

Panel | OLEDs – How Far Have They Come in Viability?

OLED Luminaire and Driver Development

Mike Lu

Director Electronics Engineering Horizon Group, Acuity Brands Lighting

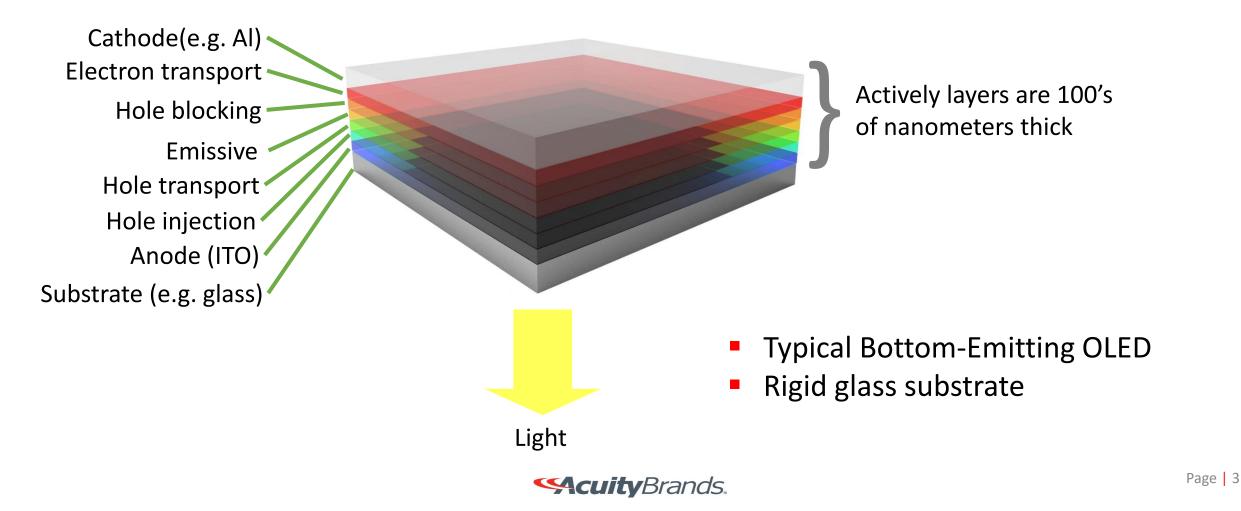
\$

Presentation Overview

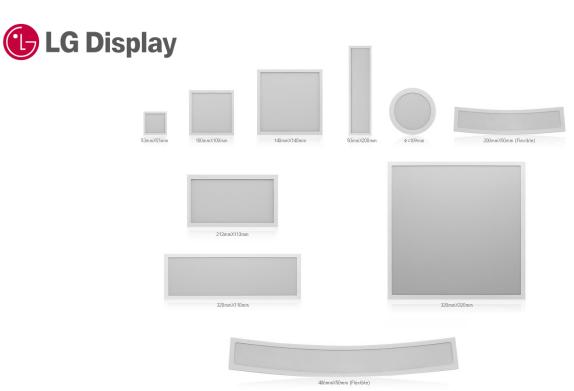
Introduction to OLED Technology and Panels

OLED Luminaire and Lighting Design

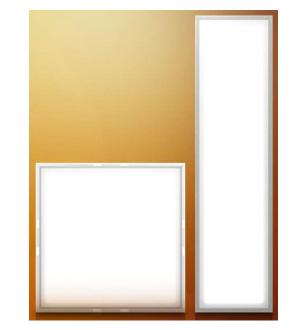
OLED Installation Case Studies



Drivers for OLED Luminaires



Introduction to OLED Technology and Panels


OLED Device Structure and Properties

Introduction to OLED Technology and Panels OLED Panel Suppliers

OLEDWorks

Current Gen: 55-60 LPW; Next Gen: 75-90 LPW 2700, 3000, 3500, 4000K 3000 cd/m^2 , $L_{70} = 30-40$ Khrs Rigid and bendable/flexible substrates

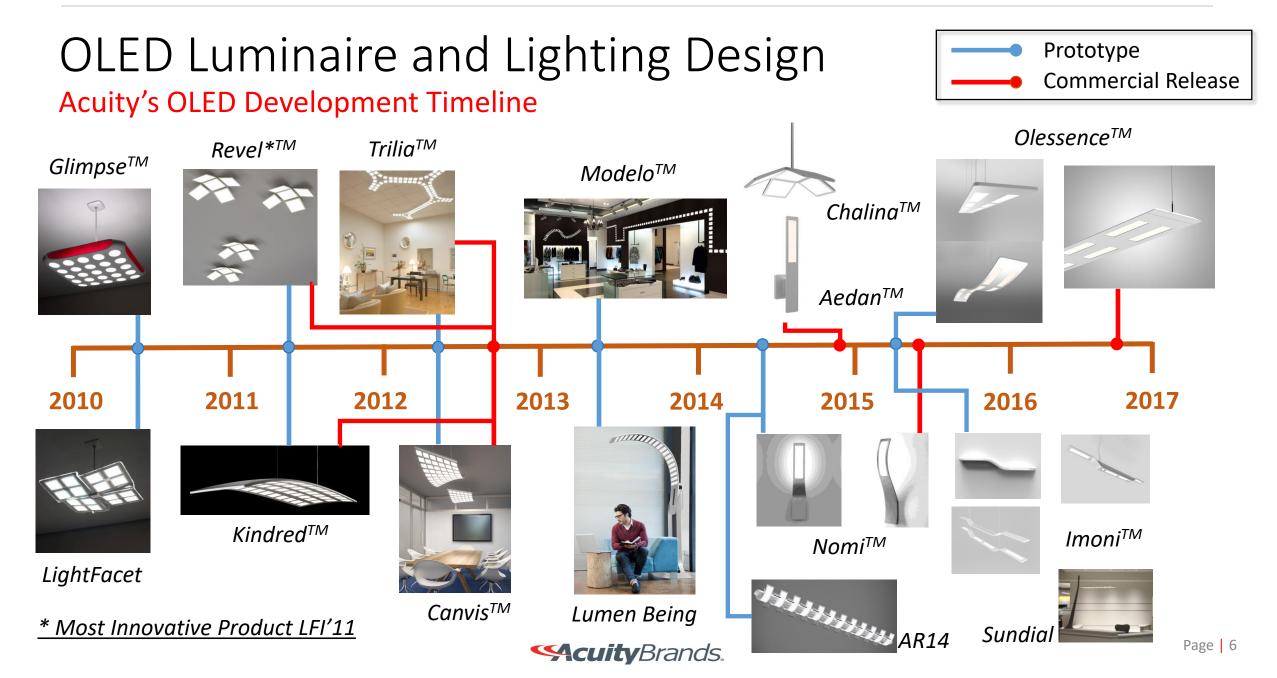
Brite2: 57-63 LPW 3000, 4000K L₇₀ = 50Khrs @ 2800 cd/m², 10 khrs @ 8300 cd/m² Rigid substrate

AcuityBrands.

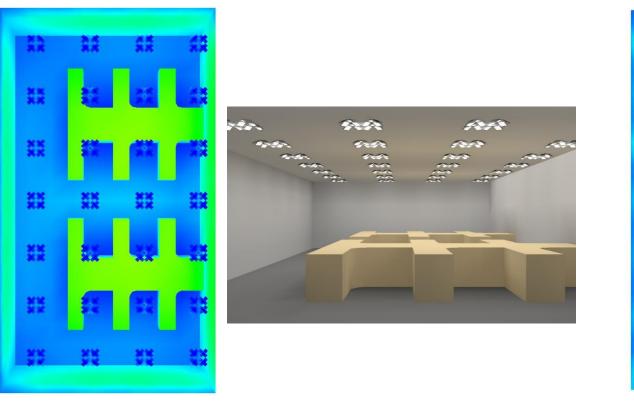
Presentation Overview

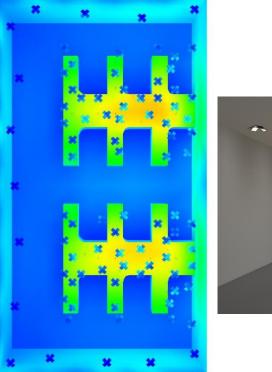
Introduction to OLED Technology and Panels

OLED Luminaire and Lighting Design


OLED Installation Case Studies

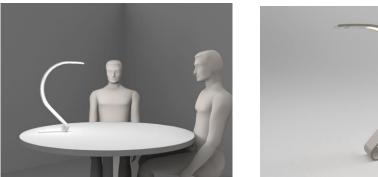
Drivers for OLED Luminaires




\$

OLED Luminaire and Lighting Design

Application Efficiency – from more precise placement of luminaires



TYPICAL "STANDARD" LAYOUT Rectilinear Layout with uniform illumination "APPLICATION EFFICIENT" LAYOUT – VARYING LOCATIONS & HEIGHTS

SecurityBrands.

OLED Luminaire and Lighting Design

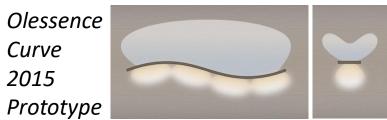
Model for Study

OLED Task Lamp with Surround Light

- Task-Surround-Ambient has advantages in both facial modeling and energy consumption
- The prototype used OLED/LED for the task component and a back LED for surround.

Peter Ngai, Creating an effective lighting environment with task – surround –ambient lighting, SID Display Week, San Jose, CA, Jun 4, 2015. Peter Ngai, Evaluations of a Task - Surround Lighting System in a Low Ambient Lighting Environment, IES Annual Conference, Indianapolis, IN, Nov 10, 2015.

OLED Luminaire and Lighting Design Olessence[™]: DuetSSL[™] Technology (Hybrid OLED/LED)


- Majority LED up-light and OLED down-light
- Combine efficacy, functional luminance and ascetics

- Up to 100 LPW, 1620 LMF
- 4', 6', and 8' sections
- Optional integrated sensors

ScuityBrands.

OLED Luminaire and Lighting Design What Does the Future Hold?

Cost reduction with Gen 5 plant and beyond - Source: LG Chem

LGD to build Gen 5 plant

- Source: LG Display, Mar'16

Thin and Flexible Other unique properties Luminaire as a capsule of other technology

- Design and user interface are paramount
- Illumination is secondary

Presentation Overview

OLED Luminaire and Lighting Design

OLED Installation Case Studies

Drivers for OLED Luminaires

OLED Installation Case Studies

Cammisa + Wipf Consulting Engineers, San Francisco, CA

Photo credit: John Sutton

DETAILS

Project:

Cammisa + Wipf Consulting Engineers, San Francisco

Lighting Designer:

Craig Oty, PE, IALD, Senior Associate, Director of Lighting Design, Cammisa + Wipf

Lighting Manutfacturers:

Winona® Lighting, Peerless® Lighting, Acuity Controls

Products:

Winona® CANVIS[™] Drape HRZ, Peerless® Mino 2x2, Acuity Controls nLight®

48 fc average, 0.70 W/ft²

"Everybody loves it," he explains. "They find it to be a real, eye-catching experience that is unlike anything they have ever seen before."

ScuityBrands.

OLED Installation Case Studies

Irondequoit Public Library, Rochester, NY

Photo credit: Don Cochran

"Most people have never seen anything like it. People love the fixtures. These fixtures are here for art's sake as much as for light."

– Terry Buford, Library Director

Project: Irondequoit Public Library, Rochester, New York

Project Size: 38,700 square feet

Lighting Specifier: Peter Wehner, AIA LEED-AP, Passero Associates

Lighting Contractor: Concord Electric

Lighting Manufacturers: Acuity Brands/Winona® Lighting

Products: Trilia[™] OLED

OLED Installation Case Studies

Meissner Filtration Products, Inc. Camarillo, CA

DETAILS

Project: Meissner Filtration Products, Inc., Camarillo, California

Lighting Designer: JMPE Electrical Engineering and Lighting Design

Architect: Square One Architecture

Lighting Manufacturer: Acuity Brands[®], Winona[®], Peerless[®]

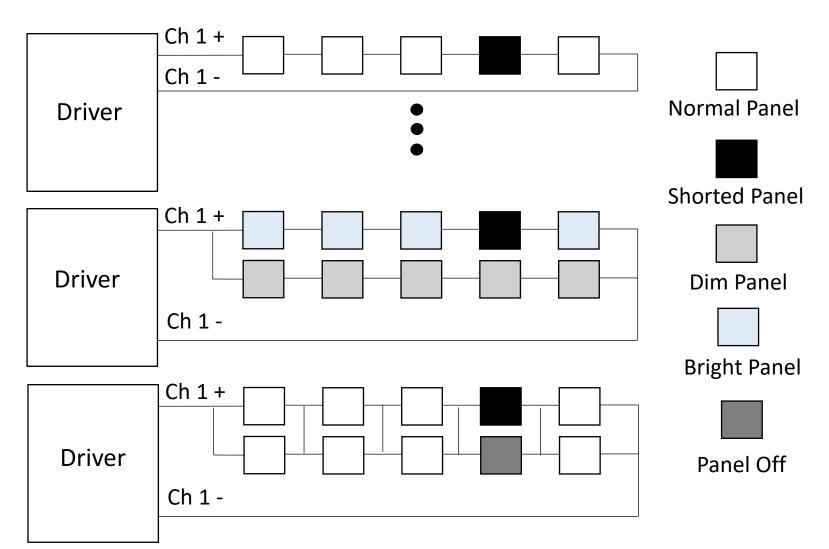
Products: Trilia[™] OLED from Winona[®] Lighting, Origami LED from Peerless[®] Lighting

"This is exactly what we were looking for in the lounge," he noted. "An elegant look that is also functional."

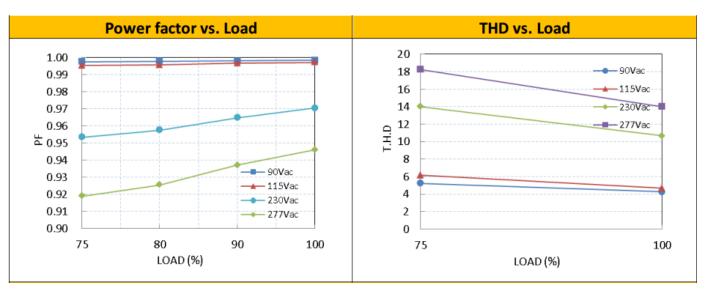
Presentation Overview

Introduction to OLED Technology and Panels

OLED Luminaire and Lighting Design


OLED Installation Case Studies

Drivers for OLED Luminaires



OLED Driver Challenges

- UL Class 2 limit is 60VDC (most drivers max out at 55 VDC)
- Panel voltages are approximately 3V/stack
- Panel voltage will increase due to aging
- Limited number of serially connected panels
- Paralleling panels need to account for possible shorts

Additional Driver Requirements

Typical PF and THD vs. driver load and input voltage, source: Phihong

- PF < 0.9 for commercial, < 0.7 for residential; THD < 20%</p>
- Driver efficiency, PF and THD tend to deteriorate with higher input voltage and lower loading
- Deep dimming, 1% or even 0.1% are becoming industry standard
- Lower wattage drivers will have lower efficiency

SecurityBrands.

Flicker

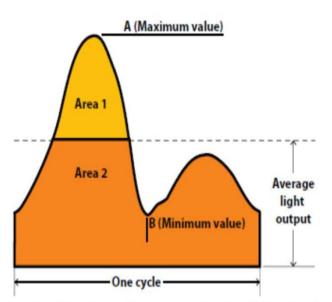
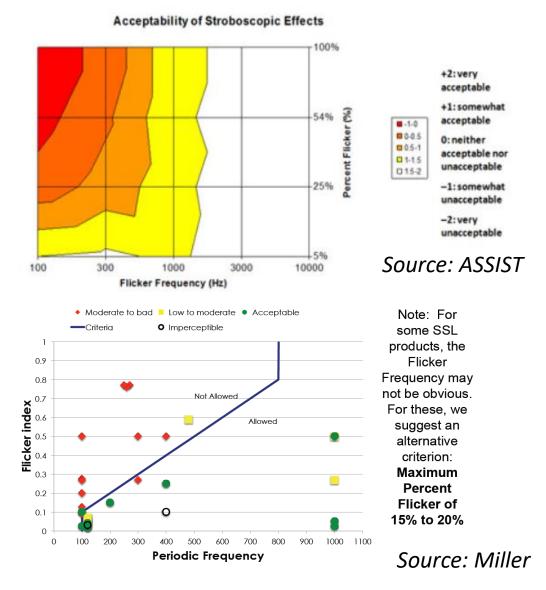



Figure 1: Periodic Waveform Reference for Traditional Flicker Metrics Source: IES Lighting Handbook, 10th Edition

Percent Flicker = 100% x (Max-Min) / (Max + Min) = 100% x (A-B) / (A+B)	Eq.1
Flicker Index = Area above Mean / Total Area = Area 1 / (Area 1 + Area 2)	Eq.2

Source: Poplawski and Miller

Also see IEEE PAR 1789, June 2015

Current Acuity Driver Solutions for OLED Luminaires

10 Watt

Natural Dimming to 0% for most demanding indoor applications. Different form factors are available for the perfect fit with your luminaire.

Read more \rightarrow

30 Watt

Natural Dimming to 0% for most demanding indoor applications. Different form factors are available for the perfect fit with your luminaire.

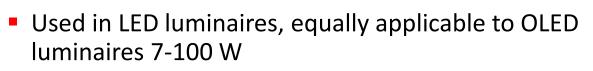
Read more \rightarrow

100 Watt

Ideal for higher lumen package indoor applications. Offering four outputs and Natural Dimming to 0%. Different form factors are available for the perfect fit with your luminaire.

20 Watt

20-watt SOLOdrive are ideal for small lumen package indoor applications. Offering Natural Dimming to 0% and two different form factors.


Read more \rightarrow

50 Watt

Ideal for higher lumen package indoor applications. Offering dual outputs and Natural Dimming to 0%. Different form factors are available for the perfect fit with your luminaire.

Read more →

- eldoLED programmable drivers (150-1400mA), 55V max, up to 87% efficient, Hybrid HydraDrive
 - For low wattage OLED luminaires <5W</p>
 - 0-10V, phase cut dual dimming, CCR
 - PF > 0.9, THD < 20%, 120-277V input</p>
 - Fits in a 2" x 4" single gang switch box

2nd Gen

ScuityBrands.

Aedan Sconce

Hybrid HydraDrive

Constant Current Reduction Relative Brightness 100% 55%

0-100 PWM

Hybrid HydraDrive

Relative Brightness

100%

Driver	Dim Level	Percent Flicker	Flicker Index	Frequency
eldoLED	100%	3.9%	0.01	305 Hz
eldoLED	80%	9.2%	0.03	306 Hz
eldoLED	50%	4.0%	0.01	307 Hz
eldoLED	30%	11%	0.03	2450 Hz
eldoLED	20%	4.0%	0.01	832 Hz

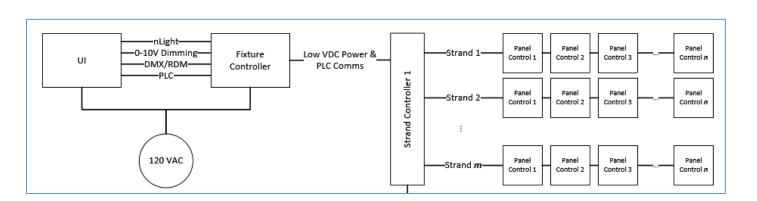
As measured by VISO Systems Flicker Checker App

Trilia driven by eldoLED drivers, dimmed to 2.5%

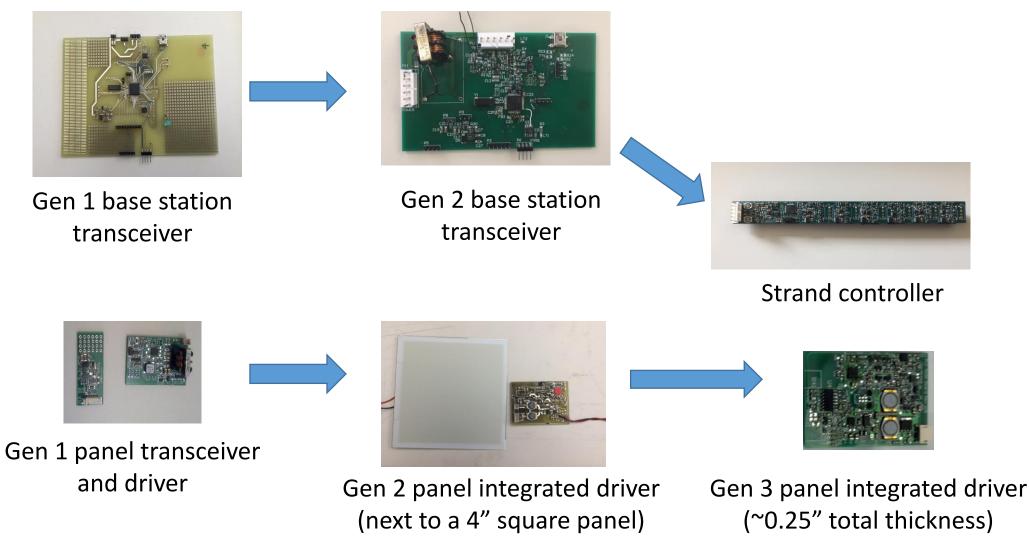
Flicker checker

DOE Project

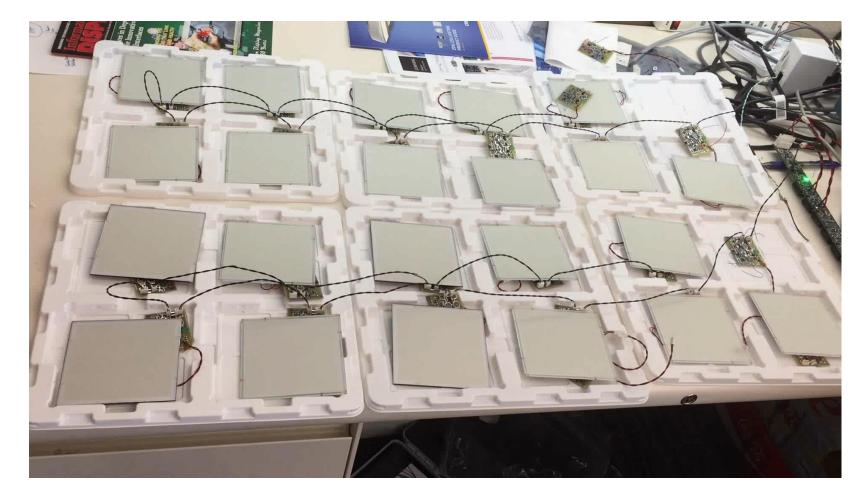
- DE-EE0007073 "OLED Luminaire with Panel Integrated Drivers and Advanced Controls"
- Work spans 9/1/2015-10/31/2016, with OLEDWorks as subcontractor
- The proposed architecture is to have a base station that performs AC/DC voltage conversion and integrated driver at each panel that performs DC/DC current regulation.
- But how about dimming?


Proposed Deliverable	Panel CCT	3000K (3500/4000K optional)
	Panel Luminance	2500-3000 cd/m ²
	Panel CRI	>85
Luminaire	Panel Lifetime (L ₇₀)	>25,000 hrs
Platform: Canvis	Panel Efficacy	80 lm/W
	Total Luminous Output	4000-5000 lm
	Luminaire Efficacy	65 lm/W
	Luminaire Control (option 1)	0-10V dimming, global
	Luminaire Control (option 2)	DMX or other protocols, individual panel addressable

System Architecture


Original proposal, options for wired control and PLC (power line communication)

Current system architecture: PLC communication, with strand controllers to expand the number of panels in the system



Hardware Development

SecurityBrands.

Individually Addressable Dimming

- 2 strands x 11 panels
- 3 dimming patterns
 - \circ Sequential
 - Checker board
 - \circ Random

SecuityBrands.

\$

Thank You!

http://www.acuitybrands.com/oled

11////

©2015 Acuity Brands Lighting, Inc. all rights reserved.