

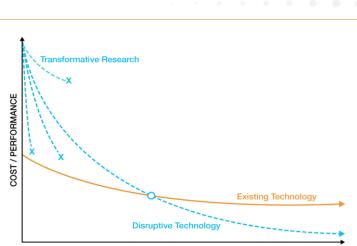
Ammonia as Virtual Hydrogen Carrier

Grigorii Soloveichik, Program Director

H2@Scale Workshop November 16-17, 2016

Who am I?

- Moscow State University MS (1972), PhD in Inorganic Chemistry (1976), Doctor of Sciences in Chemistry (1992)
- Institute of Chemical Problems of Chemical Physics RAS (Chernogolovka, (1975 – 1993)
 - metal hydrides, Ziegler-Natta catalysis, metallocene chemistry, electrochemistry, organometallic hydrogenation catalysis, bimetallic complexes, C-H bond activation
- Visiting scholar at Indiana University, Bloomington (1991), Boston College (1993 – 1995)
- Moltech Corp. (now Sion Power) (Tucson, AZ) (1996 1998)
 anode protection and electrolyte development for lithium metal/sulfur battery
- GE Global Research (Niskayuna, NY) (1998 2014)
 - created and shaped internal and external projects
 - direct synthesis of diphenylcarbonate
 - homogeneous and heterogeneous catalysis projects
 - electrosynthesis of small organic molecules
 - hydrogen storage and production (water electrolysis)
 - CO₂ capture
 - sodium/metal chloride battery, flow batteries (ARPA-E performer)
 - Director of Energy Frontier Research Center for Innovative Energy Storage
- **ARPA-E** (2015 –


- Program Director focusing on electrochemical energy storage (secondary and flow batteries), generation (fuel cells), chemical processes (catalysis, separation)

Why I work at ARPA-E?

ARPA-E is a unique agency

- Creating new learning curves
 failure acceptance
- Program driven
 - no roadmaps

- Innovative start-up culture
 combination of fresh blood and corport
 - combination of fresh blood and corporate memory
- Close involvement in project planning and execution
 - cooperative agreement
- Technology to market focus
 - techno-economical analysis
 - minimum value prototype deliverable
 - technology transfer

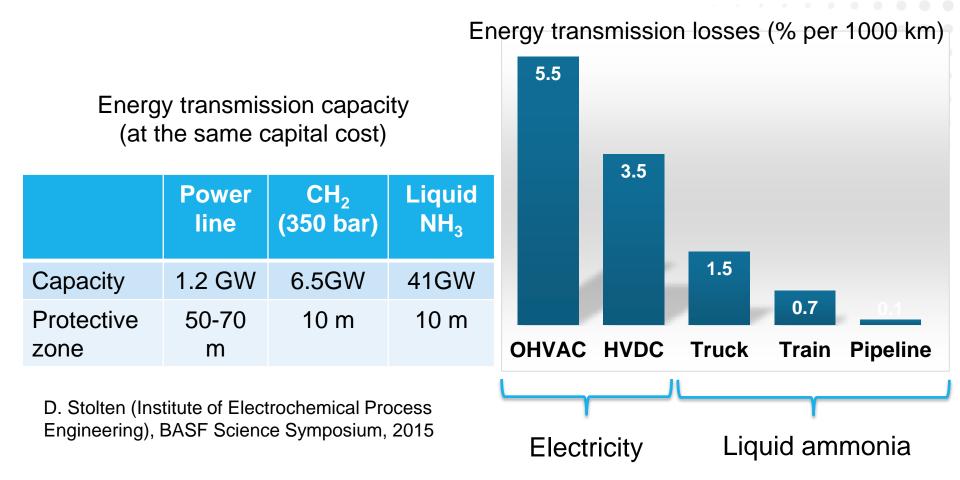
Ammonia as energy vector and hydrogen carrier

- Direct agricultural application
- Production of nitrogen-based fertilizers
- Feedstock for chemical processes
- Energy storage
- Energy transportation
- Direct fuel for
 - fuel cells
 - ICEs
 - turbines
- Hydrogen carrier

Ammonia NH₃ facts

- Properties: b.p. -33 C, density 0.73 g/cm³, stored as liquid at 150 psi
 - 17,75% H, 121 kg H/m³
- Synthesis: reaction of N₂ and H₂ under high pressure and temperature (Haber-Bosch process)
- World production 150MM tons
 current cost about \$0.5/L
- Octane number 120
- Blends with gasoline and biofuels (up to 70%)
 - mixtures preserve performance in ICE (torque)
 - proportional drop in CO₂ emission
- Partial cracking improves combustion
- Proven, acceptable safety history for over 75 years
 inhalation hazard, must be handled professionally
- Energy density 4.3 kWh/L

Comparing ammonia with carbon-neutral liquid fuels


LOHC couple	B.p., deg C	Wt. % H	Energy density, kWh/L	E ⁰ , V	η, %
Synthetic gasoline	69-200	16.0	9.7	-	-
Biodiesel	340-375	14.0	9.2	-	-
Methanol	64.7	12.6	4.67	1.18	96.6
Ethanol	78.4	12.0	6.30	1.15	97.0
Formic acid (88%)	100	3.4	2.10	1.45	105.6
<u>Ammonia</u>	-33.3	17.8	4.32	1.17	88.7
Hydrazine hydrate	114	8.1	5.40	1.61	100.2
Liquid hydrogen	-252.9	100	2.54	1.23	83.0

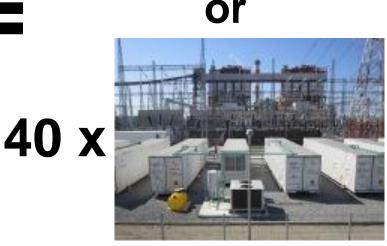
G.Soloveichik, Beilstein J. Nanotechnol. 2014, 5, 1399

Ammonia is promising media for energy storage and delivery

Energy transportation capacity and losses

Liquid pipelines have highest capacity and efficiency

Energy storage comparison



30,000 gallon underground tank contains 200 MWh (plus 600 MMBTU CHP heat

Capital cost ~\$100K

1,000kg H₂ Linde storage in Germany

5 MWh A123 battery in Chile

Capital cost \$50,000 - 100,000K

Ammonia provides smallest footprint and CAPEX

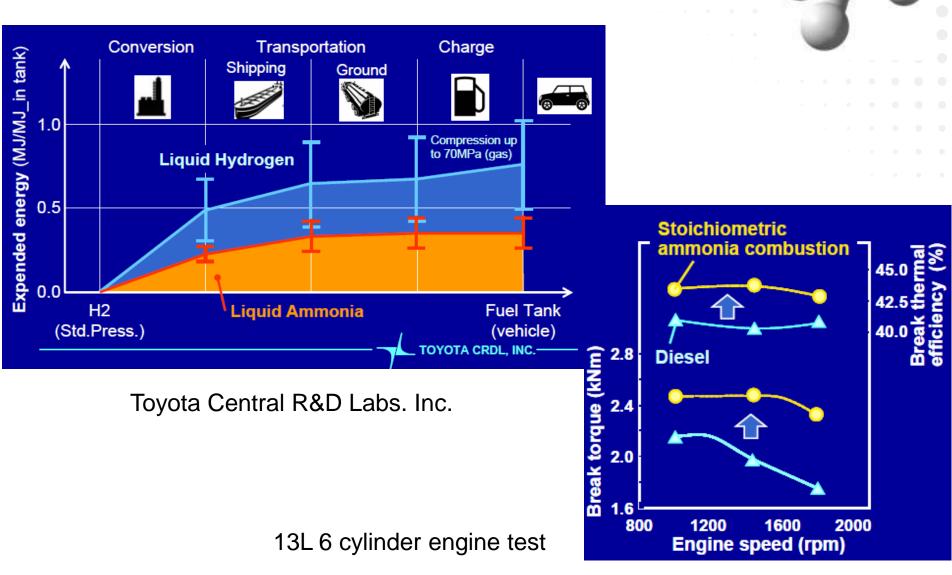
Ammonia as internal combustion fuel

Norsk Hydro, Norway, 1933

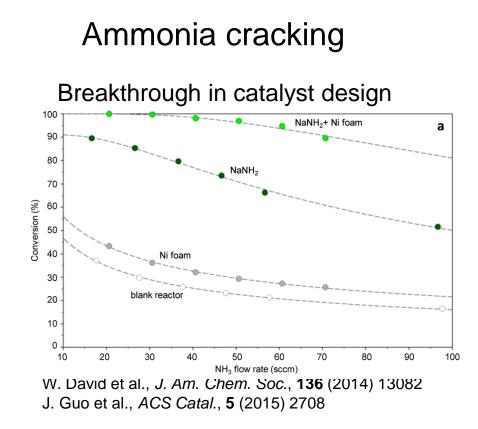
Belgium, 1943

HEC-TINA 75 kVA NH_3 Generator Set

 NH_3 -fueled ICE operating an irrigation pump in Central Valley, CA; ~ 50% total efficiency


2013 Marangoni Toyota GT86 Eco Explorer, 111 mile zero emission per tank (7.9 gal NH_3)

2013 AmVeh x250, South Korea runs on 70%NH $_3$ +30% gasoline

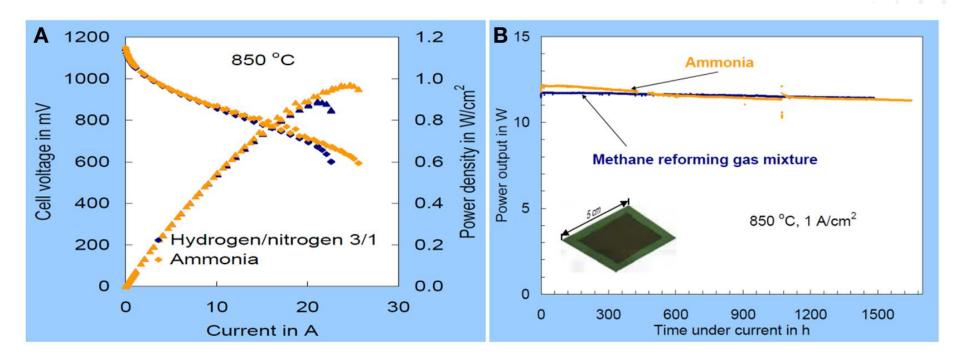


Use of ammonia fuel in ICEs

Ammonia as a hydrogen carrier

Ammonia cracking unit 200 nm³/h, 900 C, Ni catalyst

Ammonia electrolysis


(Ohio University) Low cell potential ($E^0 = 0.077V$) Theoretical efficiency 95%

B. Boggs et al., J. Power Sources 192 (2009) 573

Ammonia as a fuel for fuel cells

- Alkaline fuel cells
- Molten carbonate fuel cells
- Protonic conductor fuel cells
- Solid oxide fuel cells

A. Hagen, Use of alternative fuels in solid oxide fuel cells, 2007

Ammonia synthesis

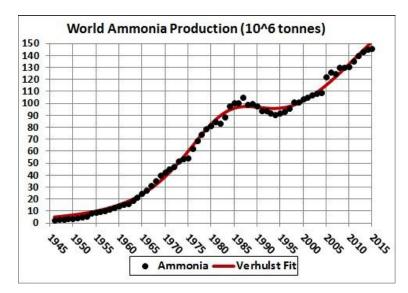
Fritz Haber & Carl Bosch (Nobel Peace Prize 1918 & 1931)

1913

 N_2 + $3H_2$ ↔ $2NH_3$ ΔH = -92.4 kJ/mol Air (78% N_2) separation as nitrogen source H_2 from methane (SMR) or water (electrolysis)

2013

Ammonia production


Ammonia Plant (1850 metric tons per day)

https://chemengineering.wikispaces.com/Ammonia+production

Disconnect between ammonia production scale and scale of renewables generation

Current ammonia production plant:

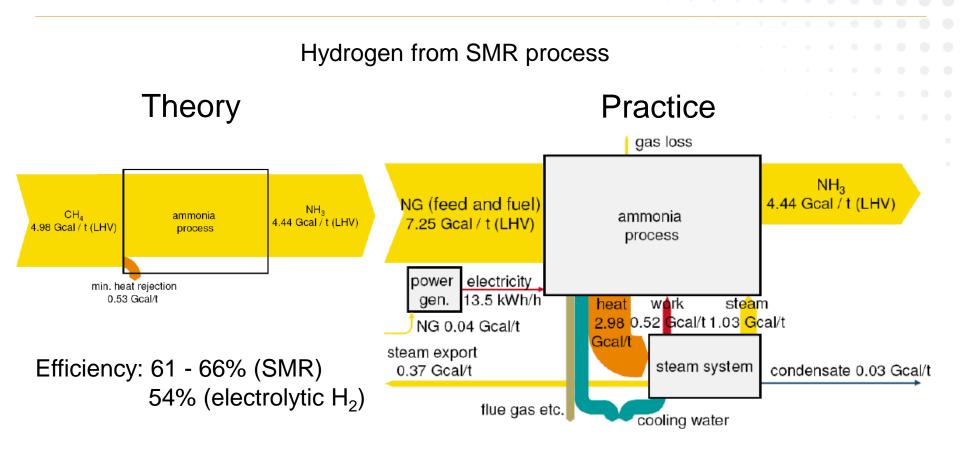
- H₂ via steam methane reforming
- N₂ via cryogenic air separation
- produces 2,000 to 3,000 tons per day
- equivalent 600 1,000 MW

http://minerals.usgs.gov/minerals/pubs/commodity/nitrogen P. Heffer, M. Prud'homme "Fertilizer Outlook 2016-2020" International Fertilizer Industry Association (2016)

Projected AGR 2.5 – 3.5% (230 Mt NH₃ in 2020)

Improving ammonia production

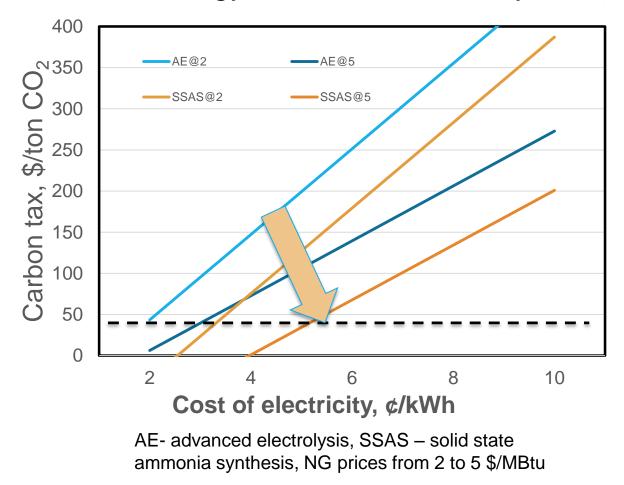
Advanced Haber-Bosch process


- Lower pressure synthesis (adsorptive enhancement)
- Low temperature synthesis (catalyst development)
- Ambient pressure synthesis (plasma enhancement)

Electrochemical synthesis

- Solid state medium temperature cells
- Low temperature PEM and AEM cells
- Molten salt electrolytes

Ammonia production: energy efficiency



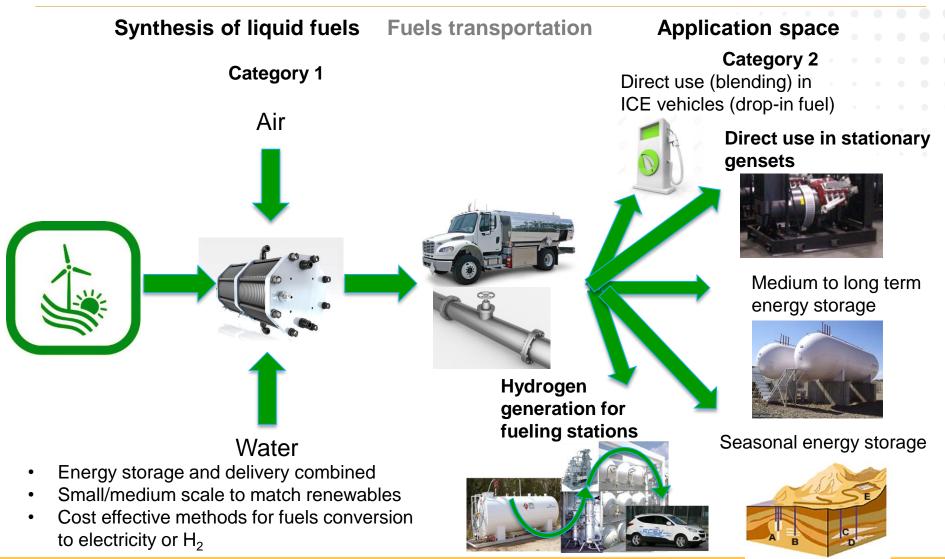
Energy consumption: 10000 - 12000 mWh/ton NH_3 (current SMR) 6500 - 7500 mWh/ton NH_3 (projected SSAS)

SMR vs. electrolytic hydrogen

Break even energy cost of ammonia synthesis

Hydrogen Cost (\$/kg) = 0.286*NG price (\$/MMBtu) + 0.15(Penner)

Conclusions


- Ammonia is an ideal candidate for long term energy storage and long distance energy delivery from renewable intermittent sources
 - high energy density
 - feedstock widely available
 - production successfully scaled up (150MT annually)
 - zero-carbon fuel
 - infrastructure for storage and delivery technologies in place
 - can be used in fuel cells and thermal engines

Remaining challenges

- down scale of production economically (match renewables)
- production tolerant to intermittent energy sources
- improve conversion efficiency to electricity, power or hydrogen
- improve safety
- public acceptance/education

Renewable Energy to Fuels through Utilization of Energy-dense Liquids (REFUEL)

