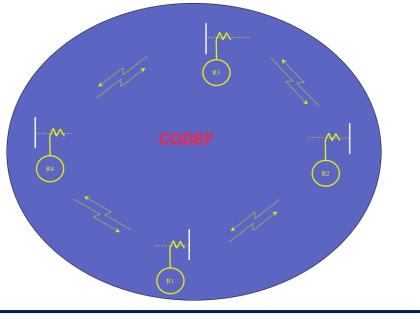
Reynaldo Nuqui ABB

Collaborative Defense of Transmission and Distribution Protection and Control Devices Against Cyber Attacks (CODEF)

Cybersecurity for Energy Delivery Systems Peer Review December 7-9, 2016


CODEF

Objective

 TO advance the state of the art for cyber defense methods for transmission and distribution grid protection and control devices by developing and demonstrating a distributed security domain layer that enables transmission and protection devices to collaboratively defend against cyber attacks in an IEC 61850 environment.

Schedule

- 10/2013 12/2016
 - Distributed Security Enhancement Layer Design – July 14, 2014
 - Distributed Security Enhancement Layer Implementation – March 13, 2015
 - Security Demonstrator May 12, 2016
- Capability to the energy sector:
 - Inter-device level solution for smart detection of cyber attacks using power system domain knowledge, IEC 61850 and other standard security extensions

Performer:	ABB
Partners:	University of Illinois at Urbana- Campaign, Bonneville Power Administration, Ameren-Illinois
Federal Cost:	2,765,755
Cost Share:	936,729
Total Value of Award:	\$ 3,702,484
Funds Expended to Date:	% <mark>90</mark>

Advancing the State of the Art (SOA)

- Current "state of the art"
 - "Security by obscurity"
 - Unsecured or slightly secured data communication protocols
 - An attacker could inject false command and measurements and if they are syntactically correct will allow control of substation equipment.
- Why this approach is better than the SOA
 - Real time cyber security that is aware of power system operations
 - The physical state of the protected system is used to validate commands and measurements from the cyber layer.
 - Intelligence is distributed, collaborative and co-located or located close to the protected devices
- Feasibility of the approach
 - IEC 61850 substation automation protocol's GOOSE and sampled value messages were used to realize collaboration among devices
 - Cyber secure mechanisms prototypes were embedded in each device's firmware or in separate hardware.

Advancing the State of the Art (SOA)

- How the end user of your approach will benefit
 - Utilities benefit from increased cyber security of their substation automation devices and equipment from attacks conducted remotely or from insider threats in electrical substations.
- How the approach respects the operational requirements of energy delivery systems
 - CODEF works with existing substation automation protocols and devices with no need for additional instrumentation in electrical substations.
 - CODEF intelligence could be deployed as part of normal firmware updates and engineered using existing tools and software.
- Describe how your approach will advance the cybersecurity of energy delivery systems
 - The approach advances the cyber security of energy delivery systems by reinforcing existing IT security layers and adding an extra inner domain-based defense layer

IT Layer

Domain Layer

Progress to Date

Major Accomplishments

- Transmission level cyber security functions demonstrated at Bonneville Power Administration in May 2016
- Distribution level cyber security functions demonstrated at Ameren-Illinois TAC substation in March 2016
- CODEF roadshow cyber security demonstrator featured at the PAC-World Americas Conference and Western Protective Relay Conference

Challenges to Success

Challenge 1: Speed of cyber security functions

 Sub cycle fault detection algorithm, GMAC authentication of GOOSE and sampled value streams

Challenge 2: Embedding the prototype solutions in commercial relay platform

• Utilized dedicated commodity hardware that are connected in hardware in a loop with the IEC 61850 enabled relays.

Challenge 3: Engineering the utility demonstrations

- Very close collaboration and teamwork with UIUC, BPA and Ameren-Illinois.
- Using a multitude of space heaters to mimic a real fault in a live test circuit

Collaboration/Technology Transfer

Plans to transfer technology/knowledge to end user

- Category of targeted end user for the technology or knowledge
 - The targeted end users are asset owners, specifically, electric utilities in both transmission and distribution business
- Plans to gain industry acceptance
 - Utility demonstrations with participants from both OT and IT groups present – 2 utilities
 - Roadshows in focused conferences using a self contained CODEF rack for on-demand demonstrations
 - Dedicated demonstrations within electric utilities
 - Publications, presentations and panel sessions in conferences
 - BPA and Ameren presented their utility demonstration experiences
 - Engaging standard making bodies to influence the adoption of the project's standard security extensions

CODEF Roadshow and Utility Demonstrations

