September 24, 2014

Progress and Results from ARRA Smart Grid Programs

Joe Paladino
U.S. Department of Energy
Office of Electricity Delivery and Energy Reliability
Presented to the Electricity Advisory Committee
1. **Rapidly deploy smart grid technologies and systems** as prescribed under EISA and ARRA.

2. **Communicate the results and costs/benefits** to support decisions for continued investment. (advance cost/benefit methodology)

3. **Actively engage key stakeholders** to better understand and address issues affecting investment decisions. (including States/local govts examining grid futures)

4. **Advance the state-of-the-art in cybersecurity** to ensure smart grid systems are properly protected.

5. **Advance smart grid interoperability and standards** to improve efficiency and enable greater adoption. (including grid architecture, information management and control systems for advanced grid)

6. **Evaluate progress of grid modernization across the United States.** (Smart Grid Systems Report)
SGIG Deployment Status

SGIG Project Expenditures ($MM)

15.3 of 15.5 million residential and commercial smart meters

$4,120

$4,520

AMI

8,659 which exceeds 7,500 expected at completion automated switches and 12,599 of about 18,500 automated capacitors

$1,915

$2,010

EDS

1,075 which exceeds 800 expected at completion networked phasor measurement units

$470

$560

ETS

684,000 direct load control devices, programmable communicating thermostats, and in-home displays

$635

$850

CS

Reported as of March 2014

Estimated at Completion

99 Projects; 228 Utilities

Office of Electricity Delivery and Energy Reliability
Demonstrates how a suite of existing and emerging smart grid concepts can be innovatively applied and integrated to prove technical, operational, and business-model feasibility.
<table>
<thead>
<tr>
<th>Benefits</th>
<th>Consumer-Based Demand Management Programs (AMI-Enabled)</th>
<th>Advanced Metering Infrastructure (AMI) Applied to Operations</th>
<th>Fault Location, Isolation and Service Restoration</th>
<th>Equipment Health Monitoring</th>
<th>Improved Volt/VAR Management</th>
<th>Synchrophasor Technology Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital expenditure reduction – enhanced utilization of G,T & D assets</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Energy use reduction</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Reliability improvements</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
</tr>
<tr>
<td>O&M cost savings</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>❌</td>
</tr>
<tr>
<td>Reduced electricity costs to consumers</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>❌</td>
</tr>
<tr>
<td>Lower pollutant emissions</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>❌</td>
</tr>
<tr>
<td>Enhanced system flexibility – to meet resiliency needs and accommodate all generation and demand resources</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>❌</td>
</tr>
</tbody>
</table>
SMUD deployed opt-in and opt-out Flat w/ CPP, TOU and TOU w/CPP in Summers 2012-2013

- Opt-out customers produced lower average peak period load impacts in response to TOU than Opt-in customers but…
- Acceptance rates were much higher for Opt-out (>93%) than Opt-in (16-18%); drop-out rates were low in ALL cases (5-9% for Opt-In and 4-8% for Opt-Out)
- Survey results indicate 59% of customers preferred some type of time-based pricing design (TOU or CPP) over the existing tiered rate structure and preferred TOU over CPP pricing by roughly 2 to 1
- Due to the study’s results, SMUD has decided to alter the standard residential rate design from a tiered rate to a TOU in 2018

TOU Pricing Plans

<table>
<thead>
<tr>
<th>Rate Period</th>
<th>Flat w/CPP</th>
<th>TOU</th>
<th>TOU w/CPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base/Off-Peak <700 kWh</td>
<td>8.5</td>
<td>8.5</td>
<td>7.2</td>
</tr>
<tr>
<td>Base/Off-Peak >700 kWh</td>
<td>16.7</td>
<td>16.6</td>
<td>14.1</td>
</tr>
<tr>
<td>Peak</td>
<td>n/a</td>
<td>27.0</td>
<td>27.0</td>
</tr>
<tr>
<td>Critical Event</td>
<td>75.0</td>
<td>n/a</td>
<td>75.0</td>
</tr>
</tbody>
</table>

Average kW Reduction Between 4 and 7 PM

<table>
<thead>
<tr>
<th>Scenario</th>
<th>2012 All</th>
<th>2012 With Movers Removed</th>
<th>2013 With Movers Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opt-in TOU, No IHD Offer</td>
<td>0.17</td>
<td>0.19</td>
<td>0.15</td>
</tr>
<tr>
<td>Opt-in TOU, IHD Offer</td>
<td>0.24</td>
<td>0.26</td>
<td>0.2</td>
</tr>
<tr>
<td>Default TOU, IHD Offer</td>
<td>0.12</td>
<td>0.13</td>
<td>0.1</td>
</tr>
<tr>
<td>Default TOU-CPP, IHD Offer</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Scenario Benefit/Cost Ratio

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Benefit/Cost Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default TOU, no IHD</td>
<td>4.48</td>
</tr>
</tbody>
</table>

10 Year NPV ($ millions)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Benefits</th>
<th>Costs</th>
<th>Net Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default TOU, no IHD</td>
<td>$66.9</td>
<td>$15.0</td>
<td>$52.0</td>
</tr>
</tbody>
</table>

Difference is statistically significant at 95% confidence level
AMI Improvements in Operational Efficiencies

Results from 15 projects due to automation of metering service tasks and reductions in labor hours and truck rolls

<table>
<thead>
<tr>
<th>Smart Meter Capabilities</th>
<th>O&M Savings</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Remote meter reading</td>
<td>Meter Operations Cost</td>
<td>13-77</td>
</tr>
<tr>
<td>• Remote service connections/disconnections</td>
<td>Vehicle Miles</td>
<td>12-59</td>
</tr>
</tbody>
</table>

Talquin Electric Cooperative - In 2011 and 2012, smart meters avoided 6,000 truck rolls for service connections and disconnections and 9,000 for non-payments saving more than $640,000.

<table>
<thead>
<tr>
<th>Additional Capabilities</th>
<th>Expected Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Tamper detection and notification</td>
<td>Enables potential recovery of ~1% of revenues that may be lost from meter tampering</td>
</tr>
<tr>
<td>• Outage detection and notification</td>
<td>Enables faster restoration (e.g., PECO avoided 6,000 truck rolls following Superstorm Sandy and accelerated restoration by 2-3 days)</td>
</tr>
<tr>
<td>• Voltage and power quality monitoring</td>
<td>Enables more effective management of voltages for conservation voltage reductions and other VVO applications</td>
</tr>
</tbody>
</table>
Smart Grid Grid Technology (automated feeder switches and smart meters) leading to:

- Avoided costs to customers ($ millions)
- Eliminated 500 truck rolls
- Restoration complete 1 ½ days earlier
- $1.4 Million cost reduction to utility

Application of value-of-service estimates to calculate avoided societal costs (ICE Calculator)
Conservation voltage reduction (CVR) reduces customer voltages along a distribution feeder for lowering peak demands and overall energy consumption.

OG&E:
- Control algorithm set voltage levels at the substation
 - Applying smart meter data
 - Capability turned on when power price exceeds $0.22/kWh
- Achieved 8 MW reduction from application of VVC technology on 50 circuits during Summer 2011
- Goal – 74 MW reduction over 400 circuits by 2017 (SGIG contributes to 16 MW)

PNNL 2010 GRID-LAB-D Analysis:
National deployment of CVR can provide a 3.0% reduction in annual energy consumption for the electricity sector. 80% of this benefit can be achieved from 40% of feeders.

CVR Study (due October 2014):
Report on technology applications, impacts and institutional hurdles. Seeing energy reductions ranging from 0.75 – 3.0% and peak reductions from 0.84 – 7.0%.
Improved reliability, capacity and operational efficiency – Energy flows on the California-Oregon Intertie can be increased by 100 MW or more reducing energy costs by an estimated $35 - $75 million over 40 years without new capital investments

April 2007

Networked Phasor Measurement Units in North American Power Grid

November 2012

Phasor Measurement Units in North American Power Grid

Legend
- Existing PMU locations
- PMU installations in progress
*Does not include stand-alone units
Communication Strategy

Maintain and develop key stakeholder relationships for sharing information and addressing issues:
- EEI, EPRI, APPA, NRECA, NARUC, NASPI
- IEEE smart grid community

Continue to use smartgrid.gov as the library for ARRA materials
- Improve search capability (matrix)
- Create portal to other sites
- Mailing list

Share results at conferences, e.g.:
- IEEE (ISGT), Distributech, Town Hall Meetings, EPRI, NARUC

Organize webinars and focus groups

Address key audiences (e.g., States)

SGIG/SGDP Information

(DOE and Awardee Generated)

- SGIG Progress Reports
- Metrics and Benefits Reports
- Case Studies
- Presentations/Briefings & Articles
- Best Practices/Lessons-Learned
- Consumer Behavior Reports
- Technology Performance Reports

Office of Electricity Delivery and Energy Reliability
Long-Term Investment Strategy

Objectives:
- Reliability
- Resiliency
- Efficiency
- Sustainability
- Affordability

Customers
Owners
Operators
Regulators

Technology

Decision-Making Framework

Markets
Questions/Comments

Joe Paladino
202-586-6916

joseph.paladino@hq.doe.gov

www.smartgrid.gov