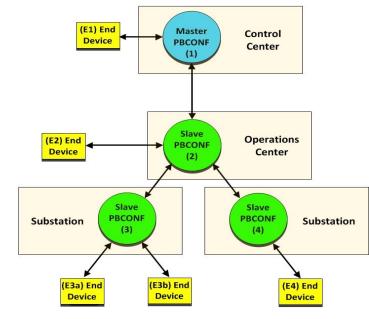
# Glen Chason Electric Power Research Institute



# Secure Policy Based Configuration Framework (PBCONF)

Cybersecurity for Energy Delivery Systems Peer Review December 7-9, 2016


#### **Summary: PBCONF**

#### **Objective**

 The project will develop an extensible, open-source, policy-based configuration framework to support the secure configuration and remote access of modern and legacy devices.

#### **Schedule**

- 10/2014 9/2017
- Detailed design complete
- Alpha version complete
- Beta version 01/2017
- Result: an open-source remote access security configuration toolkit.



| Performer:              | EPRI                                           |
|-------------------------|------------------------------------------------|
| Partners:               | University of Illinois<br>Ameren<br>Schweitzer |
| Federal Cost:           | \$ 1,524,959                                   |
| Cost Share:             | \$ 529,384                                     |
| Total Value of Award:   | \$ 2,054,343                                   |
| Funds Expended to Date: | % 70                                           |

#### Advancing the State of the Art (SOA)

- SOA: Incorrect or inconsistent security configuration of the multitude of energy sector devices in the field is a large potential attack vector
- Approach: apply uniform security policies across devices
- Why: both utilities and vendors have indicated the need for security configuration through remote access methods
  - Uniform approach rather than through isolated applications (stovepipes)
- Benefits: the framework will have the necessary flexibility and adaptability for both legacy and new devices
- Advancement: The distributed architecture will enable both centralized and peer-based configuration of the devices to support scalability and resiliency

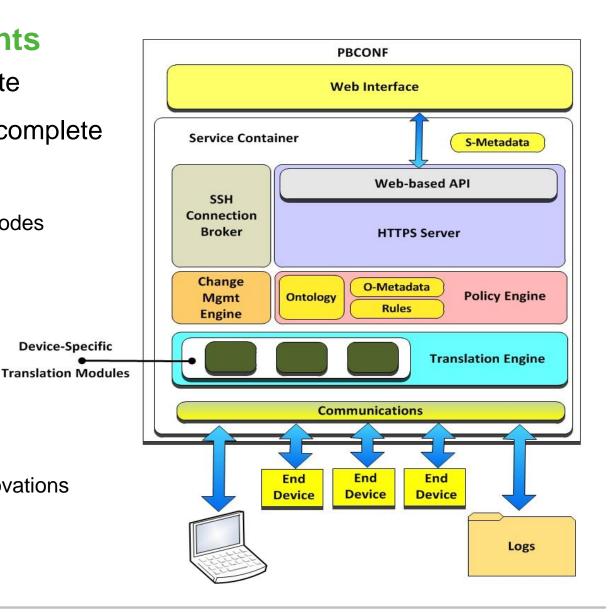
#### Challenges to Success

### Challenge 1: Integration of an Ontological implementation with an underlying code base

Response – University of Illinois worked with a contractor, 2Wav to implement and integrate the ontology

#### Challenge 2: Deployment of nodes in diverse environments

Response – Developing an extensive users guide to cover deployment and operational utilization


## Challenge 3: Addressing potential performance and scalability issues

Response - Ensure the design addresses electric sector constraints and test across several demonstrative deployments

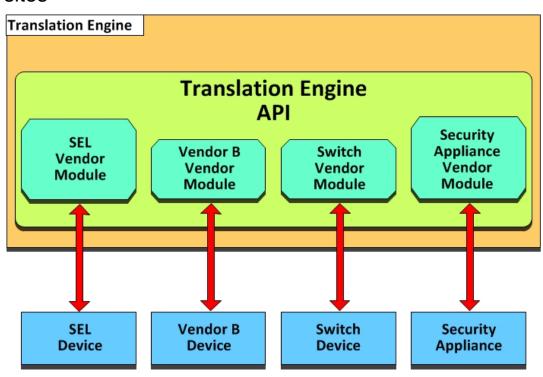
#### **Progress to Date**

#### **Major Accomplishments**

- Detailed design complete
- Test plan development complete
- Alpha version deployed
  - University of Illinois 3 Nodes
  - Ameren 1 Node
  - EPRI 4 Nodes
- Pre-Beta in test
- Socialization
  - Utilities Duke Energy
  - Industry Real Time Innovations



#### Collaboration/Technology Transfer


#### Plans to transfer technology/knowledge to end user

- End users for this technology are utilities and vendors
  - Includes utilities of all sizes from small to large
  - Vendors will develop the translation modules
- What are your plans to gain industry acceptance?
  - EPRI will conduct an outreach workshop near the end of the project for all interested utilities and vendors
  - One of the team members is a utility and they will be used to test the alpha and beta versions of the technology
  - A second utility has expressed interest in deploying and testing the Beta version – integration with OpenFMB and potential expansion of the ontology
  - As the project continues, other utilities will be briefed on the technology
  - Host an industry workshop to demonstrate operations and enumerate key features and industry

#### Next Steps for this Project

#### Approach for the next year or to the end of project

- Key Milestones to accomplish
  - Complete Beta version testing
  - Beta version updates
  - Integrate PBCONF across test sites
  - Develop the users guide
    - Input from all test locations
  - Host a workshop for Utilities
    - Targeted for 6/2017
    - **Utilities and Vendors**
  - Transition to Open Source
    - Targeted for 9/2017

