

CSP Gen 3 Roadmap

Technology Pathway – Particle Receivers

Gen3 Public Meeting February 1, 2017

Clifford Ho, SNL

Particle Technology Pathway

- Contributors
 - Zhiwen Ma, NREL
 - Chuck Andraka, SNL
 - Todd Kennedy, FLSmidth Mine Shaft Systems
 - Gen 3 Aug. 18-19, 2016 Workshop Participants
 - Matt Carlson (Sandia), Richard McIntosh (Olds Elevator), Jack Gilchrist (Olds Elevator), Vijay Kumar (DOE), Hany Al-Ansary (KSU), Reiner Buck (DLR), Nate Siegel (Bucknell), Jin-Soo Kim (CSIRO), Bartev Sakajian (B&W), Tom Flynn (B&W), Levi Irwin (DOE), Daniel Andrew (B&V)

Overview – Particle Technology

- Introduction
- Component Description
- System Integration and Testing
- Summary

Technology Overview – Particle Technology Pathway

Technology Overview - Advantages

- Higher temperatures (>1000 °C) than molten salts
 - Enables more efficient power cycles
- Direct heating of particles vs. indirect heating of tubes
 - Higher solar fluxes for increased receiver efficiency
- No freezing or decomposition
 - Avoids costly heat tracing
- Direct storage of hot particles
 - Reduced costs without extra heat exchangers and separate storage media

Technology Overview – History

- Particles as a heat-transfer medium have been studied and commercialized for nearly a century
 - 1920's: First industrialized fluidized particle reactors for coal gasification
 - 1940's: First circulating fluidized bed for catalytic cracking of mineral oils and metallurgical processing
 - 1960's: First fluidized bed for combustion of coal in a power plant in Germany
 - 1980's: Particle receivers first evaluated for CSP
 - 2007: First on-sun falling-particle receiver test
 - 2015: First high-temperature (>700 C) continuously recirculating on-sun particle receiver tests
 - 2016: First fluidized-bed CSP plant in Sicily

Overview – Particle Technology

- Introduction
- Component Description
- System Integration and Testing
- Summary

Receiver

Alternative Receiver Designs

Free-Falling (SNL)

Obstructed Flow (GT)

Centrifugal (DLR)

Enclosed Flow (NREL)

Solid Graphite (Graphite Energy)

Particles

Properties of Alternative Particles

Material	Image	Compositi on	Properties			
			Density (kg/m³)	Specific Heat (J/kg-K)	Advantag e	Dis- advantage
Silica sand		SiO ₂	2,610	1,000	Stable, abundant, low cost	Low solar absorptivity and conductivity
Alumina		Al_2O_3	3,960	1,200	Stable	Low absorptivity
Coal ash		SiO ₂ , Al ₂ O ₃ , + minerals	2,100	720 at ambien t temp	Stable, abundant, No/low cost	Identify suitable ash
Calcined Flint Clay		SiO ₂ , Al ₂ O ₃ , TiO ₂ ,Fe ₂ O ₃	2,600	1,050	Mined abundant	Low absorptivity
Ceramic proppants		$75\% \text{ Al}_2\text{O}_3$, $11\% \text{SiO}_2$, $9\% \text{Fe}_2\text{O}_3$, $\% \text{TiO}_2$	3,300	1,200 (at 700°C)	High solar absorptivi ty, stable	Synthesized , higher cost

Particle Durability

 Laboratory tests for surface impact evaluation, attrition, and sintering

Ambient drop tests at ~10 m

Thousands of drop cycles at ambient and elevated temperatures (up to 1000 °C)

Knott, R., D.L. Sadowski, S.M. Jeter, S.I. Abdel-Khalik, H.A. Al-Ansary, and A. El-Leathy, 2014, High Temperature Durability of Solid Particles for Use in Particle Heating Concentrator Solar Power Systems, in Proceedings of the ASME 2014 8th International Conference on Energy Sustainability, ES-FuelCell2014-6586, Boston, MA, June 29 - July 2, 2014.

Balance of Plant

Thermal Storage

Experimental evaluation and modeling of prototype thermal

energy storage designs

Particle to Working Fluid Heat Exchanger

Evaluation of heat transfer coefficients & particle flow

Moving Packed-Bed Shell-and-Tube and Shell-and-Plate Heat Exchanger

Fluidized-Bed Heat Exchanger

Golob et al., 2013, "Serpentine Particle-Flow Heat Exchanger with Working Fluid, for Solar Thermal Power Generation," SolarPACES 2013

Particle Elevators

- Evaluate commercial particle lift designs
 - Requirements
 - ~10 50 kg/s per meter of particle curtain width
 - High operating temperature ~ 550 °C
 - Different lift strategies evaluated
 - Screw-type (Olds elevator)
 - Bucket
 - Mine hoist

Repole, K.D. and S.M. Jeter, 2016, Design and Analysis of a High Temperature Particulate Hoist for Proposed Particle Heating Concentrator Solar Power Systems, in ASME 2016 10th International Conference on Energy Sustainability, ES2016-59619, Charlotte, NC, June 26 - 30, 2016.

Overview – Particle Technology

- Introduction
- Component Description
- System Integration and Testing
- Summary

300 kW_t Particle Receiver System - King Saud University

Professor Hany Al-Ansary

- 300 kW_t heliostat field
- Obstructed flow particle receiver
- Particle storage system
- Particle heat exchanger
- Olds elevator particle lift
- Air Brayton power cycle

2 MW_t Fluidized-Bed Power Plant – Sicily, Italy

Magaldi Group

- Chirone et al. 2013

- 2 MW_t modular beam-down fluidized-bed receiver units
- Superheated steam at 520 C
- 6 hours thermal storage

Solid-based (graphite) central-receiver system at Lake Cargelligo, NSW, Australia

- Graphite block is heated in facedown receiver
- Used to heat steam from 200
 °C to 500 °C
 - Powers a 3 MW_e steam-Rankine cycle.

High Temperature Falling Particle Receiver

(DOE SunShot Award FY13 - FY16)

Goal: Achieve higher temperatures, higher efficiencies, and lower costs

Sandia I MW_t Falling Particle Receiver

Particle Release Configurations

Free-falling particles

Staggered array of chevronshaped mesh structures

On-Sun Tower Testing

Over 600 suns peak flux on receiver (July 20, 2015)

On-Sun Tower Testing

Particle Flow Through Mesh Structures (June 25, 2015)

Black & Veatch System Analysis

 Black and Veatch, "Falling Particles Concept Definition & Capital Cost Estimate," 2016

Overview – Particle Technology

- Introduction
- Component Description
- System Integration and Testing
- Summary

Summary – Solid-based/particle receivers

Advantages

- Wide temperature range
 - No freezing; can achieve > 1000 °C
 - No trace heating
- Direct heating of particles (high concentration ratios)
- Direct storage of inexpensive particles
- Particle handling/heat exchange/storage well established
- Challenges
 - Particle durability, attrition (dust emission)
 - Receiver efficiency
 - Reduce convective/radiative losses
 - Increase particle/wall heat transfer
 - Particle-to-sCO₂ heat exchanger at 700 °C, 20 MPa
 - Demonstration at larger scales (~10 100 MW_{th})

International Energy Agency / SolarPACES Particle Technology Working Group

- Objective
 - Initiate coordination among particle researchers to create a shared database of particle research, needs/gaps, collaborative opportunities

- Australia, China, France,
 Germany, Italy, Saudi Arabia,
 Spain, UAE, USA
- Thermochemistry/Solar Fuels
 - Australia, Germany, Japan,
 Spain, Switzerland, USA

Questions?

Cliff Ho, (505) 844-2384, <u>ckho@sandia.gov</u>