Idaho National **Laboratory Plan**

Mark Peters

STING AND HODERWIZING CRITICA Laboratory Director Idaho National Laboratory

Idaho National Laboratory

000

NEAC December 9, 2016

NG CLEAN ENERGY DEPLOYME

DVANCING NUCLEAR EN

INL Maturing as a Multi-program National Laboratory

Research and Education Campus (REC) - before and after

2

COMMUN

Three Pillars of Simultaneous Excellence Shape the Future of INL as a Research, Development, Demonstration, and Deployment (RDD&D) National Laboratory

INNI EXCELLENCE

OPER

NG NUCLEAR ENF

NG CRITIC

6 MA

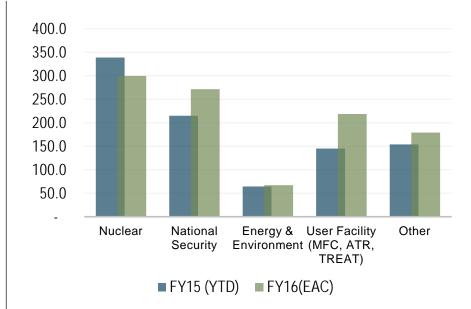
Our Vision and Mission Position INL to Be Relevant to Tomorrow's Energy Future

INL Vision

INL will change the world's energy future and secure our critical infrastructure.

INL Mission

Discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure.



INL's FY15 Business Volume Shows Diversity of Funding – We Realized Growth in FY16

NNSA, \$158 EERE, \$33 DOE Other, \$71 DOB, \$34 DOD, \$100 Other Fed SPP, \$32 Non Fed SPP, \$24

FY15 Business Volume by Customer (\$M)

FY15 Actual (\$917.4M) FY16 Projected (\$1035M)

Strategy to Achieve Our Vision and Mission

- Focus on grand challenges to meet energy, climate, national security goals
- Build world-class scientific and engineering talent pool
- Sustain strategic partnerships
- Steward world-class RDD&D infrastructure

Core Capabilities Lay Foundation For Mission Outcomes

Mission Outcomes

Develop, innovate, secure, and demonstrate nuclear energy technologies Provide national security solutions and protect critical infrastructure

Provide at-scale clean energy systems integration and demonstration and complementary environmental solutions

Leadership Position

Nation's premier nuclear science and technology laboratory

World-class and unique RD&D facilities in nuclear energy, security, and clean energy deployment

Physical and cyber-based protection of critical infrastructure and integrated energy systems – Securing and modernizing critical infrastructure

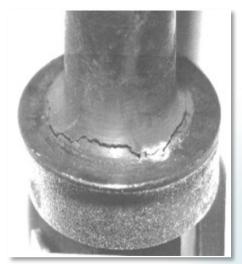
Leadership in clean energy engineering, performance validation, at-scale systems integration and demonstration

INL Core Capabilities

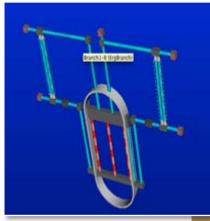
Advanced Computer Science, Visualization, and Data	Environmental Subsurface Science
Applied Materials Science & Engineering	Large-Scale User Facilities/Advanced Instrumentation
Biological and Bioprocess Engineering	Mechanical Design and Engineering
Chemical and Molecular Science**	Nuclear and Radio Chemistry
Chemical Engineering	Nuclear Engineering
Condensed Matter Physics and Materials Science**	Power Systems and Electrical Engineering
Cyber and Information Sciences	Systems Engineering and Integration
Decision Science and Analysis	

Enabling Science and Innovation through Partnerships and Collaboration

Research, Development, Demonstration, and Deployment


Light Water Reactor Sustainability

Program


Integrated Program Plan

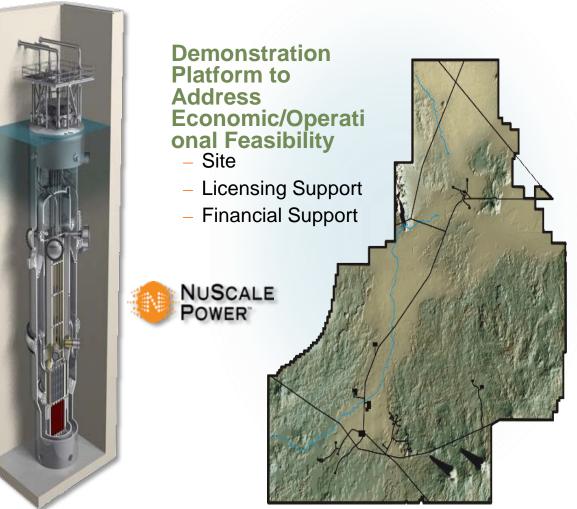
LWR Sustainability

- Materials aging and degradation
- Risk-informed safety margin characterization
- Advanced instrumentation, information, and control systems technologies
- Reactor safety technologies

Materials aging and degradation

Interactive 3D view of the plant – RELAP-7 example

Human systems lab, virtual control room



LW Small Modular Reactors

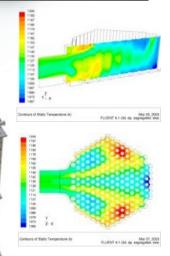
NuScale Collaboration

- Supporting NuScale with systems integration and design reviews for remote handling and maintenance of modular reactor systems and providing RELAP to complete design documents for the NRC.
- NuScale executed a paid in full, perpetual license for RELAP5-3D for use, sub license, and customization.

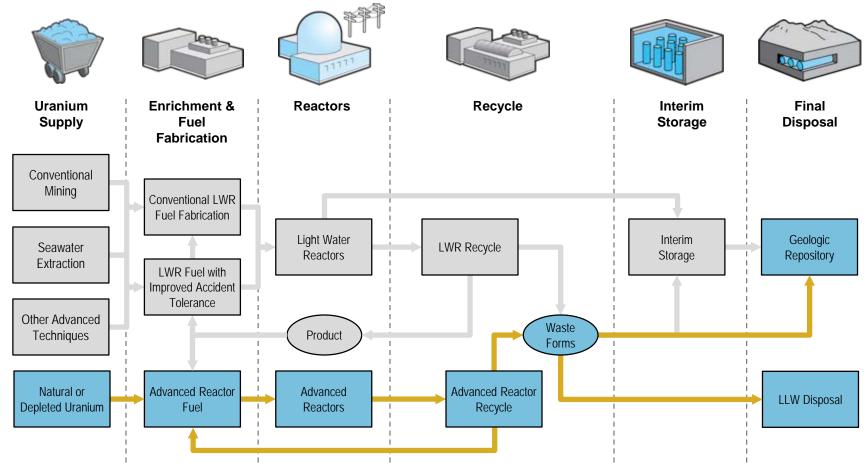
HTGR Technology Development and Fuel Qualification

High Temperature <u>Materials</u> Characterization, Testing, and Codification

<u>Graphite</u> Characterization, Irradiation Testing, Modeling and Codification


<u>Fuel</u> Fabrication, Irradiation, and Safety Testing

Design and Safety Methods Development and Validation



Future Fuel Cycles Should Align with Advanced Reactor Development and Deployment and Could Incorporate Recycling

Gateway for Accelerated Innovation in Nuclear (GAIN)

Removing barriers to a cleaner, safer nuclear energy source

In parallel, create private-public partnership and funding approach, engage industry on technology needs and focus advanced reactor R&D on common technology needs, innovative designs, and reducing cost of advanced nuclear energy systems.

Center for Advanced Energy Studies (CAES)

Collaborative Energy Research

Core Capabilities

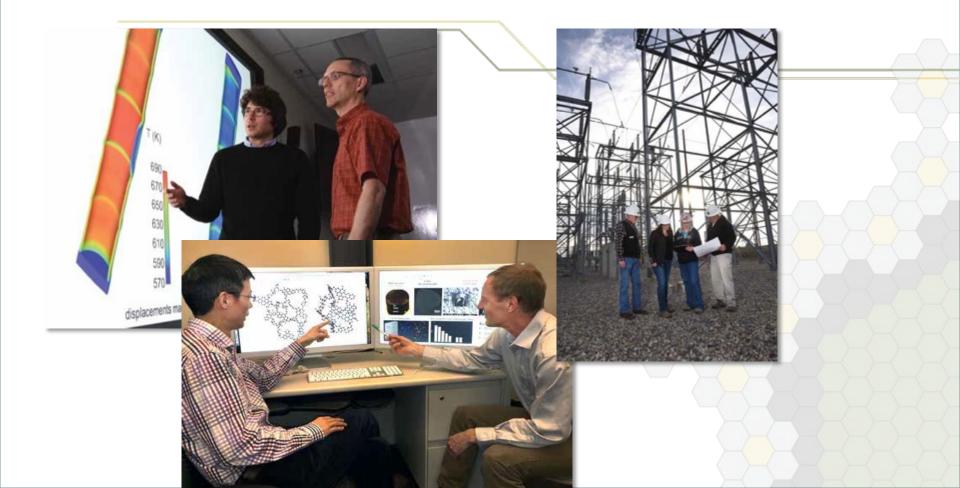
- Energy Systems Design and Analyses
- Nuclear Science and Engineering
- Materials Science and Engineering
- Environmental and Resource Sustainability
- Carbon Engineering
- Geological Systems and Applications

CAES by the Numbers

In the past 6 years:

5131.8 M	Research and development funding and equipment acquired
3754	Number of students supported by CAES-related projects
1051	Number of publications, presentations, and proceeds CAES researchers produced

Developing an International Strategy


- INL will position itself to be more of an international leader
 - Working with IAEA, GIF, NEA
 - Continuing ongoing projects with Japan, Korea, France
 - Developing new collaborations
- Change the way we do business, align with GAIN
 - Public/Private partnerships
 - International visitors and staff exchanges
- Become recognized as a focal point for international nuclear energy S&T programs

U.S. - Japan TMI-2 Knowledge Transfer Meeting

Laboratory Directed Research and Development (LDRD)

FY17 LDRD Investments are Aligned to Critical Outcomes and will Build S&T Pipeline

FY17 Initiatives	Objective, R&D Areas
Advancing Nuclear Energy	 Deliver the Gateway for Accelerated Innovation in Nuclear (GAIN), enable the first-of-kind small modular reactor, advance computational and experimental capabilities R&D areas: Fuels and materials, transient testing, fuel cycle material recovery, advanced manufacturing techniques, probabilistic risk assessment, enhancing INL reactors and distinctive experimental facilities Blue Sky – support innovative ideas in advancing nuclear energy
Regional Clean Energy Development	 Advance clean energy and environmental systems at scale, accelerate technology deployment through regional innovation and demonstration R&D areas: Environmental sustainability, clean energy technology and systems deployment, next-gen transportation, sustainable and efficient manufacturing processes Blue Sky – support innovative ideas in clean energy development and deployment
Critical Infrastructure Protection	 Deliver cyber-physical innovations solving urgent national challenges in control systems and infrastructure security, centered on Cybercore Integration Center R&D areas: Control systems cyber security, nuclear nonproliferation, defense and intelligent systems, advanced materials, threat analysis Blue Sky – support innovative ideas in security
Russell Heath Postdoctoral Fellowship	 Select candidates with highest potential and offer competitive fellowship award, benefits, research environment, mentoring, and training to achieve success at INL

Plan to Grow LDRD/Program Development Over Next 5 Years

	FY2017	FY2018	FY2019	FY2020	FY2021	
Proposed budget (\$M)	\$32	\$36	\$42	\$46	\$49	
Estimated operating and capital lab budget (excluding AARA and construction, \$M)	\$1,038	\$1,063	\$1,143	\$1,177	\$1,235	
LDRD as a % of Laboratory budget	3.1%	3.4%	3.7%	3.9%	4.0%	


INL will realize:

- Growth in impact of programs and commitment to advance energy security, address climate change goals, and grow the economy
- Increased role in nuclear energy, clean energy systems, critical infrastructure protection nationally and globally

<mark>FY15: \$28M,</mark> 3.1% FY16: \$30M, 2.9%

• Strengthen science and engineering staff pipeline

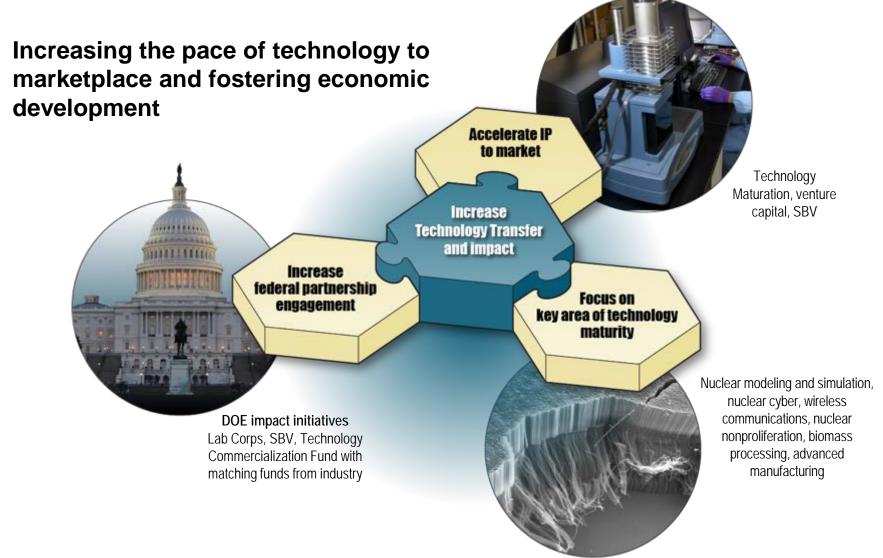
Strategic Partnership Projects (SPP) and Industry Engagement

SPP Represented 21% of FY15 Costs Distributed Across All INL Mission Areas

SPP builds multiple core capabilities

FY15 SPP (\$M) by Customer

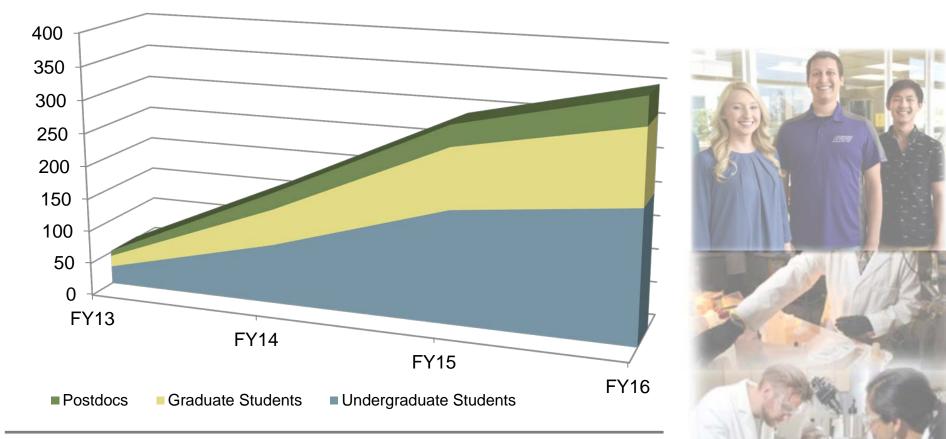
		DHS
Applied Materials Science and Engineering	DOD, EPRI, Terrapower, KJRR	Non-Fed \$23.9
Cyber and Information Sciences	DHS, DOD	
Decision Science and Analysis	DOD, NASA, Canadian Nuclear Safety Commission, NuScale	Other Fed \$24.7_
Mechanical Design and Engineering	DOD, IC, KAERI	
Nuclear and Radio Chemistry	NASA, DHS	NRC J \$7.6 DOD (incl SMC)
Nuclear Engineering	NASA, KJRR, X-Energy, NuScale	\$99.8
Power Systems and Electrical Engineering	DHS, DOD, Florida Power and Light, Southern California Edison	 SPP is 18% without DHS
System Engineering and Integration	DHS, DOD	 Single largest customer (DOD SMC) is 28% of SPP


INL SPP Strategy to Accelerate Deployment of Our Innovation to Market Impact

- Complementary and enhanced core capabilities and encourages science and innovation
- Balanced portfolio to effectively manage impacts to changes in funding profiles
- Capabilities delivered through use of personnel and infrastructure with incidental use of subcontracted resources
- Enhanced business processes and systems that improve efficiency and are scalable to support increased SPP volume

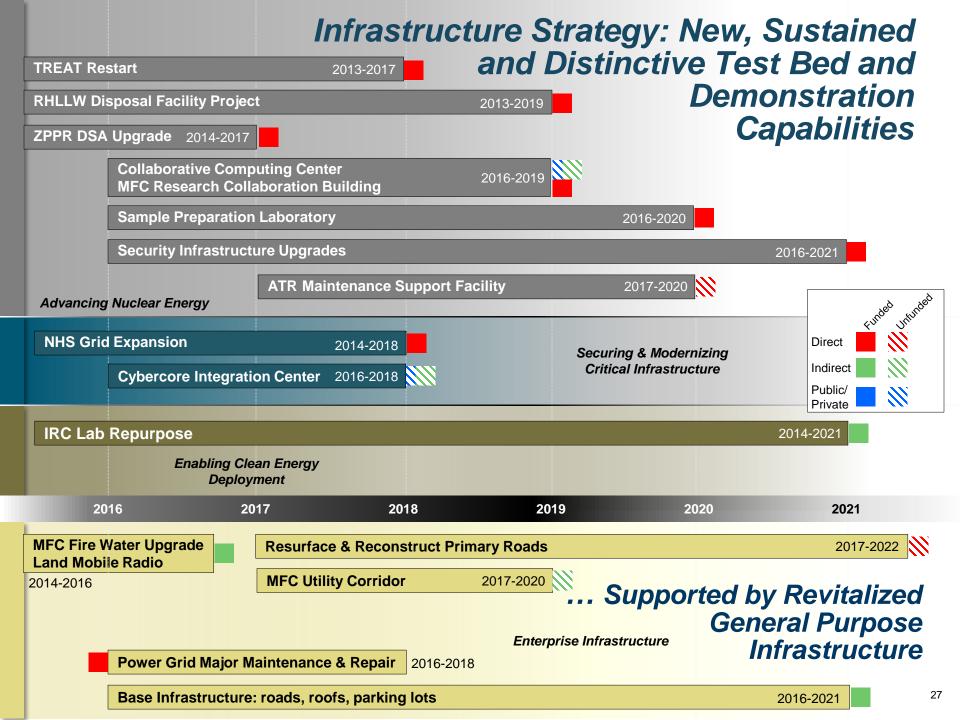
Working Hand-in-hand With Industry

Human Capital



Initiatives to Increase Talent Attraction and Engagement

- Increased pace of hiring
- Partnering with universities, community colleges, and technical colleges
- Increased recruiting capability
 - Recruiting and staffing team has doubled in past two years
- Launched new INL.gov career page and implementing new applicant tracking system
- Revamped and launched new hire orientation
- Increasing emphasis on diversity and inclusion both recruiting and workplace
 - Partnered with Professional Diversity Network to increase reach to underrepresented candidates
 - Creating a culture of development and inclusion
 - Inclusion and Implicit Bias Interruption training provided across INL
- Strengthening our competitive compensation market position
 - Revamp of our job classification system to more closely match market data


INL Building Pipeline Programs

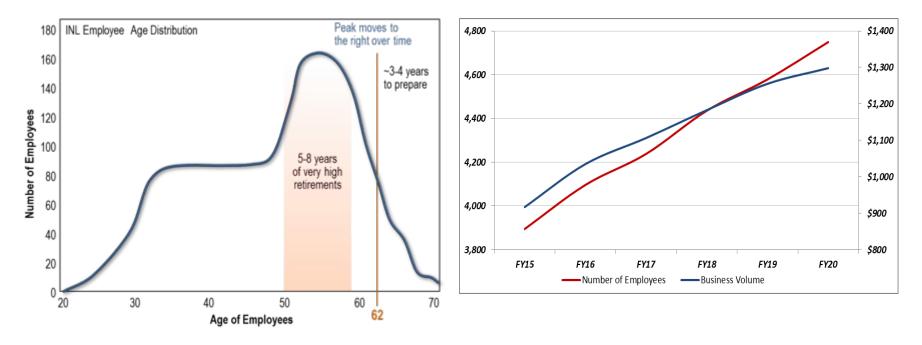
- Postdoc hiring has increased since FY13 across all mission areas
- Internship program feeds pipeline
- Need to increase conversion of interns to regular hires

Infrastructure/ Mission Readiness

INL Has an Important Mission and a Grand Vision, our Sound Strategic Plan Will Help us Reach our Goals

- Enhance and build our broad core capabilities to deliver our mission and achieve our vision
- Focus on critical outcomes
 - Ensure GAIN success by expanding testbed capabilities at MFC and ATR, serve as a demonstration platform in partnership with industry
 - Partner with industry to deliver a domestic first-of-a-kind SMR and continue to pave way for innovative advanced reactors and future fuel cycles
 - Advance and demonstrate clean energy and environmental systems at scale through regional innovation and demonstration
 - Develop cyber-physical innovation capabilities, advance cyber-science and engineering, and establish Cybercore Integration Center

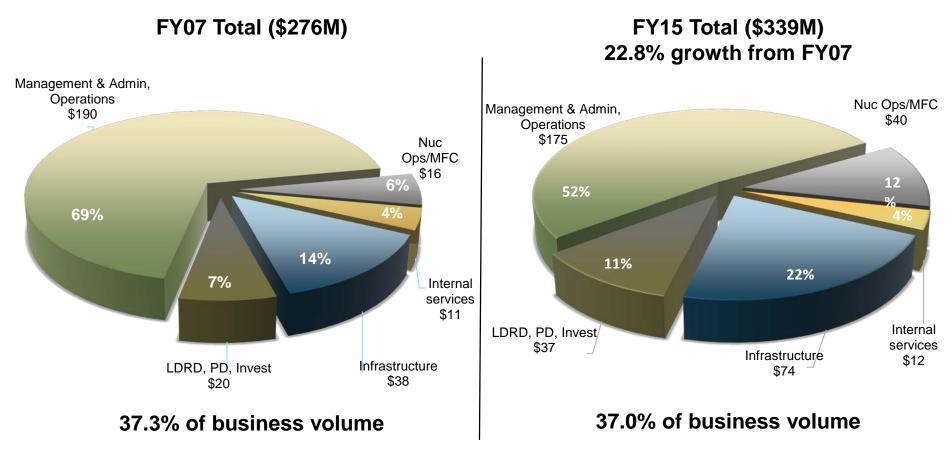
Achieve excellence in safety, security, and operations


- Develop our talent pipeline
- Cultivate positive and enduring partnerships at all levels with industry, national laboratories, universities, policymakers
- Operate reliably, efficiently, and effectively protect environment, ensure safety and health of staff, visitors, public

Idaho National Laboratory

The Perfect Storm – Talent Pipeline Need is Imperative to INL Future Success

- Those eligible to retire is growing as Laboratory is growing
- National STEM hiring crisis
- Local competition for talent
- Educational curriculum may not match hiring need


Cost of Doing Business

INL Has Transformed How The Lab Invests Its Indirect Resources

Reduced management, administration, and operations; focus on nuclear operations and infrastructure; increased investments in LDRD and other capabilities

Plans to Improve Performance

INL's Risk Register Identifies Key Enterprise Risks we are Managing

Enterprise risks	Assessment of performance	Actions for improvement
Safety	Reverse recent trends	Focus on safety culture and behaviors, Safe Conduct of Research, Lab Director Safety Council
Security	Rapidly evolving and increasing cyber threat	Implement MFA, industrial control cyber security program, modernize boundary protection technology, upgrade aging infrastructure
Budget and funding	Indirect affordability insufficient to address infrastructure needs	R&D Capability Management Model
Scientific and technical reputation	Better understand scientific impact of our work, be able to provide metrics- based evidence to support our claimed leadership positions	Initiative to measure research productivity
Maintaining and upgrading infrastructure	Critical ATR, MFC capabilities are aging	Improve reliability of existing capabilities, while ensuring continued delivery of mission
People	Increasing retirement rate, growing lab programs, STEM hiring crises, competition for talent, mismatch of educational curriculum	Initiatives to increase talent attraction and engagement, partnership solution, local and regional initiatives

Safety and Security as a Vital Focus

Employees doing things right for the right reasons, even when no one else is looking