation and analysis of EMV is performed by individual vendors and 3rd party researchers and information is shared with customers and/or entities like ICS-CERT
- RENDER Method exercised an approach to characterize and score EMV against specific control systems – sharing results with vendors and asset owns and evaluating overall likelihood and impact metrics
- Value to Industry: The RENDER process results in a deeper understanding of EMVs, including metrics and mitigations, for vendors and asset owners and the potential impact to the energy sector for government.
- Challenges: Legal agreements, Selection of EMV, & Likelihood Metrics

Progress to Date

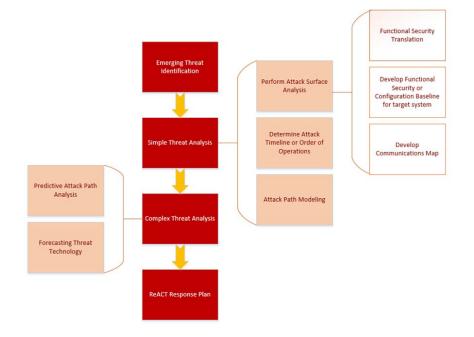
Major Accomplishments

- RENDER Pilot Project completed Jun 30, 2014 with delivery of final Concept of Operations Report
- Analysis Subject (AS)4, Cross-Site Scripting (XSS), completed May 12, 2014
- AS3, Aegis DNP3 Fuzzer Tool, completed Apr 24, 2014
- AS2, Privilege Escalation, completed Feb 11, 2014
- AS1, DNP3 Input Validation Vulnerability, completed Feb 26, 2014
- Two Vendors with systems at INL; 3rd Vendor executed
 CRADA after pilot project completion to participate

Collaboration & Next Steps

• Plans to transfer technology/knowledge to end user

- Direct information and collaboration is targeted to all vendors and energy sector asset owners
 - Sanitized information could be used also by other research entities and knowledge bases
- Next Steps: Pilot and Production
 - Integrate ATAC and ReACT methodology
 - Secure Information Sharing Portal to communicate with the working group
 - Improve of the RENDER method
 - Open RENDER configurations to more R&D entities


Summary: ATAC

Objective

- Threat intelligence is not immediately useful and actionable for most teams.
 ATAC is an information schema and analysis process for integrating threat analysis into risk decision making.
- ATAC focuses on how adversaries select technology and implement attacks.

Schedule

- Feb 2013-May 2014
- Develop ATAC process (Oct 2013)
- Case study (Dec 2013)
- Onsite process review (Feb 2014)
- Final report (Mar 2014)

- Total Value of Award: \$250k
- % Funds expended to date: 100%
- Performer: Idaho National Laboratory
- Partners: Dominion

Advancing the State of the Art (SOA)

- Hackers have project managers, too
 - Have to do work to get paid (no more script kiddies)
 - Requires organized work flow
 - Use ATAC Life Cycle and Functional Security Matrix (FSM) to understand how adversary works
- ATAC Life Cycle
 - Based on Lockheed Martin Cyber Kill Chain
 - Defines life cycle and work flow of attacks (DIME)
 - Built on Attack Surface Analysis (ASA)
- ATAC is tailored to group of adversaries and their capabilities
- Threat information that can be applied to create attack surface analysis to recommended or specific configurations
- Characterization of whole classes of adversaries

Challenges to Success

- Why isn't threat intelligence actionable?
 - Have sufficient quantity AND quality of open-source threat intelligence
 - Defenders don't know how to consume threat intelligence making actionable
 - Needed to define threat relationships define a way to analyze

• History of threat intelligence matters

- National Security Risk = f(Threat, Vulnerability, Consequence)
 - Threat intelligence traditionally used by national security groups
 - Threat = f(Capabilities, Opportunity, Intent)
- Operational Risk = f(Probability, Impact)
 - Threat not a factor in this equation
 - How do we use threat intelligence if it's not in the risk equation? \rightarrow ATAC

• Conflicting impact assessments in existing threat feeds

- Operational or business What happens if breached
 - Determined and prioritized by organization, not adversary
- Technical What attackers can do if attack against target succeeds
 - Describes technical gains by adversary (STRIDE Spoofing Tampering, Repudiation, Information Disclosure, Denial of Service and Elevation of privilege)

Progress to Date

Major Accomplishments

- ATAC Life Cycle
- Simple vs. Complex Threat Analysis
- Forecasting Threat Technology (2 year review, ICS-CERT advisories)

- Predictive Attack Path Analysis
- Attack Style Characterization (Red October vs. Night Dragon)

Functional Security Layer	Functional Baseline of Target	Attack Path Model			
		Protocol	Services	Ports	
UR&R					
Network	TCP/IP				
Firmware					
Operating System	Microsoft Windows	TCP, UDP	RPC over HTTP	80	
Virtualization					
Applications	Windows Explorer	TCP, UDP	HTTP	80	
Cloud, hosted, or vendor services					
Custom code					
Data & Data Stores					

Collaboration/Technology Transfer

• Plans to transfer to end user:

- Develop training and documentation to support implementation
- Build defensive and detection controls catalog
- Produce case studies that demonstrate how to use ReACT

• Plans to gain industry acceptance:

- ATAC for Vendors
 - ASA of RENDER configurations
 - What attack paths and techniques are most likely to be used against your software?
- ATAC for Asset Owners
 - ASA of Original Equipment Manufacturer (OEM) and vendor products
 - How does your attack surface change when product 'X' is added to your ICS environment?
 - What can be done to minimize the cyber security risk product 'X'?

Next Steps for ATAC

Attack Surface Analysis

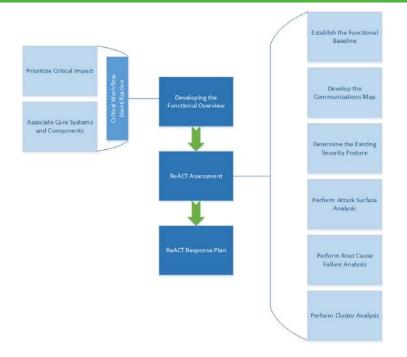
- Default configuration (OEM and vendor software & equipment)
- Customized configuration (asset owners)

• Threat trending and complex ATAC analysis

- ICS-CERT advisories (targets, vulnerability discovery patterns)
- Confirmed energy sector attack campaigns (APT, criminal)

Customer feedback loop

- Agile feedback process for all stakeholders
- What works? What doesn't? If not, why not?
 - Secure code development & application implementation strategy(vendors)
 - Defensive & Detection Catalog (asset owners)
 - Attack Style Characterization (energy security community)
- Process improvement \rightarrow next iteration of documentation, training, etc.


Summary: ReACT

Objective

- Provide an information schema, set of tools and analysis processes teams can use to relate technical cyber security data directly into risk management decisionmaking
- ReACT focuses on what defenders know and control – their environment and its attack surface.

Schedule

- Feb 2013-May 2014
- Develop ATAC process (Oct 2013)
- Case study (Dec 2013)
- Onsite process review (Feb 2014)
- Final report (Mar 2014)

- Total Value of Award: \$250k
- % Funds expended to date: 100%
- Performer: Idaho National Laboratory
- Partners: Dominion

Advancing the State of the Art (SOA)

- Connects the dots \rightarrow risk, cyber security, and technical threat
- Provides mechanism for:
 - Equivalent risk comparisons
 - Integrated threat response
 - Risk prioritization
- Provides repeatable, organized approach to understanding existing security posture
 - Helps identify gaps in existing security posture and why gaps exist
 - Potential ties into existing risk management strategies
 - Feeds seamlessly into work planning and prioritization
- Attack Surface Analysis
 - Modified Code security concept for use in asset owner environment
 - Maps technical data to risk factors (probability)

Progress to Date

• Major Accomplishments

- Attack Surface Analysis (ASA)
- Top 5 Energy Management targets
- Functional Security Layers
- Functional Baseline
- Communications Map
- Attack Surface Analysis

Functional Security Layer	Functional Baseline	Communications Map			Existing Security Posture		
		Protocol	Services	Ports	Existing Defense Measures	Existing Detective Measures	Gap Analysis
UR&R	Local accounts (user, service, machine)	N/A			Guest account disabled	Enhanced audit policy & logging	Missing 1 defensive measure
Network	TCP/IP				DMZ firewall	Enhanced audit policy & logging	No gaps
Firmware	N/A						
Operating System	Windows Server 2003 R2	TCP	RPC	135	Anti-virus	Enhanced audit policy & logging	Missing 1 defensive measure
Virtualization	N/A						
Applications	.Net framework	TCP	HTTP	80	Patches applied quarterly	App & security events monitored daily	Missing 1 detection measure
Cloud, hosted, or vendor services	N/A						
Custom code	CMS	TCP	HTTP	80	N/A	N/A	Missing 3 defensive measures
Data & Data Stores	N/A						

Collaboration/Technology Transfer

• Plans to transfer to end user:

- Develop training and documentation to support implementation
- Build defensive and detection controls catalog
- Produce case studies that demonstrate how to use ReACT

Plans to gain industry acceptance:

- ReACT for Vendors
 - ASA of RENDER configurations
 - Prioritize where to allocate code security resources?
 - Help develop or supplement secure deployment efforts?
- ReACT for Asset Owners
 - ASA of Original Equipment Manufacturer (OEM) and vendor products
 - What other defensive and detection controls are required or could be used?

Next Steps for ReACT

Attack Surface Analysis (ASA)

- Default configuration (OEM and vendor software & equipment)
- Customized configuration (asset owners)
- Defensive & Detection (D&D) Catalog (Asset Owners)
 - Defensive & detection techniques, controls and strategies specific to ASA

• Secure Code Development & App Implementation Strategy

- Prioritize code security work based on ASA
- Enhance secure software implementation strategy based on ASA
- Customer feedback loop
 - Agile feedback process for all stakeholders
 - What works? What doesn't? If not, why not?
 - Process improvement \rightarrow next iteration of documentation, training, etc.