Session 2: Conservation and Optimization Via Volt/Var Control

1

Conservation and Optimization Via Volt/var Control

Tuesday, October 28, 2014

8:00 a.m. Session

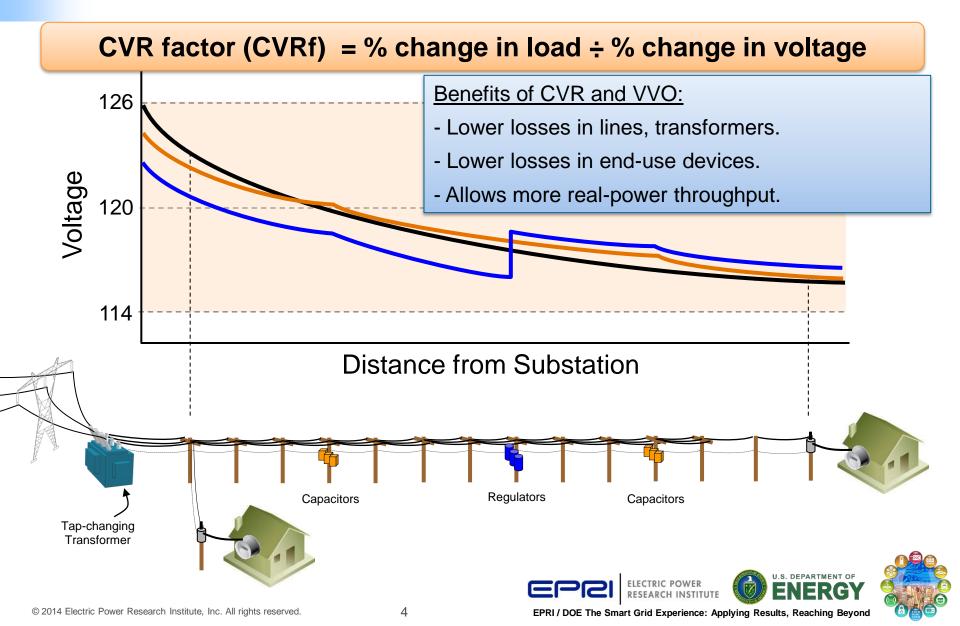
Moderators

Jared Green, EPRI

Joe Paladino, DOE

The Smart Grid Experience: Applying Results, Reaching Beyond October 27-29, 2014

Session Agenda


- (8:05-8:20 AM) Brian Schell American Electric Power
- (8:20-8:35 AM) Bruce Lovelin Central Lincoln
- (8:35-8:50 AM) Daniel Fournier Hydro-Québec
- (8:50-9:00 AM) 5-10 minute break for Q&A
- (9:00-9:15 AM) Jim Parks SMUD
- (9:15-9:30 AM) Jay Oliver Duke Energy
- (9:30-9:40 AM) Jeff Roark EPRI
- (9:40-9:50 AM) Joe Paladino DOE
- (9:50-10:00 AM) 5-10 minute break for Q&A

CVR and VVO Basics

Brian Schell, American Electric Power Email: beschell@aep.com

- Brian received his B.S.E.E. degree from West Virginia University in 1988 and has been a licensed Professional Engineer in the State of Ohio since 1995.
- Principal Engineer employed with American Electric Power for 25 years.
- Worked first 5 years in the Region Engineering Organization in Columbus, Ohio.
- Worked for 15 years in the Distribution Planning organization and was supervisor for Ohio the last few years.
- Since 2010 worked in the Grid Management Deployment organization for American Electric Power.

Volt VAR Optimization at AEP

Experience with three vendors:

(alphabetical order)

Cooper Yukon VVO

- GE VVO
- Utilidata AdaptiVolt™ VVO

© 2014 Electric Power Research Institute, Inc. All rights reserved.

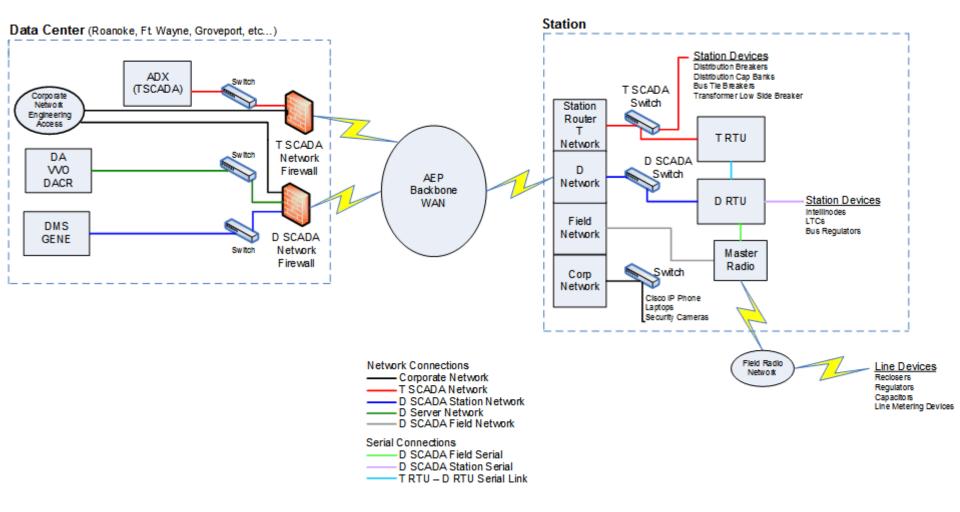
E

Volt VAR Optimization at AEP

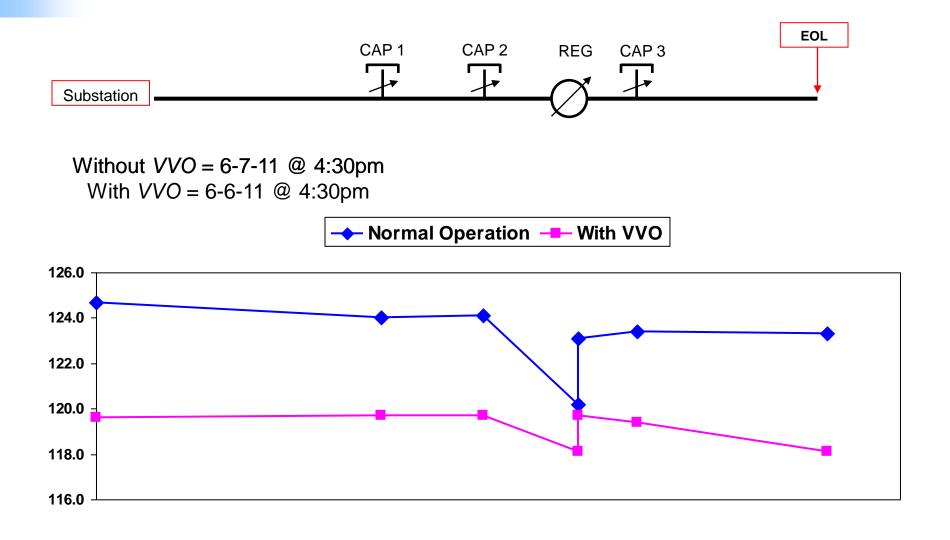
- In Service
 - 17 circuits in Ohio
 - 13 circuits in Oklahoma
 - 9 circuits in Indiana
- In Progress
 - 25 circuits in Kentucky
 - 25 circuits in Indiana
 - 3 circuits in Michigan

- In Planning
 - 80 Circuits in Ohio
 - 25 Circuits in Indiana

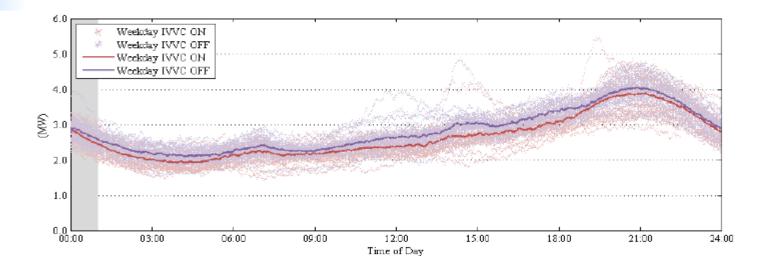
 Approximately 200 circuits in the growing VVO Plan

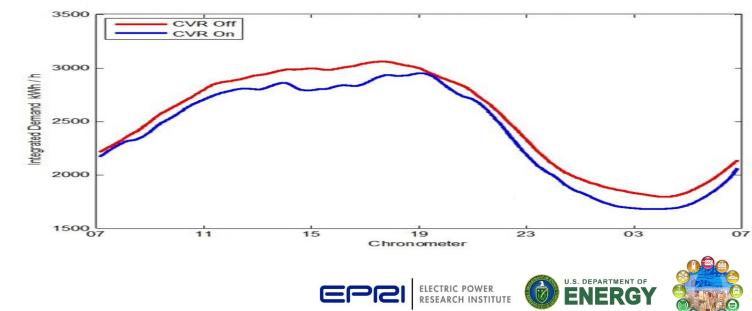

Volt VAR Optimization Architecture

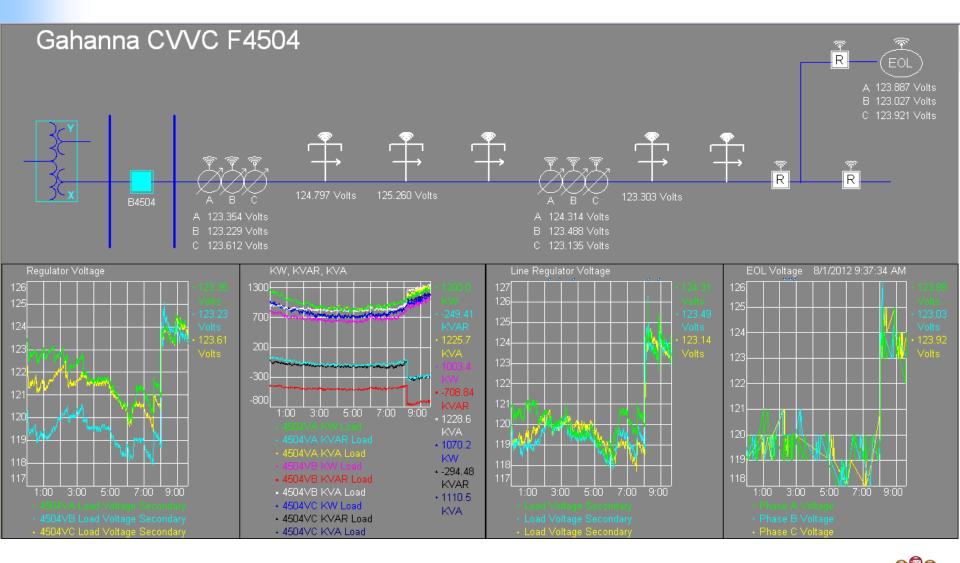
Volt VAR Controllers Mesh Master EOL Monitors Cat 5 **Mesh Network** EIA-485 Cat 5 Line Regulators **Transmission RTU** Line **Breaker Control** Capacitors Fiber or Mesh Cat 5 **DMS - GENe** TITT Switch


Volt VAR Optimization Architecture DRAFT

EP




AEP Ohio: Gahanna – 4504 (13 KV) Voltage Profile



Circuit Performance In Multiple States

SCADA PI Process Book View

EPRI / DOE The Smart Grid Experience: Applying Results, Reaching Beyond

ELECTRIC POWER

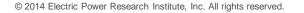
RESEARCH INSTITUTE

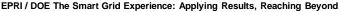
EP

Volt VAR Optimization at AEP

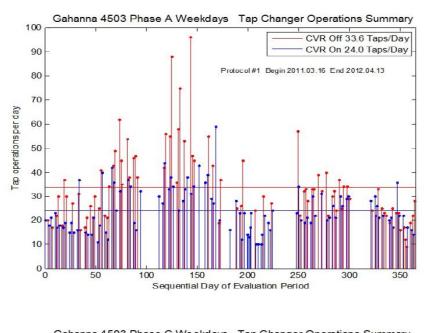
• Volt Var Optimization technology works as expected

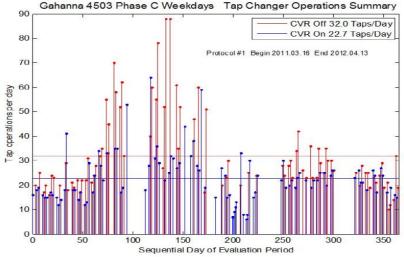
 Testing validates that ~2-4% energy and demand reduction is achievable.

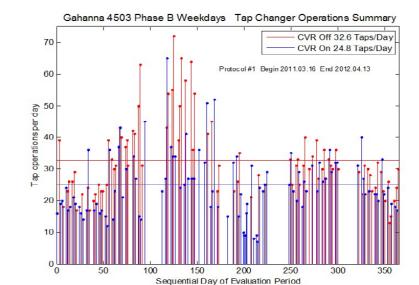



Demand and Energy Reduction Results

Measurement &Verification (M&V) Analysis Methods


- Requires Day On Day Off Testing
- Battelle/PNNL Third Party Analysis
- Protocol #1
- How do we improve M&V methodology?





Reduced Tap Operations using Utilidata AdaptiVolt System

Tap Operation Reduction Summary Average / Day over a year Phase A – 33.6 reduced to 24.0 (28.6%) Phase B – 32.6 reduced to 24.8 (23.9%) Phase B – 32.0 reduced to 22.7 (29.1%)

Volt VAR Optimization at AEP

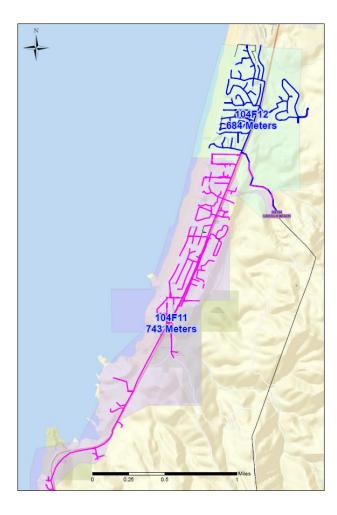
- Standards (Architecture, Addressing, Regs, CAPs, LTCs, Sensors, RTUs, etc.)
- Processes (Alarms, Vendor Updates, Equipment Failures, Circuit Modeling, etc.)
- Day 2 Support (Resources, Monitoring, Commitment, Costs, Service Level Agreements, etc.)
- Documentation (Version Control, Updates, Central Repository, etc.)
- Resource Plan (GMD, Telecommunications, Station Engineering, Distribution Engineering, etc.)
- Testing

Bruce J. Lovelin, Central Lincoln PUD blovelin@cencoast.com

- Chief Engineer and Systems Engineering Manager
- 30 years experience in electric utility industry
- Electrical Engineering Degree from Oregon State University
- Smart Grid Project Program Manager

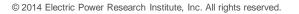
Central Lincoln PUD

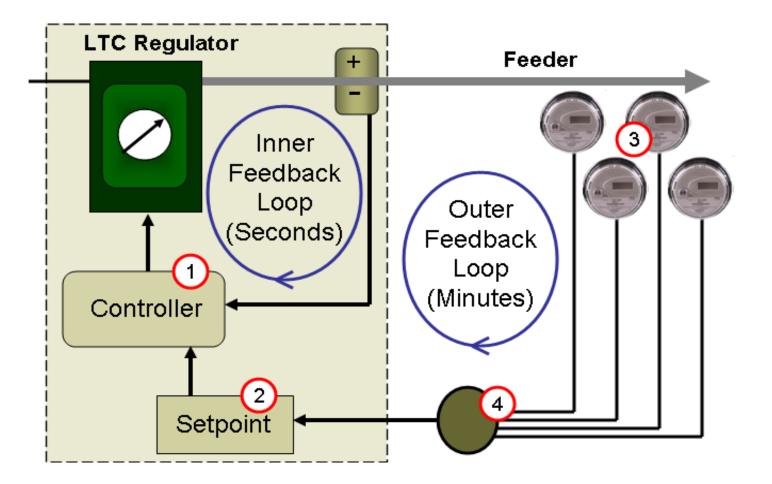
- 270 MW Peak load, 39,000 Customers
- 130 employees
- 120 miles of Oregon Coastline


Could a AMI System be used to Manage Customers' Voltage real time?

EP

Pilot Project

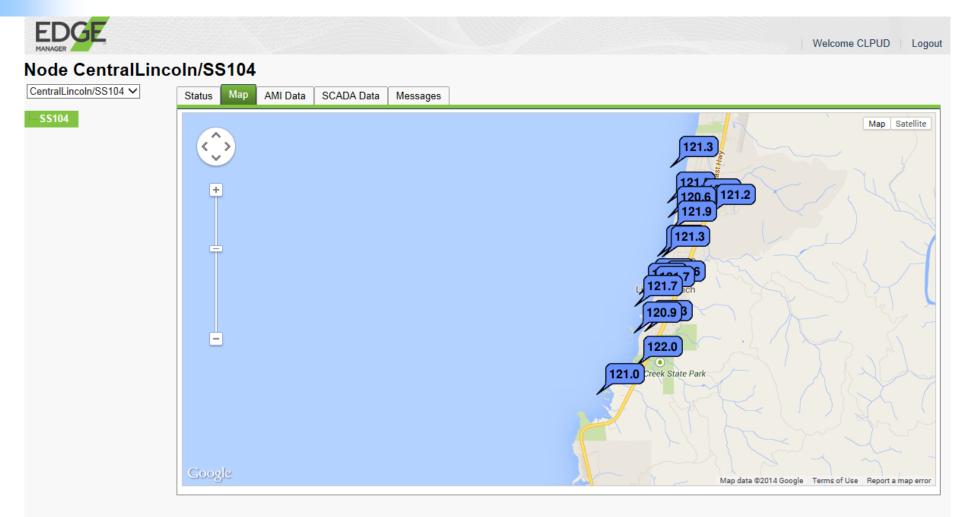



Lincoln Beach Substation

- One LTC transformer
- Two feeders
- 1400 meters
- Coastal community
- High percentage of vacation homes
- 8 months heating annually
- No A/C

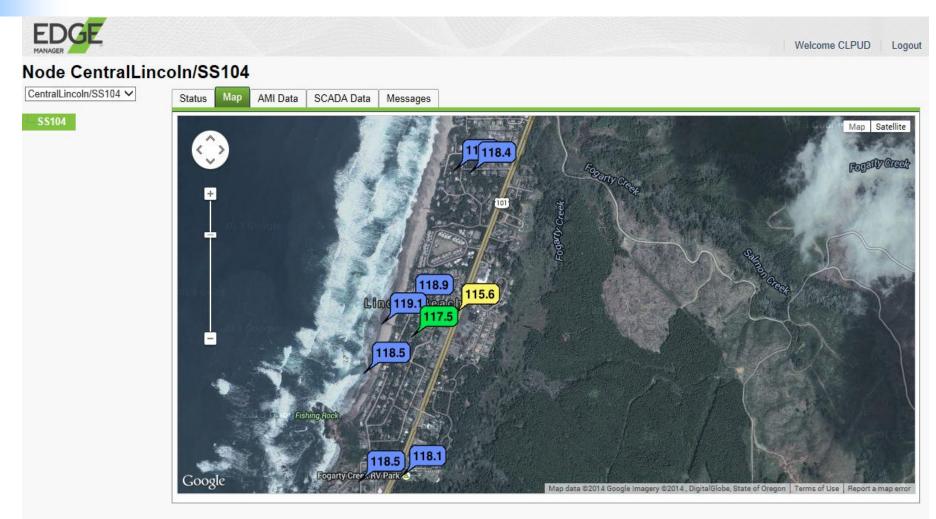
Node CentralLincoln/SS104

CentralLincoln/SS104 V



09:14:56AM 15-Oct-2014

09:15:43AM 15-Oct-2014


Node CentralLincoln/SS104

Project Results

	Voltage Reduction	CVR Factor	Energy Savings
Summer	3.46%	0.63	2.18%
Fall	3.18%	0.63	2.00%
Winter	2.35%	0.69	1.62%
Annual	2.95%	0.65	1.92%

- EDGE Validator uses hourly data
 - Bus voltage, MW
 - Temperature, relative humidity
 - CVR on/off
- ON hours paired with similar OFF hours

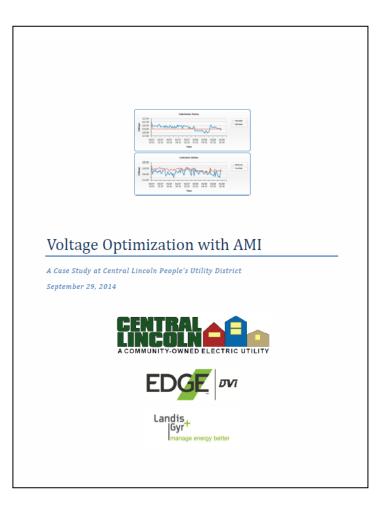
EP

Lessons Learned

- Great Tool for Finding Service Issues
- Operational Changes
- LTC Operation Unchanged
- SCADA and AMI Integration Went Well
- Did not impact AMI Meter Reading Performance
- No Customer Issues

Project Assessment

- Saved Customers about 2% Energy Consumption
- Operational Positives
- Easy to Implement
- SCADA and AMI Integration Went Well
- Robust Measurement and Verification
- Cost-Effective Resource 1 cent/kwh


Next Steps

- Full System Implementation
- Up to 25 Substations
- 3 Year Project
- **Begins Winter 2015** •

E

Thank You!

For a copy of our case study please contact: **Bruce J Lovelin** blovelin@cencoast.com

ELECTRIC POWER

Er

Daniel Fournier, Hydro Quebec Email: Fournier.Daniel.3@hydro.qc.ca

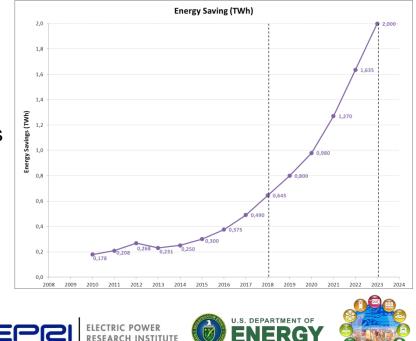
- Daniel Fournier received a Bachelor in Engineering Physics from the Ecole Polytechnique de Montreal in 1980. He later earned a M.Sc. and Ph.D. in Energy INRS Energy in 1985 and 1988 respectively
- He worked at the Institut de recherche d'Hydro-Québec (IREQ) from 1990 to 2004 and was involved in various research and development related to expert diagnostic systems (infrared thermography and partial discharges) for Distribution equipments
- Since 2004, he worked for Hydro-Québec Distribution as a senior engineer in the field of smart grid applications.
- Since 2010, he has been representing Hydro-Québec Distribution as advisor for the EPRI Smart Grid Demo Host Site Project.
- He is also in charge of the Distribution Automation Telecom modernization project.
- He is a member of the Order of Engineers of Quebec.

VVC at Hydro-Québec Distribution

by: Daniel Fournier, Eng. Jordi Drouin, Eng Laurier Demers, Eng.

The Smart Grid Experience: Applying Results, Reaching Beyond

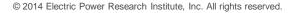
October 27-29, 2014 Charlotte, NC


Project Description

• Goal: by 2023, 2 TWh savings (annual energy consumption)

• 2008-2010 (7.3M\$ invest.) Pilot phase completed

• 2011-2023 (152.4M\$ invest.)


- 150 substations and 2,000 distribution lines
- > 1,000 remotely monitored voltage transformers
- > 865 remote-controlled capacitor banks
- Infrastructure upgrades

VVC Project Status

- Voltage control on 17 substations (10 more to come in 2014)
- 195 TTT (medium voltage sensors) installed
- 865 remote controlled capacitors banks installed

Reactive Power Control System status

Overview of system components

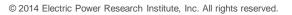
- > 865 capacitors at 1.2 Mvar each total capacity 1038 Mvar
- Remote control capacitors are controlled by the distribution control system
- 576 capacitors currently remote controlled

Objectives

> Switching of the shunt distribution capacitors by remote control in order to

- improve voltage profile (distribution)
- reduce losses (transmission and distribution)
- increase stability limits (transmission)
- increase the transit of power (transmission)
- Consider the real time needs and constraints of the transmission provider
- Increase the energy gains if the substation has both volt & var control

Reactive Power Control System


Observations:

- Pilot project: ~1800 capacitor switching operations
- Some issues with capacitor bank operations: mechanical or remote control related deficiencies (approx. 5% total)
- Important to use integrated measurements in the algorithm as opposed to instantaneous measurements
- No customer complaints related to the reactive power control system observed during the pilot project

Next steps:

- > Improve the algorithm to optimise the number of capacitor operations
- Reduce maintenance cycles on the equipment
- Increase capacitors being managed by the VAR control system from 576 capacitors to 865 capacitors
- Develop indicators to determine the frequency in which each capacitor is used. (less frequently operated units could be moved to another location)
- Integrate a VVO system in order to maximize the energy gains

Voltage reduction techniques

Static setpoint

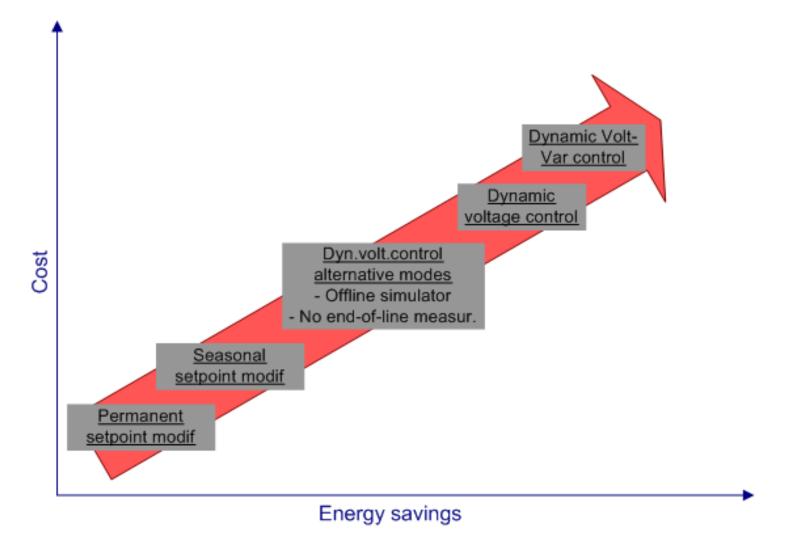
Dynamic setpoint Normal modes

Dynamic setpoint Alternative modes

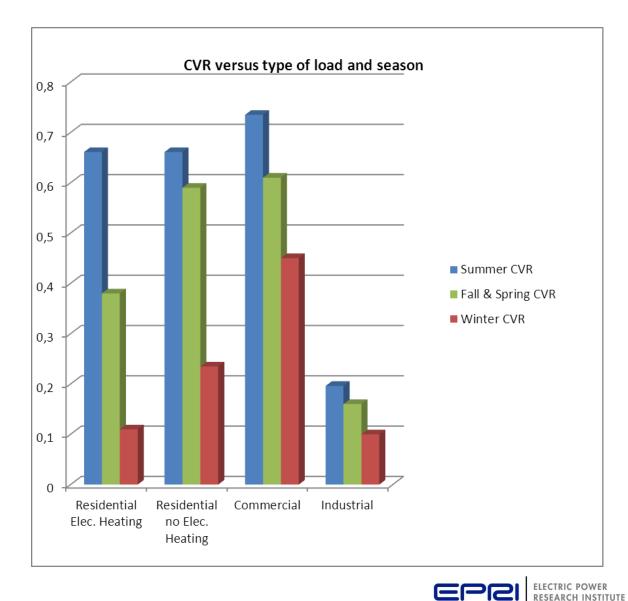
- 1. Permanent setpoint modification
- 2. Seasonal setpoint modification
- 3. Dynamic voltage control
- 4. Dynamic Volt-Var control (VVC)
- Dynamic voltage control No online simulator static voltage targets only
- 6. Dynamic voltage control No end-of-line

voltage measurements (simulator only)

Voltage reduction techniques Summary of requirements


		Voltage reduction techniques									
Requirements	Perman. setpoint modif	Seasonal setpoint modif	Dynamic voltage control - Offline simulator	Dynamic voltage control - No meas.	Dynamic voltage control	Dynamic volt-var control					
Offline Simulator (planning tool)	X	X	X								
Online Simulator (real time load flow)				X	X	X					
Substation data acquisition			X	X	X	X					
Remotely controlled voltage regulator at substation			X	X	X	X					
Real time voltage measurement at critical locations			X		X	X					
Remotely controlled capacitor banks						X					

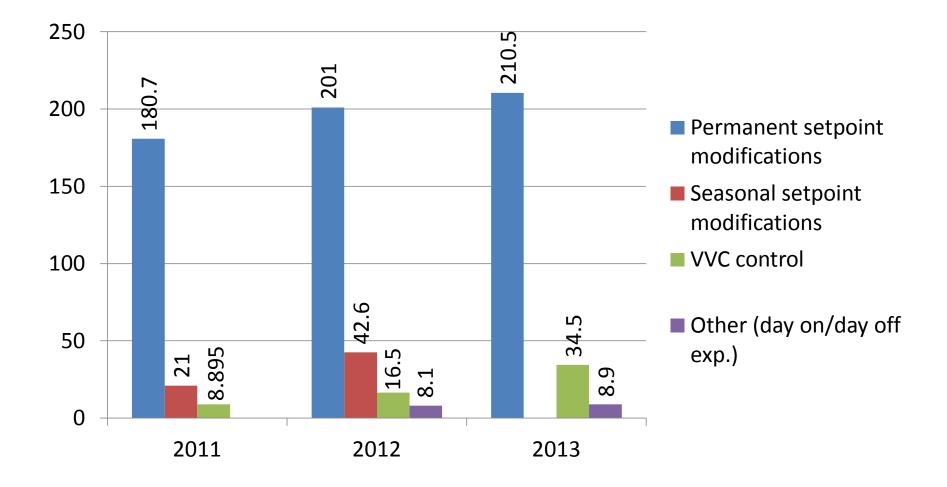
Voltage reduction techniques Summary of cost-effectiveness analysis


U.S. DEPARTMENT OF

FR

EPRI / DOE The Smart Grid Experience: Applying Results, Reaching Beyond

ELECTRIC POWER


CVR study on 4 substations (37 lines)

U.S. DEPARTMENT OF

Energy gains (GWh)

Lessons learned

Low voltage on substation's distribution panel:

in certain substations, because of a design flaw, lowering the voltage creates a risk of affecting the operation of the substation itself. Take that into account.

- During planning, two limitations are often overlooked :

- Regulation dead band (tap changer)
- Voltage unbalance (greater than expected). Must use the lowest phase voltage

 <u>Some customers need an adaptation period</u> even though the reduced voltage stays within the standard limits. (ex. hospitals with sensitive equipment).

Conclusion

- It is not realistic to implement VVC in all substations. Still, there are several other ways of minimizing energy consumption through voltage reduction.
- Benefits are :
 - Allows to minimize cost and/or maximize energy saved
 - Could reveal issues before wasting investments.

Next steps:

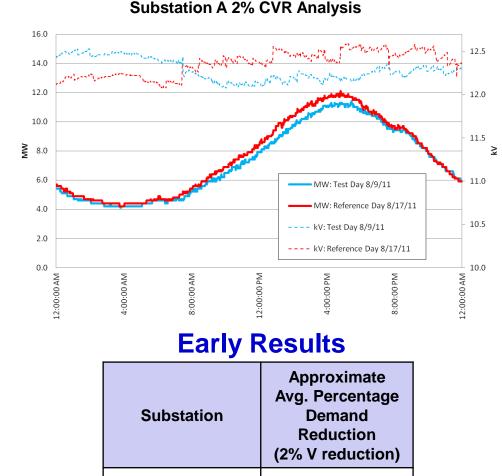
- Adjust our communication process to keep sensitive customers informed of every voltage reduction as soon as planned (often one year ahead)
- Evaluate the cost of fixing the low voltage issue in each problematic substations
- Evaluate the use of the AMI for voltage measurements
- With the gained knowledge, refine our deployment strategy and our business case

Reference

- Hydro-Québec Smart Grid Host Site Progress Report For the Period Ending October 2013 (Technical Update, February 2014)
 - EPRI Report: 300200144 (members only report)

Jim Parks, Sacramento Municipal Utility District Email: Jim.Parks@smud.org

- Program manager in the Energy Research and Development department at SMUD.
- Completing a \$308 million smart grid initiative, SmartSacramento[®].
- SmartSacramento has over 40 individual projects.
- Projects include distribution automation, smart meters, demand response, dynamic pricing and more.
- Past work includes transmission planning, energy efficiency, electric transportation and emerging technologies.
- Over 25 years' experience in the energy industry.



CVR Pilot Project

- Automated 118, 12 kV feeders
- Began summer 2011 on two substations.
 - Retrofit of sub controls
 - Addition of switched capacitor banks
 - Utilization of existing Capcon control system
- Goal of initial phase:
 - Test both CVR and VVO.
- Hypothesized that an industry average CVRf (0.5 – 0.7) could be achieved.
- Expanded project in 2014 to 14 substations.
 - Wanted to determine operational strategy--peak-period/emergency or 24/7 operation.

Substation A

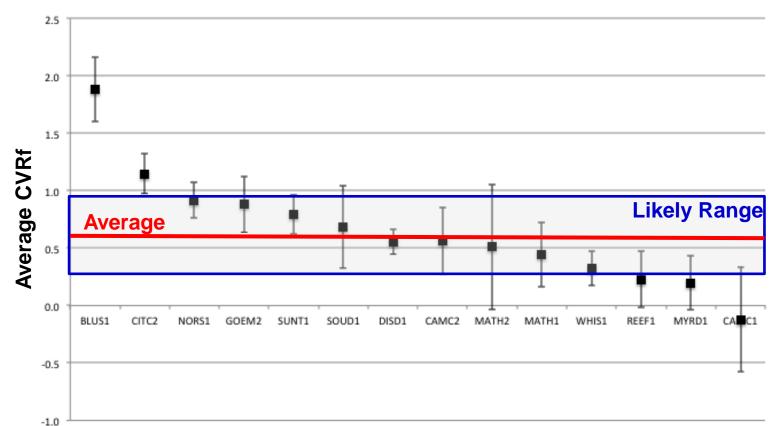
Substation B

1.0%

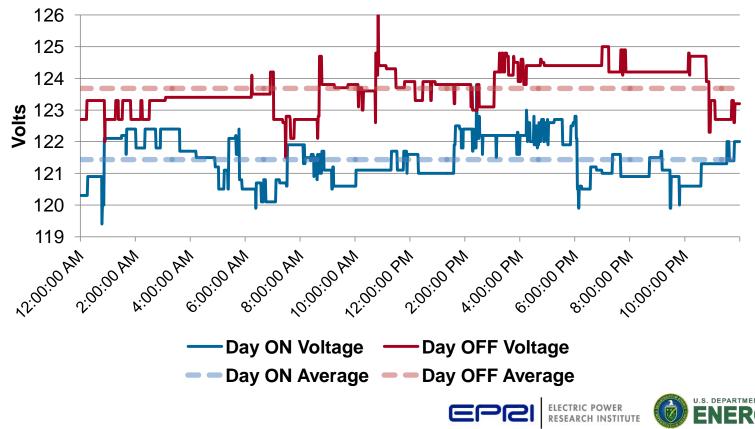
2.5%

© 2014 Electric Power Research Institute, Inc. All rights reserved.

Project Successes - Overview


- Modified control system worked as designed.
- Conducted three years of CVR testing.
- Developed a statistical model to predict CVR impacts.
 - Used a variety of variables, including PV.
 - Two separate regression methods produced similar results.
 - 1.8% average voltage reduction ≈
 - 2% average daily energy (MWh) reduction
 - 1.1 % average load (MW) reduction

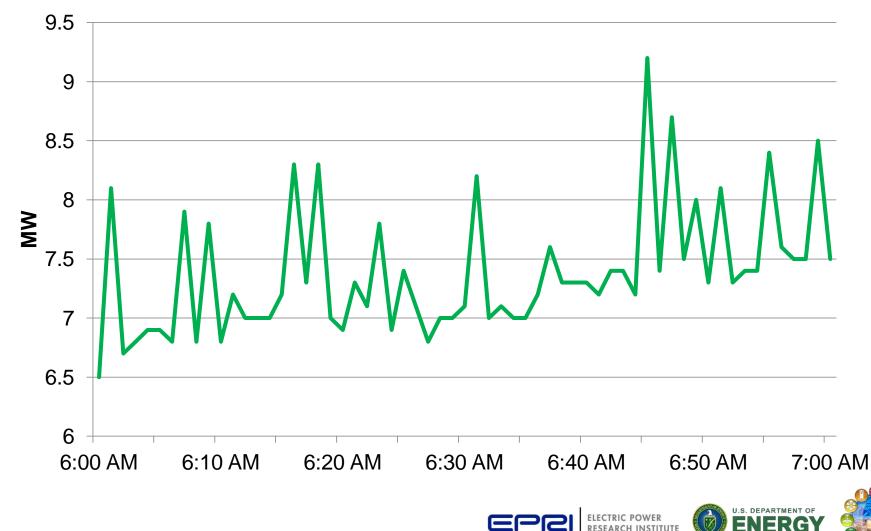
Project Successes – 2013 Analysis


Estimated Substation Average Weekday CVRf (OLS) and Approximate 90% Confidence Intervals

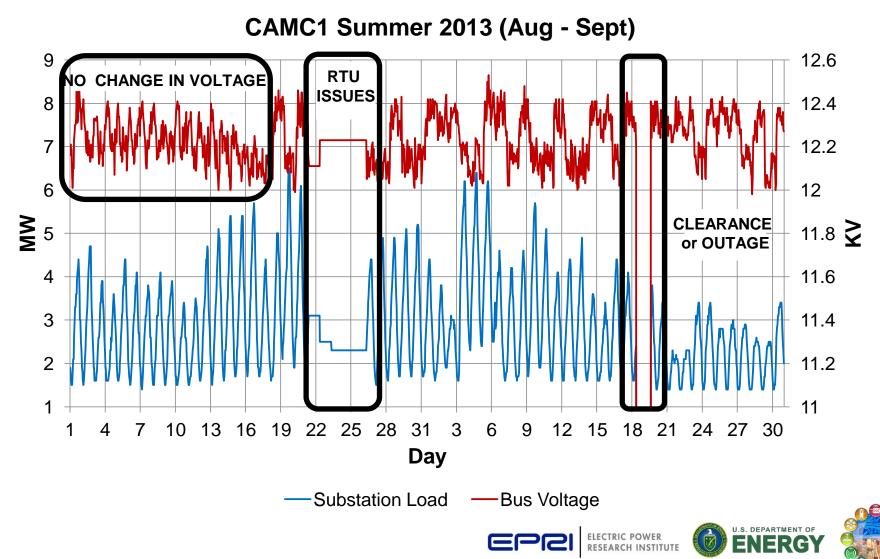
Surprises Related to the Project

- Goal was to test CVR at 3% voltage reduction.
 - Limited target to 2% (actual average reduction was 1.7%).

SUNT1 Voltage Profiles


Surprises Related to the Project

- Goal was to test CVR at 3% voltage reduction.
 - Limited target to 2% (actual average reduction was 1.7%).
- "Distribution data is MESSY!"



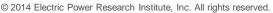
MESSY Data - Episodic Loads

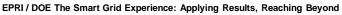
SUNT1 Load

MESSY Data – Clearances and Outages

Surprises Related to the Project

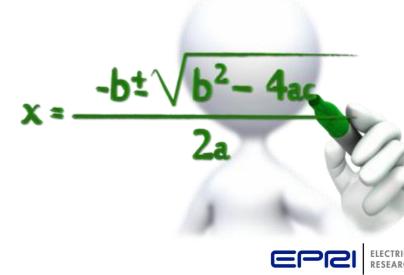
- Goal was to test CVR at 3% voltage reduction.
 - Limited target to 2% (actual average reduction was 1.7%).
- "Distribution data is MESSY!"
 - Episodic loads
 - Power transformer clearance for maintenance.
 - Communication failures
- Difficulty explaining the CVRf outliers.
- No known customer complaints.

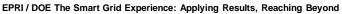




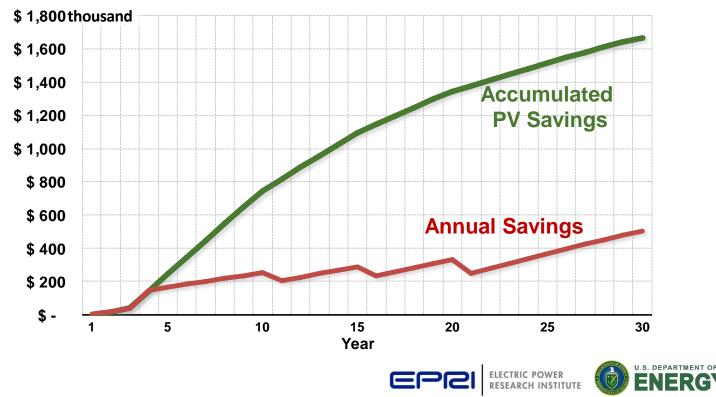
Reaching Beyond

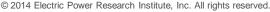
- Challenge is accurately measuring CVR impacts
 - Impact of voltage reduction is small and variable.
 - Normal variation in load is comparatively large.
 - Small moment-to-moment variations may be larger than CVR impact.





Reaching Beyond


- Challenge is accurately measuring CVR impacts
 - Impact of voltage reduction is small and variable.
 - Normal variation in load is comparatively large.
 - Small moment-to-moment variations may be larger than CVR impact.
- Model provides good approximation.



Reaching Beyond

- Challenge is accurately measuring CVR impacts
- Model provides good approximation.
- Performed a CBA on the 14 substations in the project.

Reaching Beyond – Next Steps

- Challenge is accurately measuring CVR impacts
- Developed model provides good approximation.
- Performed a CBA on the 14 substations in the project.
- Developing a business case for peak-time and full-time CVR.
- Present findings to management.

Jay Oliver, Duke Energy Email: Jay.Oliver@duke-energy.com

- Held Director of Grid Automation role since Fall 2012
- Prior to this, served as
 - Major Projects Manager, Distribution System Demand Response, Progress Energy Florida
 - Director, Distribution Services, Progress Energy Florida
 - General Manager, South Coastal Region, Progress Energy Florida
- Received bachelor's degree in electrical engineering from the Georgia Institute of Technology
- Earned his master's degree in business administration from the University of South Florida.
- Licensed Professional Engineer in Florida.

IVVC Projects at Duke Energy

Duke Energy Ohio

- IVVC designed to operate 24/7
- Targets an average 2% voltage reduction on approx. 500 circuits
- Included gaining control of voltage regulating devices (in substations and on distribution circuits) through DMS

Duke Energy Progress

- Distribution System Demand Response (DSDR) targeted 310MW of peak demand reduction capability to avoid new CT plant construction
- Peak shaving voltage reduction currently approaches 4%
- North Carolina Utility Commission classified DSDR as an *Energy Efficiency* program with rider recovery
- Included significant circuit conditioning and automation of voltage regulating devices through DMS

IVVC Projects at Duke Energy

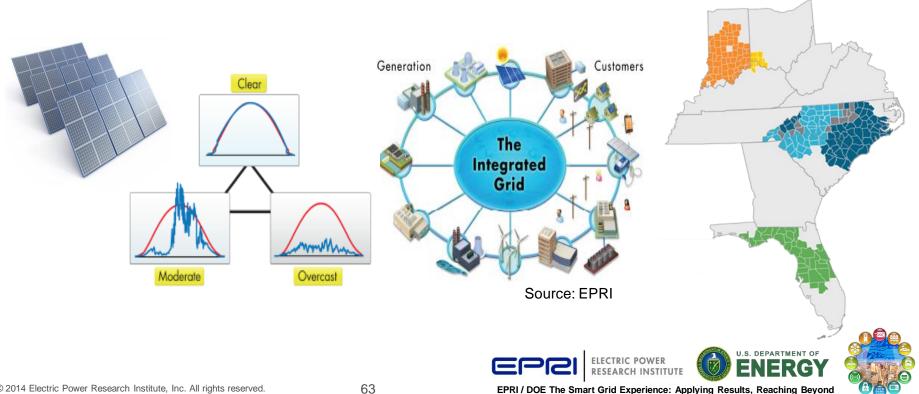
Other Jurisdictions (Carolinas, Florida, Indiana and Kentucky)

- Evaluating Volt/VAR control opportunities to determine appropriate methodologies and optimal design for each area
- Applying lessons learned and best practices from IVVC and DSDR projects

IVVC Business Rationale for Duke Energy

IVVC Value Proposition

- Capital investments in IVVC leads to <u>net reduction</u> in customer bills through fuel savings
- <u>Customers win</u> through fuel savings and net lower bill
- <u>Shareholders win</u> through increased earnings on investment capital



IVVC Business Rationale for Duke Energy

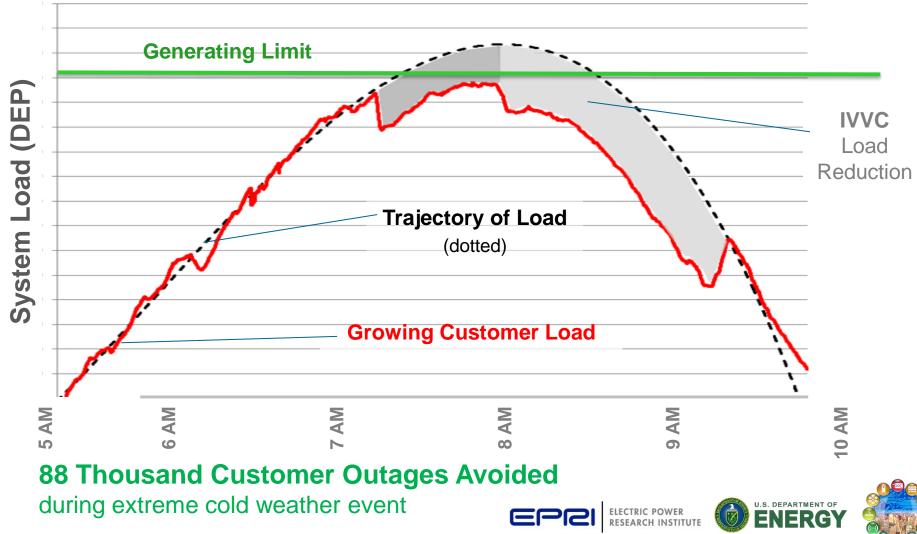
Key Observation

- IVVC pays for itself today
- IVVC also has multi-purpose capability as a Grid Management tool that positions the utility for the complexities of the future

IVVC Project Results and Benefits - DEP

Integrated Volt/VAR Control – Duke Energy Progress DSDR

- Completed in July 2014
- Load Reduction Capabilities 310 MW
- Peak shaving benefit confirmed
- Realizing back stand and spinning reserve benefit
- Comparable to dispatching a CT plant*


* DSDR load reduction capabilities nearly match the generation capabilities of Units 3 and 4 of DE's Asheville Plant which are capable of producing a total of 324 megawatts of peaking power

IVVC Project Results and Benefits - DEP

System Load for 4 Hours During 2014 Polar Vortex

IVVC Project Results and Benefits – DEO

Distribution System Efficiency Metrics - IVVC

Average System Voltage Baseline (2012) 123.2 V

IVVC Operation	Avg Circ Volt	Avg Circ Volt	MWh Red	Assumed	# of Cir w/
(as of 8/31/14)	w/ IVVC	Red % w/ IVVC	w/ IVVC	CVR Factor	IVVC
	121.1 V	1.75%	33,241	0.5	319

IVVC Circuit Commissioning Plan/Actuals

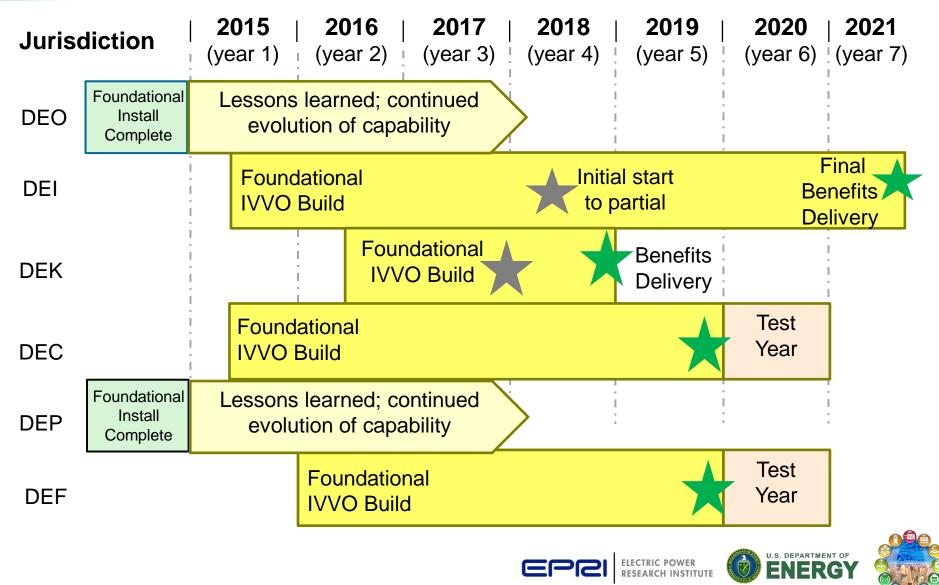
Number of Circuits Complete with IVVC by Year								
2013 2014 2015								
	Planned	Actual	Planned	Actual	Planned	Actual		
August	50	50	125	162	122	-		
EOY	100	87	275	20	-	-		
Total	150	137	412	319	534	-		
Total %	28%	26%	77%	60%	100%			
$\Lambda_{c} \circ f 0/21/1/1$								

As of 8/31/14

Successes, Surprises, and Next Steps

Lessons Learned

- IVVC projects require dedicated and cross functional project team
- Somebody needs to be "in charge" of delivering the benefit
- Do not underestimate efforts for DMS configuration and testing
- Legacy data accuracy is critical to DMS system model
- Utility and vendor senior management sponsorship is critical
- Received higher level of regulatory oversight than we expected

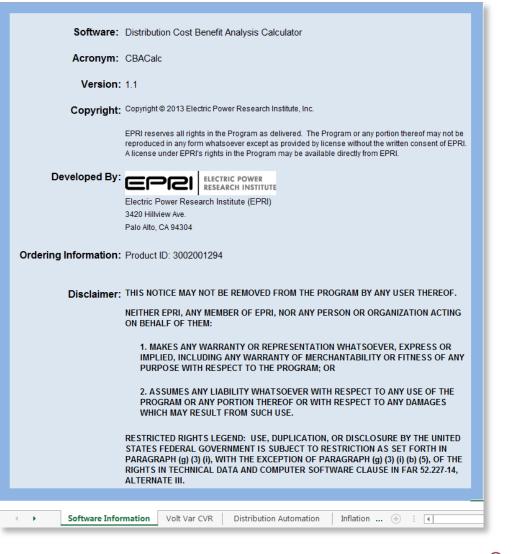

Next Steps

- Will consider a combination of 24/7 and peak shaving modes
- Developing Duke Energy IVVC road map

IVVC Conceptual Deployment Timeline

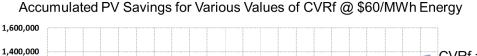
Jeffrey D. Roark, EPRI Email: jroark@epri.com

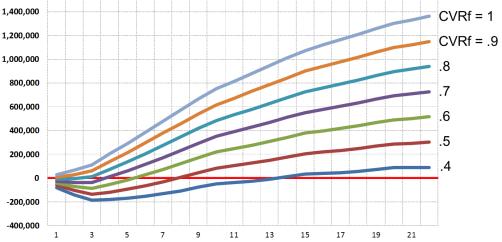
- 34 years experience in regulated, unregulated, and government utilities
 - transmission and generation system planning,
 - strategic planning
 - bulk power contracts
 - power market analysis
 - wholesale deal structuring
 - trading and marketing research
 - regulatory analysis (as both regulator and regulated)
- With EPRI since 2011, responsible for cost/benefit analysis in the Smart Grid Demonstrations program
- BEE, MSEE Auburn University MBA, University of Alabama at Birmingham



Project: Cost/Benefit Analysis tool

- Developed an Excel-based cost/benefit analysis screening tool for CVR and DA/FLISR.
- Helps analysis of prospective designs; but not a design tool.
- Provides platform for calculating sensitivities to major project variables.




EPRI / DOE The Smart Grid Experience: Applying Results, Reaching Beyond

ECTRIC POWER

Project Successes

- Applied prototype in distribution automation system build-out study
- Used tool to analyze a number of CVR projects
- Version 1.1 published and available on Epri.com Product ID 3002001294

Cost/Benefit Analysis for VVC/CVR

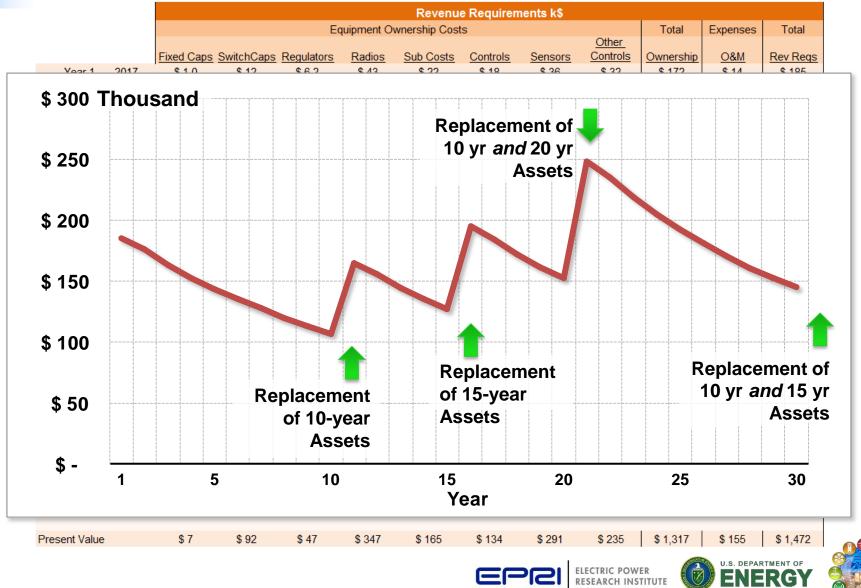
• CBA for CVR is mostly straightforward.

- Utility Costs: Capital for VVC equipment & systems
- Utility Savings: energy, GT&D capital deferrals
- Capacity and energy impacts are easily monetized.
- The tool handles the largest cost and impact components.

Inputs: Equipment Capital & O&M (Example Numbers)

Device Data (\$ in Cost Base Year)									
	Capacitor	Capacitor			Substation	Control		Other_	
	Fixed	Switched	Regulators	Radio	Equipment	System	Sensors	Controls	
Equipment Cost	\$ 4,000	\$ 8,000	\$ 30,000	\$ 2,000	\$ 100,000	\$ 4,000	\$ 5,000	\$ 150,000	
Installation Cost	\$ 1,000	\$ 1,000	\$ 2,000	\$ 500	\$ 5,000	\$ 500	\$ 1,000	\$ -	
Base O&M	\$ 80	\$ 160	\$ 600	\$ 40	\$ 2,000	\$ 80	\$ 100	\$ 3,000	
Life (years)	20 years	20 years	20 years	10 years	15 years	15 years	10 years	15 years	

Project Design Data (\$ in Project Year)									
						Т	otal Initial		
	<u>Number</u>		Devices	In	stallation		<u>Capital</u>		O&M Base
Capacitors Fixed	1	\$	4,626	\$	1,157	\$	5,783	\$	93
Capacitors Switched	7	\$	64,769	\$	8,096	\$	72,865	\$	1,295
Regulators	1	\$	34,698	\$	2,313	\$	37,011	\$	694
Radios	43	\$	99,467	\$	99,467	\$	198,934	\$	1,989
Substation Equipment	1	\$	115,659	\$	5,783	\$	121,442	\$	2,313
Controls	19	\$	87,901	\$	10,988	\$	98,889	\$	1,758
Sensors	24	\$	138,791	\$	27,758	\$	166,549	\$	2,776
Other Controls	1	\$	173,489	\$	-	\$	173,489	\$	2,776
Total						\$	874,962	\$	13,694


U.S. DEPARTMENT OF

EPRI / DOE The Smart Grid Experience: Applying Results, Reaching Beyond

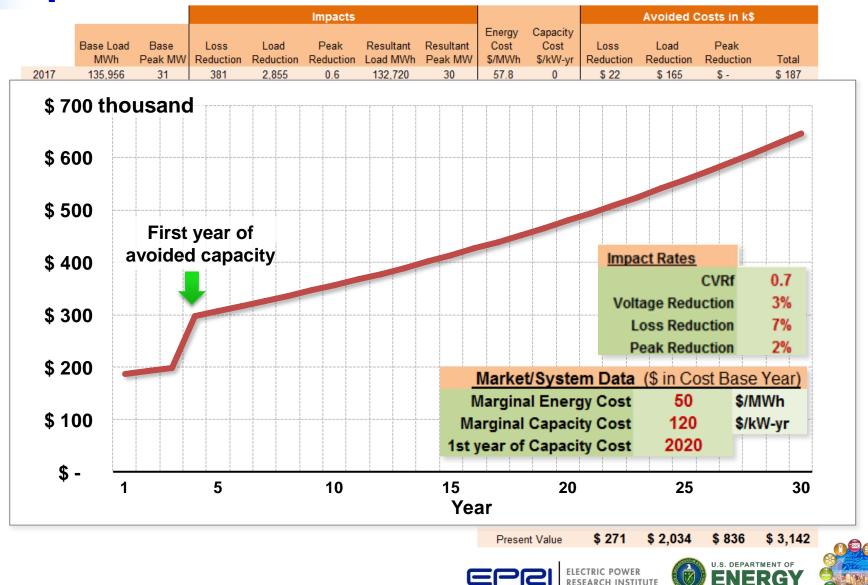
ELECTRIC POWER

Calculates Revenue Requirements For CVR Equipment

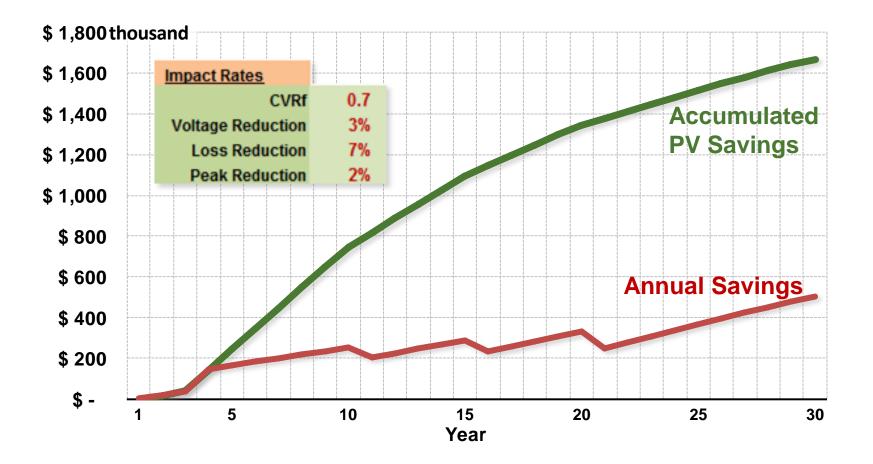
Inputs: System and CVR-Impact Data (Example Numbers)

Feeder/Substatio	n Data		
Annual MWh at Sub	130,000	MWh	Load Factor = 50.3%
Annual Peak MW at Sub	30	MW	Ebad Factor - 50.570
Year of reported MWh	2012		
Annual Growth Rate	0.9%		
Average Loss Percent	4%		

Market/System Data	Impact Rates			
Marginal Energy Cost	50	\$/MWh	CVRf	0.7
Marginal Capacity Cost	120	\$/kW-yr	Voltage Reduction	3%
1st year of Capacity Cost	2020		Loss Reduction	7%
			Dook Deduction	1/0 20/

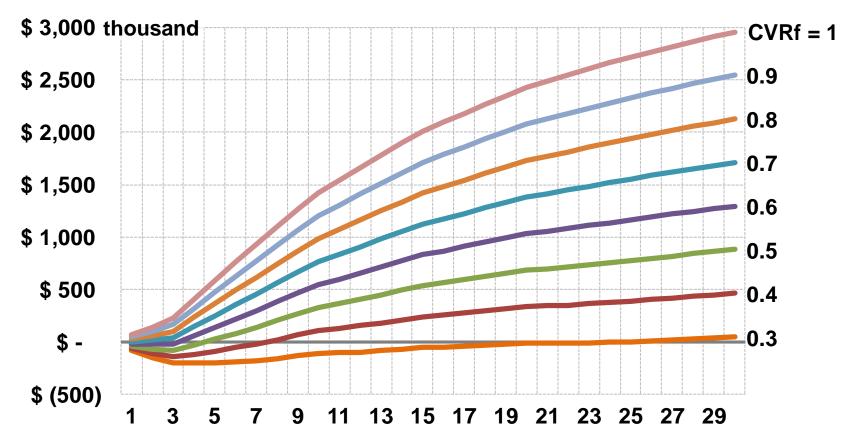


Z70



Реак кесиссиоп

Example Case: Impacts and Avoided Costs


Example Case: Net Benefits

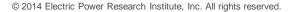
Example Case: CVRf Sensitivity

Surprises Related to the Project

Not so surprising:

- Utilities' monetization assumptions (marginal energy and capacity) may not fit simple inflation scheme.
 - Used modified version to incorporate custom marginal energy and marginal capacity values
- Sensitivities provide sense of assumption importance.
 - CVRf variation low to high
 - CVRf decay to a lower value

A Few Comments on M&V for CVR


- Low or nonsensical results from day-on/off regression analysis does not *necessarily* mean that CVR is not effective on a particular circuit.
- Large, non-conforming loads or singular events can mask the CVR effect.
- Evaluate statistical significance of all results, including high and "expected" results.
- Given M&V issues, *nothing* is precise. Look at a range of possibilities.

Questions / Discussion

