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Executive Summary 

EXECUTIVE SUMMARY 
Project Objectives 
The AEP Ohio gridSMART® Demonstration Project (Project) achieved the following objectives:  
• Built a secure, interoperable, and integrated smart grid infrastructure in northeast central 

Ohio that demonstrated the ability to maximize distribution system efficiency and 
reliability and consumer use of demand response programs that reduced energy 
consumption, peak demand, and fossil fuel emissions. 

• Actively attracted, educated, enlisted, and retained consumers in innovative business 
models that provided tools and information reducing consumption and peak demand. 

• Provided the U.S. Department of Energy (DOE) information to evaluate technologies and 
preferred smart grid business models to be extended nationally. 

Project Description 
Ohio Power Company (the surviving company of a merger with Columbus Southern Power 
Company), doing business as AEP Ohio (AEP Ohio), took a community-based approach and 
incorporated a full suite of advanced smart grid technologies for 110,000 consumers in an area 
selected for its concentration and diversity of distribution infrastructure and consumers. It was 
organized and aligned around: 
• Technology, implementation, and operations 

• Consumer and stakeholder acceptance 

• Data management and benefit assessment 
 
Combined, these functional areas served as the foundation of the Project to integrate 
commercially available products, innovative technologies, and new consumer products and 
services within a secure two-way communication network between the utility and consumers. 
The Project included Advanced Metering Infrastructure (AMI), Distribution Management 
System (DMS), Distribution Automation Circuit Reconfiguration (DACR), Volt VAR 
Optimization (VVO), and Consumer Programs (CP). These technologies were combined with 
two-way consumer communication and information sharing, demand response, dynamic pricing, 
and consumer products, such as plug-in electric vehicles and smart appliances. In addition, the 
Project incorporated comprehensive cyber security capabilities, interoperability, and a data 
assessment that, with grid simulation capabilities, made the demonstration results an adaptable, 
integrated solution for AEP Ohio and the nation. 

1 
 



Executive Summary 

Project Impact 
The Project accelerated smart grid deployments by improving grid reliability, increasing grid 
efficiency, lowering consumer energy consumption, reducing peak demand, and significantly 
reducing carbon emissions. AEP Ohio’s gridSMART® initiative integrated a suite of advanced 
grid technologies into the existing electric network that improved service quality and reliability, 
lowered energy consumption, and saved money for consumers and AEP Ohio. The new 
technologies helped AEP Ohio improve efficiencies, identify and respond to outages more 
quickly, and better monitor and control the operation of the distribution grid. 
 
Overall, the Project showed that implementing AMI technology provided significant cost, 
reliability, and environmental benefits for the utility and its consumers. 
 
This report provides information about the deployment of gridSMART technologies and includes 
best practices and lessons learned that can be used to:  
• Improve other smart grid deployments 

• Drive industry standards development 

• Lower the risk of implementing new technologies into existing electrical networks 

• Allow for product improvement and commercialization 

• Drive consumer behavioral changes through the introduction of new consumer tariffs and 
programs. 

 
Based on the success of the Project, AEP Ohio has filed a gridSMART Phase 2 (Phase 2) project 
with the Public Utilities Commission of Ohio (PUCO). This proposed expansion is based on 
proven and accepted technology solutions. Phase 2 will extend the benefits demonstrated in the 
Project and deliver additional benefits to a broader set of consumers. Through Phase 2 AMI, 
AEP Ohio expects to drive significant financial benefits, positively impact customer service and 
customer satisfaction, improve meter field personnel safety, and reduce environmental impacts. 
It also will enable demand response (DR) and Competitive Retail Electric Service (CRES) 
providers to offer consumer programs. Phase 2 DACR is expected to improve Customer Minutes 
Interrupted (CMI), which will help AEP Ohio consumers annually avoid millions of dollars in 
lost productivity. Phase 2 VVO is expected to generate significant efficiencies that translate to 
customer savings. 
 
The following table identifies the Project participants, collaborations, commercialization, and the 
AMI customer portal. 
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Project Participants 

Prime award recipient • Ohio Power Company 

Sub-recipients • Battelle Memorial Institute 
• Electric Power Research Institute  

Federally Funded Research and 
Development Center Partner 

• Pacific Northwest National Laboratory 

Academic and Research 
Organizations 

• The Ohio State University 
• The Ohio State University Fisher College of Business 

Technology and Entrepreneurship Center 

Vendors • General Electric 
• Lockheed Martin 
• Opower 
• PCS UtiliData  
• S&C Electric Company 
• Silver Spring Networks  

Key Collaborators • AEP Ohio Energy Efficiency/Demand Response 
Collaborative 

• American Electric Power Service Corporation 
• National Institute of Standards and Technology 
• Ohio Consumers Counsel 
• PJM Interconnection LLC 
• Public Utilities Commission of Ohio 

Project Tools and Products 

Project-Developed Collaboration • Cyber security information sharing collaborative 

Commercialization • GridCommand™  Active Demand Management 
• GridCommand™ Distribution 

• Smart Grid Dispatch (SGD) engine 

 Home Energy Manager 
 Enhanced Programmable Communicating 

Thermostat 

AMI Customer Portal • Opower’s Home Energy Reporting System and Insight 
Engine 

Table 1. Project Participants, Tools, and Products 
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Introduction 

1 INTRODUCTION 
In 2009, the United States Department of Energy (DOE) awarded a Smart Grid Demonstration 
Cooperative Agreement to Ohio Power Company (the surviving company of a merger with 
Columbus Southern Power Company), doing business as AEP Ohio. The AEP Ohio 
gridSMART® Demonstration Project (Project), award number DE-OE0000193, integrated and 
evaluated commercially available products, innovative technologies, and new consumer products 
to understand the economic, environmental, and reliability benefits that could be achieved with 
scaling such technology to the electrical grid. 
 
This Final Technical Report provides insight into the implementation, operation and analytical 
progression of demonstrated technologies.  

1.1 References 
References used to prepare this report include: 

Document Date 
AEP Ohio gridSMART Demonstration Project Metrics and 
Benefits Reporting Plan October 13, 2010 

Statement of Project Objectives (SOPO)  January 18, 2013 
Instructions For Preparation of Deliverables for Cooperative 
Agreements Under the Smart Grid Demonstration Program January 18, 2013  

Smart Grid Demonstration Program Guidance for Technology 
Performance Reports June 17, 2011 

Guidebook for ARRA Smart Grid Program Metrics and 
Benefits—Smart Grid Demonstration Project June 2010 

AEP Ohio gridSMART Demonstration Project Management 
Plan (Revision 1) June 25, 2010 

AEP Ohio gridSMART Demonstration Project Quarterly 
Build Metrics Report January 31, 2014 

AEP 2009 Fact Book September 30, 2009 

Table 2. List of Document References 
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1.2 Contacts 
Name Role Telephone 

Karen Sloneker Principal Investigator, AEP Ohio—Director, Customer 
Service and Marketing 614-883-6677 

Scott Osterholt AEP Ohio—Manager Advanced Distribution Infrastructure 
gridSMART Project Leader 614-883-6872 

Paula Igo AEP Ohio—gridSMART Project Manager 614-883-7895 
Rick Gampp AEP Ohio—gridSMART Project Comptroller 614-883-6771 
Frank Jakob Battelle Memorial Institute—Project Manager 614-424-4130 

Table 3. List of Contacts 

1.3 AEP Ohio Demonstration 
Ohio Power Company is a unit of the American Electric Power System (AEP), one of the largest 
electric utilities in the country. Ohio Power Company is commonly referred to as AEP Ohio 
(AEP Ohio). AEP Ohio and AEP are collectively referred to as AEP in this report. 
 
AEP Ohio was selected because its service area reflects the region and much of the nation in 
terms of demographic and economic strata, energy consumption patterns, distribution 
infrastructure, and climate characteristics. 
 
The AEP Ohio territory allows for small-scale and controlled testing of various new technologies 
and consumer programs in such an environment. The Project integrated these technologies and 
programs, which included utility-operated distribution system improvements, consumer-
managed technology, two-way communications technology, demand management and dispatch 
technology, and utility-to-consumer interfaces. 

1.3.1 Area 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 1. AEP Ohio Territory 

Consumers 
Consumers 1.5 million 
Communities 890 
Counties 61 

Distribution  
Distribution Lines 47,000 miles 

Transmission 
Transmission Lines 9,200 miles 

Generation 
Total Capacity 11,736 MW 

Assets 
Total  $8.3 billion 

Table 4. AEP Ohio Territory 
Attribute Estimates 
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The Project was located within northeast central Ohio and in the territory formerly served by 
Columbus Southern Power Company (CSP). This area demonstrates ideal characteristics for 
implementation and evaluation of grid-enhancing technology. It included a significant number of 
13 kV and 34.5 kV circuits; had distribution stations; included diverse consumer income levels; 
had a good blend of industrial, commercial, and residential accounts; and received a large 
number of customer service orders.  
 
In this report, the term System area refers to former CSP’s territory.  The term Project area refers 
to the area where Project assets, functionality, or programs were implemented, as shown in 
Figure 2.   
 

 

 
Figure 2. Project Area Scope 
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The table below summarizes the high-level characteristics of both the System and Project areas 
discussed in this report. 
 

Metric System area (2009) Project area 

Total number of consumers: 
 Residential 667,018 100,000 

 Commercial & Industrial 81, 866 10,000 
Peak load: 
 Summer 4,209 MW 800 MW  
 Winter 3,934 MW 650 MW  
Total MWh sales:  20,623,813 MWh 3,500,000 MWh 
 Residential 7,303,192 MWh 1,200,000 MWh 
 Commercial & Industrial 13,320,621MWh 1,000,000 MWh 
Total number of substations 136 16 
Total number of distribution circuits 673 80 
Total miles of distribution line  18,876 miles 3,000 miles 
Total miles of transmission line 2,274 miles 0 miles 

Table 5. AEP Ohio’s gridSMART System and Project areas 

1.3.2 Technologies 
The Project introduced multiple technology enhancements to the infrastructure of the AEP Ohio 
Project area, including: 
• Advanced Metering Infrastructure (AMI) – Two-way communication enabled meters 

• Distribution Automation Circuit Reconfiguration (DACR) – Automation of distribution 
assets 

• Volt VAR Optimization (VVO) – Voltage control and optimization 

• Consumer Programs (CP) – Cost-saving opportunities through enhanced communication 
 
The addition of the above technologies served as the foundation to enable two-way 
communication with consumers and allowed for consumer programs and products. The 
introduction of these technologies also required comprehensive cyber security and 
interoperability capabilities for both new and legacy systems. 
 
Explanations of each technology and the extent of its functionality are outlined within the 
Demonstrated Technology sections of this report. 
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1.3.3 Benefits 
Each technology, or combination of technologies, produced a benefit to the utility and/or 
electricity consumers. The table below summarizes some of the benefits of these technologies.   
 

Benefit 
Category Benefit Technologies 

Economic Reduced meter operations costs – meter reading routes AMI 
Economic Reduced meter operations costs – avoided truck rolls AMI, DACR 
Economic Reduced electricity costs to consumers CP, DACR, VVO 
Economic Reduced peak load CP, DACR, VVO 
Reliability Improved outage response time AMI, DACR 
Reliability Increased number of meters reporting daily AMI 
Reliability Increased distribution system reliability DACR 
Environmental Reduced number of truck rolls AMI, DACR 
Environmental Reduced meter operations vehicle miles AMI, DACR 
Environmental Reduced CO2 emissions AMI, CP, DACR, VVO 
Environmental Reduced pollutant emissions AMI, CP, DACR, VVO 

Table 6. Benefits of Technologies 
The Project provided several positive outcomes for AEP Ohio and its consumers. 

Consumer benefits: 
• Enhanced customer service and satisfaction (for example, through faster, remote service 

connections, and elimination of estimated bills).  

• Opportunity to participate in various consumer programs allowing consumers to: 
 Receive near real-time information about electricity usage. 

 Manage their electricity usage and lower their consumption. 

 Save money with the same level of comfort and service. 

• Reduced outage times through the automation of circuit reconfiguration.  
 
AEP Ohio benefits: 
• Reduced costs through the elimination of meter reading routes and reduced field visits.  

• Improved employee safety. 

• Improved system reliability. 

• Improved customer satisfaction. 

• Reduced peak demand. 

• Performed tasks remotely, such as reading meters and restoring service. 

• Recognized potential equipment failures or outages, allowing proactive maintenance and 
repair. 
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Overall, the Project showed that implementing AMI, DACR, and VVO technologies provided 
significant cost, reliability, and environmental benefits for the utility and its consumers. The 
success of this holistic approach to smart grid implementation enabled AEP Ohio to move 
forward with the gridSMART Phase 2 (Phase 2) filing. 
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1.3.4 Impact Metric Reference 
The table that follows provides a list of metrics by technology. Analysis for each metric is 
documented in this Final Technical Report. 

Impact Metric Reference 
ID Scope Description FTR ID 

AMI 
M04 Project Meter Operations Cost M04-AMI 
M05 Project Truck Rolls Avoided M05-AMI 
M06 Project Meter Operations Vehicle Miles M06-AMI 
M07 Project CO2 Emissions M07-AMI 
M08 Project Pollutant Emissions (SOX, NOX, PM2.5) M08-AMI 
M09 System CO2 Emissions M09-AMI 
M10 System Pollutant Emissions (SOX, NOX, PM2.5) M10-AMI 
M11 Project Meter Data Completeness M11-AMI 
M12 Project Meters Reporting Daily M12-AMI 
M29 Project Outage Response Time M29-AMI 

Consumer Programs 
M01 Project Hourly Consumer Electricity Usage M01-CP 
M02 Project Monthly Consumer Electricity Usage M02-CP 
M03 Project Peak Load and Mix M03-CP 
M07 Project CO2 Emissions M07-CP 
M08 Project Pollutant Emissions (SOX, NOX, PM2.5) M08-CP 
M09 System CO2 Emissions M09-CP 
M10 System Pollutant Emissions (SOX, NOX, PM2.5) M10-CP 

DACR 
M13 Project Distribution Circuit Load M13-CR 
M14 Project Distribution Circuit/Equipment Overload  M14-CR 
M15 Project Deferred Distribution Capacity Investments M15-CR 
M16 Project Equipment Failure Incidents M16-CR 
M17 Project Distribution Equipment Maintenance Cost M17-CR 
M18 Project Distribution Operations Cost M18-CR 
M19 Project Distribution Circuit Switching Operations M19-CR 
M21 Project Distribution Restoration Cost M21-CR 
M25 Project Truck Rolls Avoided M25-CR 
M26 Project SAIFI M26-CR 
M27 Project SAIDI/CAIDI M27-CR 
M28 Project MAIFI M28-CR 
M29 Project Outage Response Time M29-CR 
M30 Project Major Event Information M30-CR 
M31 Project Distribution Operations Vehicle Miles M31-CR 
M32 Project CO2 Emissions M32-CR 
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Impact Metric Reference 
M33 Project Pollutant Emissions (SOX, NOX, PM2.5) M33-CR 
M34 System CO2 Emissions M34-CR 
M35 System Pollutant Emissions (SOX, NOX, PM2.5) M35-CR 

ID Scope Description FTR ID 
VVO 

M03 Project Peak Load and Mix  M03 - VVO 
M13 Project Distribution Circuit Load  M13 - VVO 
M15 Project Deferred Distribution Capacity Investments  M15 - VVO 
M16 Project Equipment Failure Incidents  M16 - VVO 
M17 Project Distribution Equipment Maintenance Cost  M17 - VVO 
M20 Project Distribution Capacitor Switching Operations  M20 - VVO 
M22 Project Distribution Losses (%)  M22 - VVO 
M23 Project Distribution Power Factor  M23 - VVO 
M32 Project CO2 Emissions  M32 - VVO 
M33 Project Pollutant Emissions (SOx, NOx, PM2.5)  M33 - VVO 
M34 System CO2 Emissions  M34 - VVO 
M35 System Pollutant Emissions (SOx, NOx, PM2.5)  M35 - VVO 

Table 7. Impact Metric Reference 
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2 DEMONSTRATED TECHNOLOGY – ADVANCED METERING 
INFRASTRUCTURE 

2.1 Purpose  
Advanced Metering Infrastructure (AMI) technology incorporates meters that enable two-way 
communication between AEP Ohio and consumer premises. These meters use network 
capabilities to provide detailed, near real-time information and to interact with other external 
devices that the consumer controls.  
 
Prior to the AEP Ohio gridSMART® Demonstration Project, AEP Ohio operated with analog 
meters that registered usage and readings at consumer premises. This approach required meter 
readers to physically observe the meter and collect meter data. Although a few other meter types 
existed in the Project area, there were no AMI meters.  
 
AEP Ohio’s demonstration of AMI meters intended to: 
• Prove that the Silver Spring Networks (SSN) technology could function properly in urban, 

suburban, and rural applications. 

• Show efficiencies associated with automated meter reading on a large-scale basis, 
including real-time meter reading and daily meter reads. 

• Demonstrate the effect of AMI meters on meter operations costs. 

• Demonstrate remote reconnect and disconnect capabilities, along with program advantages 
and disadvantages. 

• Leverage the two-way communication with meters in the field, network, and back office. 

• Study the demographic groups, including multi-unit, residential, commercial, and 
industrial, with a complete mixture of socioeconomic classes, and their response to 
different aspects of the AMI meters. 

• Evaluate data generated by the AMI meters generate and the best way to use the 
information, including meter alarms and alerts, power quality information, energy usage, 
outage notification, and restoration notifications. 

• Enable the use of two-way Home Area Networks (HAN) as part of the energy efficiency 
and demand response programs. 

• Exhibit the benefits of receiving real-time information from different operational areas, 
such as billing, consumer service, engineering, dispatch, meter reading, and credit. 

• Reduce or shift electricity demand and consumption through consumer programs. 
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2.2 Technology  
AEP Ohio deployed 110,000 General Electric kV2c and I210+c model meters, including 4-
channel recording capability, voltage detection, and ZigBee communication in the Project area. 
These meters include two-way communication abilities and use a Radio Frequency (RF) mesh 
network with wireless carrier backhaul communications. 

 
 
 
 
 
 
 
 

Table 8. AMI Asset Summary 
In addition to the meters, the network included a network interface card for each meter, relay, 
access point, and eBridge. The single-phase residential meters also included a remote 
connect/disconnect switch. In addition to standard meter functions, AEP Ohio used the AMI 
system for remote connect/disconnect capabilities, outage reporting, interval data collection, 
calculation of bill determinants (kWh, kW, kVARh, on-peak, off-peak), power quality 
monitoring, and consumer programs facilitation. The figure below shows an AMI meter in 
Power On and Power Off modes. 
 

AMI Meter  
Power On Power Off 

  
Figure 3. AMI Meters 

AMI Asset Summary 
• 100,000 residential meters 
• 10,000 non-residential meters 
• 31 access points 
• 133 relays 
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The meter infrastructure interfaced with back-office systems to collect, measure, and manage 
meter, consumer, and utility activities. The meter infrastructure included the following 
integrations:  
• UtilityIQ® software (UIQ) 

• Marketing and Customer Service System (MACSS) for consumer-associated data 
management 

• Meter Data Management (MDM) 

• Distribution Management System (DMS) 

• Demand Response Manager (DRM) 
 
The following figure illustrates the AMI system implementation within AEP Ohio. 
 

 
Figure 4. AMI System Illustration 
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2.3 Approach and Implementation 
AEP Ohio installed the meters in an area of central Ohio that had one of the highest bill payment 
delinquency rates. The intention was to leverage this technology to reduce truck rolls required to 
perform disconnections for non-payment (DNP) and subsequent reconnections.  
 
To install the meters as quickly as possible, AEP Ohio retained contract resources to install the 
wireless network and all single-phase meters. AEP Ohio employees installed all poly-phase and 
instrument-rated meters while contractors were completing the single-phase installations. 
 
As installations were completed, a parallel reading period ensued. The manual reads were 
compared with the over-the-air reads to ensure that the meter was installed at the correct location 
and that the meter was reading with 100 percent accuracy. Meter installations were complete by 
April 1, 2010. AEP Ohio found these meters to be accurate in their out-of-box state, and major 
manual intervention was not required. As a result, the parallel reading process concluded in June 
2010, earlier than planned. 

2.4 Impact Metrics Required for AMI 
The impact metrics shown in the table below are associated with the AMI technology suite; 
eight relate to the Project area and two relate to the System area. 
Metric 

ID 
Metric 
Scope 

Metric Description AMI 

M04 Project Meter Operations Cost M04-AMI 
M05 Project Truck Rolls Avoided M05-AMI 
M06 Project Meter Operations Vehicle Miles M06-AMI 
M07 Project CO2 Emissions M07-AMI 
M08 Project Pollutant Emissions (SOX, NOX, PM2.5) M08-AMI 
M09 System CO2 Emissions M09-AMI 
M10 System Pollutant Emissions (SOX, NOX, PM2.5) M10-AMI 
M11 Project Meter Data Completeness M11-AMI 
M12 Project Meters Reporting Daily M12-AMI 
M29 Project Outage Response Time M29-AMI 

Table 9. Impact Metrics Addressing AMI Technology Performance 
Refer to the Metrics Analysis for AMI section that follows for details. 
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2.5 Metrics Analysis for AMI 
This section provides details for each AMI metric, and includes those requested by the DOE 
during the definitization of the Cooperative Agreement. Trends were not always observed, 
however data is presented for each metric. 

2.5.1 Meter Operations Cost (M04-AMI) 
This metric analyzes savings, incremental and ongoing, resulting from avoiding consumer 
service truck rolls, eliminating meter reading routes, and reducing meter theft. Also included are 
the increased costs associated with equipment failure, software licensing, and network 
maintenance in order to calculate a net savings value. 

2.5.1.1 Objective 
The purpose of this metric is to understand AMI’s impact on the overall cost of AEP Ohio's 
meter operations.  

2.5.1.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• AEP Ohio meter readers typically read one route per day. For calculation purposes, it is 

assumed that eliminating a route equals eight hours of labor.  

• Cost reduction was determined based on conversion factors for vehicle and labor rates. 

• Cost reduction did not include potential of savings resulting from truck rolls avoided. 

2.5.1.3 Calculation Approach  
The following queries and methods were used to generate results: 
• Certain types of consumer events, such as check read requests, can be processed remotely 

by using the AMI system, thereby avoiding a truck roll. A list was compiled of all 
consumer event order types that lead to an avoided truck roll. The number of truck rolls 
avoided due to AMI was then calculated based on the number of consumer events with 
matching order type codes. 

• Average mileage per truck roll was calculated by month for each AEP Ohio service center 
in the Project and System areas. These average mileage values were applied to the count of 
truck rolls avoided to calculate mileage avoided due to AMI. 

• Labor savings from AMI truck rolls avoided per service center, month, and meter funding 
source were calculated by multiplying the number of truck rolls avoided by an estimated 
$20 per truck roll. 

• Vehicle savings from AMI truck rolls avoided per service center, month, and meter funding 
source were calculated by multiplying the number of truck rolls avoided by the average 
vehicle cost per work order completed by each service center and month. 

• Labor costs from AMI truck rolls required per service center, month, and meter funding 
source were calculated by multiplying the number of truck rolls required by $50 per truck 
roll. 
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• Vehicle costs from AMI truck rolls required per service center, month, and meter funding 
source were calculated by multiplying the number of truck rolls required by the average 
vehicle cost per work order completed by each service center and month. 

2.5.1.4 Organization of Results  
This section describes the total net-meter operations dollar savings as a result of AMI from: 
service-related truck rolls avoided, meter reading routes eliminated, meter theft reductions, and 
meter tampering reductions. 
• Service-related truck rolls avoided  

Monthly graphs showing savings and additional costs incurred for vehicle and labor costs 
are provided in this section. Graphs are then presented for net-labor savings and net 
vehicle savings. Finally, a graph is presented showing the total dollar value of monthly 
savings due to truck rolls avoided.  

• Elimination of meter reading routes 
Savings analysis based on remote meter readings via the AMI network and the elimination 
of meter reading routes are provided in this section. 

• Reduction in meter theft  
Analysis of the difference in meter theft rates between AMI and non-AMI meters are 
provided in this section.  

• Changes in meter failure rate 
This section contains the analysis of the difference in meter failure rates between AMI and 
non-AMI meters.  

• Software and Network maintenance costs 
This section presents the results from analysis of the ongoing costs associated with the 
AMI network. 

• Revenue Protection  
Results from analysis of the reduction in meter theft achieved through meter tampering 
detection are described in this section. 

2.5.1.5 Data Collection Results 
This section shows savings results related to consumer service-related truck rolls, eliminated 
meter routes, and AEP Ohio’s engineering analysis. In the graphs that follow, DOE represents 
the approximately110,000 AMI meters that were deployed in the Project area. AEP represents 
the approximately 22,000 additional AMI meters deployed in the System area. 
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Figure 5. Savings from Reduced Vehicle Costs 

 

 
Figure 6. Savings from Reduced Labor Costs 
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Figure 7. Additional Vehicle Costs from AMI 

 

 
Figure 8. Additional Labor Costs from AMI 
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Figure 9. Net Vehicle Savings from Truck Rolls Avoided 

 

 
Figure 10. Net Labor Savings from Truck Rolls Avoided 
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Figure 11. Total Net Savings Associated with AMI Service Truck Rolls Avoided  
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Results for Consumer Service Related Truck Rolls Avoided 
The figure above shows the average monthly net savings due to truck rolls avoided from January 
2012 through December 2013 was $85,943, with a total savings of $2,062,628. The population 
of meters was approximately 132,000 System area meters. The average per meter savings was 
therefore $7.81 per meter per year. 

Cost Savings from Eliminated Meter Reading Routes 
Prior to the installation of AMI meters, AEP Ohio had 994 meter reading routes in the Columbus 
metropolitan area. Through the use of AMI, AEP Ohio was able to eliminate 187 meter reading 
routes, 100 percent of the meter reading routes in the Project area. AEP Ohio meter readers 
typically read one route per day. For calculation purposes, it is assumed that eliminating a route 
equals 8 hours of labor. As a result of installing AMI and eliminating 187 meter reading routes, 
AEP Ohio has saved 1,301.5 hours in labor and eliminated 10 meter reading positions. In 
addition, unread meter numbers have improved to 0.3 percent in the Columbus area each month. 

 
The table below outlines the savings due to the elimination of meter reading routes. 

Item Hourly Cost Total Hours Total Savings 
Meter Reader Salary (2012)  - 
loaded 

21.45 1,301.50 $27,917 

Vehicle Operations (2012)   7.50 1,301.50   $9,761 
Grand Total – Monthly   $37,676 
Grand Total – Yearly   $452,112 

(3.43 per meter 
per year) 

Table 10. Meter Reading Route Elimination Savings 
 
AEP Ohio has filed with the Public Utilities Commission of Ohio (PUCO) for expansion of the 
AMI project of an additional 894,000 meters. The meter reading efficiencies are projected to 
increase to approximately $6-$7 million in annual utility savings (adjusted for inflation).  
 
Credit, collections and revenue enhancements through earlier theft detection, lower consumption 
on inactive meters and greater billing accuracy are projected to lead to an additional $8-$10 
million in annual utility savings. Of that amount, $1.5-$2 million annually is operational savings 
from use of the remote service switch specifically for DNP. The benefits associated with 
automated DNP require a PUCO waiver for the current process that requires on-site customer 
interaction. The PUCO would need to consider whether and how the rules would be adjusted to 
allow for credit disconnects, considering all stakeholder options. 

Results for Reductions in Meter Theft and Tampering 
Meter Revenue Operations (MRO) is able to quickly identify and mitigate meter theft and 
tampering, which is a direct result of AMI technology. 
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Meter Theft 
Meter theft occurs when someone removes a meter from its authorized location and uses it 
elsewhere. Because of AMI technology, MRO is able to locate a stolen meter in near real-time. 
AEP Ohio uses UtilityIQ® (UIQ) back-office software for meter management. Within 15 
minutes, this software sends notifications that an AMI meter is installed in a different location.  

Meter Tampering 
Meter tampering occurs when a meter or meter base is altered, causing inaccurate recording of 
that meter’s usage, affecting the consumer’s bill. With AMI, tampering was identified almost 
immediately and MRO identified physical tampering schemes, such as jumper placement behind 
a meter.  
 
Overview  
Tampering usually occurs with about 2 to 3 percent of AEP Ohio consumers. With AMI, the goal 
was to have AEP Ohio respond to tamper alerts within 24 to 48 hours of the first tampering 
notification. The AMI system sent tampering notifications immediately and enables MRO to 
respond to tampering orders quickly. 
 
Details 
In a 2013 sampling, 163 total tampering calls were identified through AMI and 147 confirmed 
instances of jumper placement behind the meter. AEP Ohio was able to bill a portion of these 
account holders for tampering and continued to investigate the remainder. 
 
AEP Ohio’s meter tampering operating costs are billed to the tampering consumer. A breakdown 
of costs is provided below. 

 
Tamper Operating Costs Per Meter 

Investigation Costs $49.00 
Tampering lock installed $73.00 
Meter charge for damages $125.00 
Rebilling of Unmetered 
Revenue 

Varies by account 

Minimum Total charged to 
consumer 

$247.00 

Table 11. Tamper Operating Costs per Meter 

Changes in Meter Failure Rate 
AEP Ohio had 3,780 meter failures associated with the AMI implementation, which equated to 
an approximate failure rate of 0.98 percent during the 3.5 years that the 110,000 AMI meters 
were installed in the Project area.  
Note: This failure rate included the failed diode meters that skewed these numbers initially. 
However, the problem was diagnosed and corrected. 
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Software and Network Maintenance Costs 
This section contains the analysis of the ongoing maintenance costs associated with operating 
the AMI network.  

Silver Spring Networks’ (SSN) AMI fees for the northeast Columbus project are $125,565 per 
year. This is the annual UIQ maintenance fee for 110,000 AMI meters ($0.095 per meter per 
month). These recurring fees do not include individual Scope of Work agreements, Online Data 
Storage (ODS) agreements, and upgrades. 

2.5.1.6 Summary 
Elimination of truck rolls associated with consumer service calls and the elimination of manual 
meter reading routes were the major sources of meter operations cost reduction. Both sources 
included labor and vehicle savings, associated servicing, and reading meters manually. In 
addition, cost reductions may be realized as meter theft and tampering are identified and 
mitigated quickly. 
 
The AMI system reduced truck rolls from meter reads and consumer service calls. Customer 
Service Representatives (CSRs) remotely connected to meters, disconnected meters, and 
diagnosed consumer issues. For example, AEP Ohio CSRs mitigated billing complaints by 
accessing and reviewing 15-minute AMI data. Representatives were able to remotely check a 
meter and review its status. This process often eliminated the need to send a service crew to 
physically check a meter.  
 
There were more truck rolls as a result of increased consumers’ concerns about the accuracy of 
their bills. These concerns were driven by the increase in information consumers had about their 
bills. However, this trend was sporadic and it surged on initial installation. Another source of 
additional truck rolls was AMI-specific maintenance issues (such as communications failures). 
These additional truck rolls were included in the total number of truck rolls avoided.  
 
The savings from elimination of meter reading routes was fixed, and on a monthly basis, 
constant. The variability in monthly savings from avoided truck rolls was likely attributable to 
two major factors – weather events, which drove consumer service calls, and an initial 
adjustment period as consumers transitioned from traditional meters to AMI meters. There were 
also concurrent tariff changes with the AMI installation, and that likely drove a short-term 
increase in consumer service calls seen in February and March of 2012. There were also a 
number of issues for initial AMI installations that required subsequent truck rolls to correct any 
installation problems. 
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2.5.2 Truck Rolls Avoided (M05-AMI) 
The AMI system has the potential to reduce the number of truck rolls required through the 
elimination of meter reading routes and the ability to remotely perform services such as check 
reads, connections, and disconnections. 

2.5.2.1 Objective 
This impact metric quantifies the number of truck rolls avoided because of AMI technology. 
This metric also takes into account the number of truck rolls added that are a result of new 
information this technology provides. For example, AMI can detect meter tampering and send 
alerts in near-real time. 

2.5.2.2 Assumptions  
This section contains assumptions made when collecting, analyzing, and presenting the data:  
• Disconnections for non-payment are excluded from this analysis because AEP Ohio was 

required to send a representative to consumer premises prior to service disconnection. 

• A disconnect for non-payment did not equate to a truck roll avoided. 

• One meter reader per truck. (Standard truck is a pick-up truck.) 

2.5.2.3 Calculation Approach  
Certain types of consumer events, such as check read requests, can be handled remotely via the 
AMI system, thereby avoiding a truck roll. A list was compiled of all consumer event order 
types that led to an avoided truck roll. Next, the number of truck rolls avoided because of AMI 
was calculated based on the number of consumer events with matching order type codes. 
 
The following queries and methods were used to generate results: 
• Truck rolls avoided per service center, month, and meter funding source were calculated by 

multiplying the ratio of miles for a circuit in a service center to total miles for a circuit 
times the number of consumer events for consumers with AMI meters where the order type 
that generated the consumer event was any order type except Excess use on an inactive 
account, the meter response to a meter request was not Error, and the consumer event type 
was one of the following: 

 Connect Request 

 Disconnect Request 

 Estimated Bill Complaint 

 High Bill Complaint 

• Truck rolls required per service center, month, and meter funding source were calculated 
by adding the number of truck rolls required from AMI meter events, where the event type 
was Tamper, to the number of AMI meter requests, where the order request was 
Read/Solve Access. 

• Net truck rolls per service center, month, and meter funding source were calculated 
subtracting the AMI truck rolls required from the AMI truck rolls avoided. 
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2.5.2.4 Organization of Results 
The following section describes the number of truck rolls avoided due to AMI from the 
following sources:  
• Service-related truck rolls avoided  

This section contains monthly graphs showing the number of truck rolls avoided, as well as 
the number of new truck rolls required because of AMI. A final graph is presented showing 
the net number of truck rolls avoided.  

 
• Elimination of meter reading routes 

This section contains a savings analysis that results from the elimination of meter reading 
routes because meters are read remotely through the AMI network. 

2.5.2.5 Data Collection Results 
This section shows savings results related to customer service-related truck rolls, eliminated 
meter reading routes, and AEP Ohio’s engineering analysis. 

Results for Service Related Truck Rolls Avoided 
 

 
Figure 12. Truck Rolls Avoided Because of AMI 
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Figure 13. Additional Truck Rolls Required Because of AMI 

 

 
Figure 14. Net Truck Rolls Avoided Because of AMI 

The average monthly net count of truck rolls avoided during January 2012 through December 
2013 was 2,118 truck rolls per month. The total of number of net truck rolls avoided during 
January 2012 through December 2013 was 50,825. The 2012 average was 2,526 per month and 
the 2013 average was 1,709 per month. 
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2.5.2.6 Results for Eliminated Meter Reading Routes 
Prior to the installation of AMI meters, AEP Ohio had 994 meter reading routes in the Columbus 
metropolitan area. Through the use of AMI, AEP Ohio was able to eliminate 187 meter reading 
routes in the Project area. This resulted in 163 avoided truck rolls per month, or 1,952 truck rolls 
avoided per year. 
 
Note that each meter reading route in this area normally required an average of eight hours per 
route for meter reading activities. Therefore, meter reading truck rolls represent a much larger 
mileage savings compared with meter service-related truck rolls. 

2.5.2.7 Summary 
The number of truck rolls avoided per month showed seasonal variation that can be attributed to 
several factors. For public safety reasons, fewer disconnect (and corresponding reconnect) events 
occurred during winter months. In April 2013 there was a noticeable increase due to the backlog 
of disconnects that were not performed during the winter.   
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2.5.3 Meter Operations Vehicle Miles (M06-AMI)  
The AMI system has the potential to reduce the number of truck rolls that AEP Ohio meter 
operations staff perform through the elimination of meter reading routes and the ability to 
perform services remotely. These services include meter reading, meter connections, and meter 
disconnections. 

2.5.3.1 Objective  
This impact metric provides an estimate of the number of vehicle miles avoided and added 
because of changes from AMI technology.    

2.5.3.2 Assumptions  
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
The AMI system provides the capability to manage certain types of consumer events remotely, 
which results in mileage eliminated from truck rolls avoided.  

2.5.3.3 Calculation Approach  
A list was compiled of all consumer event order types that led to an avoided truck roll. The 
number of truck rolls avoided because of AMI was then calculated based on the number of 
consumer events with matching order type codes. 
 
Average mileage per truck roll was calculated by month for each AEP Ohio service center in the 
Project and System areas. These average mileage values were applied to the count of truck rolls 
avoided to calculate mileage avoided because of AMI. 
 
The following queries and methods were used to generate results: 
• Vehicle distances per service center and month for the Meter Revenue Operations (MRO) 

and Field Revenue Operations (FRO) business units were calculated by summing the 
vehicle use mileage quantities. 

• Average truck roll distances per service center and month for the MRO and FRO business 
units were calculated by taking the average of the vehicle distances by service center and 
month for the MRO and FRO business units divided by the number of completed work 
orders per service center and month. 

• The meter operations vehicle miles avoided per service center, month, and meter funding 
source were calculated by multiplying the AMI truck rolls avoided per service center, 
month, and meter funding source by the average truck roll distances by service center and 
month for the MRO and FRO business units. 
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2.5.3.4 Organization of Results  
The following section describes the number of vehicle miles avoided from the following sources:  
• Service-related truck rolls avoided  

This section contains monthly graphs showing the number of vehicle miles avoided as a 
result of the net number of truck rolls avoided.  

• Elimination of meter reading routes 
This section contains analysis of vehicle miles avoided as a result of eliminated meter 
reading routes. 

2.5.3.5 Data Collection Results 
This section describes savings results related to service truck rolls, eliminated meter routes, and 
AEP Ohio’s engineering analysis. 

Results for Consumer Service-Related Truck Rolls Avoided 

 
Figure 15. Total Vehicle Distance by Service Center 
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Figure 16. Average Truck Roll Distance by Service Center 

 
Figure 17. Net Mileage Avoided Due to AMI 
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The average monthly net mileage avoided from January 2012 through December 2013 was 
11,792 miles/month. The total miles avoided for the period of January 2012 through December 
2013 was 282,996 miles. 

Results for Eliminated Meter Reading Routes 
Through the use of AMI, AEP Ohio was able to eliminate 187 meter reading routes in the Project 
area. This results in a vehicle mileage avoidance of 5,694 miles/month or 68,328 miles per year.  

2.5.3.6 Summary 
The meter operations vehicle miles avoided were a direct result of eliminating meter reading 
route vehicle use and eliminating on-site customer trips for connects and disconnects. There was 
no indication that there was a change in the number of truck rolls or the average mileage per 
truck roll due to different type of work being performed in the AMI area. The monthly total and 
average distance per truck roll were fairly consistent within each of the four Columbus service 
centers across the test period, but varied significantly by service center.  
 
AEP Ohio’s Northeast Service Center, which services the Project area, consistently had a higher 
total vehicle mileage and average truck roll distance than the other three service centers in 
Columbus. There was no evidence that this was a result of the AMI technology being deployed, 
but more a factor of the larger geographic layout of the Northeast Service Center coverage. 
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2.5.4 CO2 Emissions - Project (M07-AMI) 
The AMI system has the potential to reduce the number of truck rolls required through the 
elimination of meter reading routes and the ability to perform services remotely. Truck rolls 
avoided results in a reduction of fuel usage. 

2.5.4.1 Objective  
This impact metric provides an estimate of the CO2 emissions saved by avoiding truck rolls 
resulting from AMI functionality.   

2.5.4.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data:  
• 8.8 kg CO2 emissions/gallon for gas engines, 10.1 kg CO2 emissions/gallon for diesel 

engines conversion factor. 
Source:  United States EPA Office of Transportation and Air Quality Emissions Facts 
(EPA420-F-05-001) 

• The only significant impacts on CO2 emissions due to AMI are achieved through truck rolls 
avoided because AMI has little direct impact on consumer usage patterns. 

2.5.4.3 Calculation Approach 
A list was compiled of all consumer event order types that lead to an avoided truck roll. The 
number of truck rolls avoided due to AMI was then calculated based on the number of consumer 
events with matching order type codes. 
 
Average mileage per truck roll and average vehicle fuel efficiency were calculated by month for 
each AEP Ohio service center in the Project and System areas. CO2 emission avoidance was 
calculated using fuel efficiency and mileage avoided. 
 
The following queries and methods were used to generate results: 
AEP Ohio provided an average fuel economy value for each vehicle. Corrected average monthly 
fuel efficiencies in miles per gallon per service center, month, and fuel type for vehicles the AEP 
Ohio Meter Revenue Operations (MRO) and Field Revenue Operations (FRO) business units 
used were determined as follows:  
• Calculating the average of monthly vehicle mileage divided by monthly quantity of fuel for 

each vehicle.  

• Because some suspect monthly vehicle mileage (703,281 miles, for example) was received, 
if the average of monthly vehicle mileage divided by monthly quantity of fuel divided by 
the average monthly average fuel economy value was not between 0.5 and 2.0, average 
monthly average fuel economies were substituted for the average of monthly vehicle 
mileage divided by monthly quantity of fuel. This calculation provides the corrected 
average monthly fuel efficiencies. 
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Tons of CO2 avoided per service center, month, meter funding source, and fuel type due to truck 
rolls avoided because of AMI technology were calculated as follows:  
• Multiplying the number of truck rolls avoided by the average truck roll distance divided by 

the corrected average monthly fuel efficiency by (8.8 kg CO2 emissions/gallon for gas 
engines, 10.1 kg CO2 emissions/gallon for diesel engines) by 0.00110231131092 (kg to 
tons conversion factor). 

2.5.4.4 Organization of Results  
This section contains the results from analysis of CO2 through the AMI network as follows.  
• Customer service-related truck rolls avoided  

This section contains monthly graphs showing the amount of CO2 avoided due to the net 
number of truck rolls avoided.  

• Elimination of meter reading routes 
This section contains the results from analysis of CO2 avoided due to the elimination of 
meter reading routes by reading meters remotely through the AMI network. 

2.5.4.5 Data Collection Results 
This section describes results for service-related truck rolls avoided, eliminated meter reading 
routes, and AEP Ohio’s engineering analysis. 

Results for Service-Related Truck Rolls Avoided 
The average monthly net CO2 avoided from January 2012 through December 2013 was 16.91 
tons per month, with a total of 406 tons. 

 
Figure 18. CO2 Emissions Avoided as a Result of Reduced AMI Truck Rolls 
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Results for Reduced CO2 from Eliminated Meter Reading Routes 
Through the use of AMI, AEP Ohio was able to eliminate 187 meter reading routes in the Project 
area. This results in a vehicle mileage avoidance of 5,694 miles/month or 68,328 miles per year. 
Using an Environmental Protection Agency (EPA) average value of 423 grams of CO2 per mile 
(EPA-420-F-11-041) results in 2.408 metric tons of CO2 avoided per month or 28.903 metric 
tons avoided per year. 

2.5.4.6 Summary 
The CO2 emissions avoided were a direct multiple of truck roll miles avoided. As a result, the 
variations and differences in CO2 emissions over time and service area were consistent with the 
variations in truck rolls avoided and average truck roll mileage. 
 

36 
 



Advanced Metering Infrastructure 
 

2.5.5 Pollutant Emissions - Project area: SOX, NOX, and PM2.5 (M08-AMI) 
The AMI system has the potential to reduce the number of truck rolls required through the 
elimination of meter reading routes and the ability to perform services remotely, such as meter 
reading, service connection, and disconnection. Truck rolls avoided can lead to reduced pollutant 
emissions from vehicles. 

2.5.5.1 Objective 
This impact metric provides an estimate of the amount of pollutant emissions saved by avoiding 
truck rolls due to the functionality of AMI technology. 

2.5.5.2 Assumptions  
This section contains assumptions made when collecting, analyzing, and presenting the data:  
• California Air Resources Board (CARB) limit value of 0.05 grams of Nitrogen Oxides 

(NOX) per mile was used. 
Source: United States EPA 40 CFR part 86 Subpart S tier 2 Bin 5 Emissions limits at 
50,000 mi 

• 0.01 g PM2.5 emissions/mi conversion factor 

Source: United States EPA 40 CFR part 86 Subpart S tier 2 Bin 5 Emissions limits at 
100,000 mi 

• 0.165 g SOX emissions/gallon for gas engines, 0.0963 g SOX emissions/gallon for diesel 
engines conversion factor 

Calculated from: sulfur content of gasoline = 30 ppm  

Source: U.S. EPA 40 CFR parts 80, 85, and 86 AMS-FRL-6516-2 

Sulfur content of ULSD diesel fuel = 15 ppm 

Source: U.S. EPA Office of Transportation and Air Quality Emissions Facts (EPA420-F-
00-057) 
Molecular weight of SO2 = 64 g/mole 

Density of gasoline = 2.75 kg/gallon 

Density of diesel fuel = 3.21 kg/gallon 

2.5.5.3 Calculation Approach  
Certain types of consumer events, such as check read requests, can be handled remotely using 
the AMI system, thereby avoiding a truck roll. A list was compiled of all consumer event order 
types that lead to an avoided truck roll. The number of truck rolls avoided due to AMI was then 
calculated based on the number of consumer events with matching order type codes. 
 
Average mileage per truck roll and average vehicle fuel efficiency were calculated by month for 
each AEP Ohio Service Center. Pollutant emission avoidance was calculated using fuel 
efficiency and mileage avoided. 
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The following queries and methods were used to generate results: 
• Average monthly fuel efficiencies in miles per gallon per month and fuel type for vehicles 

the AEP Ohio MRO and FRO business units used were determined by calculating the 
average of monthly vehicle mileages divided by monthly quantity of fuel for each vehicle. 
If the average of monthly vehicle mileages divided by monthly quantity of fuel divided by 
the average monthly average fuel economy value was not between 0.5 and 2.0, average 
monthly average fuel economies were substituted for the average of monthly vehicle 
mileages divided by monthly quantity of fuel to calculate the corrected average monthly 
fuel efficiencies. 

• Kilograms of SOX avoided per service center, month, meter funding source, and fuel type 
due to truck rolls avoided attributable to AMI technology were calculated by multiplying 
the number of truck rolls avoided times the average truck roll distance divided by the 
corrected average monthly fuel efficiency times either 0.165 g SO2 emissions/gallon for 
gasoline engines or 0.0963 g SO2 emissions/gallon for diesel engines e times 0.001 (g to kg 
conversion factor). 

• Kilograms of NOX avoided per service center, month, meter funding source, and fuel type 
due to truck rolls avoided attributable to AMI technology were calculated by multiplying 
the number of truck rolls avoided times the average truck roll distance times 0.05 g NOx 
emissions/mi times 0.001 (g to kg conversion factor). 

• Kilograms of particulate matter (PM2.5) avoided per service center, month, meter funding 
source, and fuel type due to truck rolls avoided attributable to AMI technology were 
calculated by multiplying the number or truck rolls avoided times the average truck roll 
distance times 0.01 g PM2.5 emissions/mi times 0.001 (g to kg conversion factor).  

2.5.5.4 Organization of Results  
The following section describes the amount of pollutants avoided due to AMI from the following 
sources:  
• Consumer service-related truck rolls avoided  
• This section contains monthly graphs showing the amount of pollutants avoided as a result 

of the net number of truck rolls avoided.  

• Elimination of meter reading routes 
This section contains the results from analysis of pollutants avoided due to the elimination 
of meter reading routes by reading meters remotely through the AMI network. 

2.5.5.5 Data Collection Results 
This section shows results for consumer service-related truck rolls, eliminated meter routes, and 
AEP Ohio’s engineering analysis. 
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Service-Related Truck Rolls Avoided 
• The average monthly net NOX avoided during January 2012 through December 2013 was 

0.956 kg/month, with a total of 22.9 kg.  

• The average monthly net SOX avoided during January 2012 through December 2013 was 
0.220 kg/month, with a total of 5.3 kg.  

• The average monthly net particulate matter (PM2.5) avoided during January 2012 through 
December 2013 was 0.191 kg/month, with an annual total of 4.6 kg. 

 

 
Figure 19. Pollutants Avoided Resulting from AMI Truck Rolls Avoided 

Results for Eliminated Meter Reading Routes 
Through the use of AMI, AEP Ohio was able to eliminate 187 meter reading routes in the Project 
area. This results in a vehicle mileage reduction of 5,694 miles/month or 68,328 miles per year. 
 
Using a CARB limit value of 0.05 grams of NOX per mile, results in 284.7 g of NOX avoided per 
month or 3,416 g avoided per year. 
 
SOX and PM2.5 emissions from light-duty gasoline vehicles, which are typically used for meter 
reading routes, provided a small contribution to this impact metric. 
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2.5.5.6 Summary 
Pollutant emissions are a direct multiple of truck roll miles avoided. As a result, the variations 
and differences in pollutant emissions over time are consistent with the variations and 
differences in truck rolls avoided as well as average truck roll mileage. 
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2.5.6 CO2 Emissions - System area (M09-AMI) 
The AMI system has the potential to reduce the number of truck rolls required through the 
elimination of meter reading routes and the ability to perform some services remotely. These 
services include meter reading, meter connection, and disconnection. Truck rolls avoided can 
lead to reduced pollutant emissions from vehicles. 

2.5.6.1 Objective  
This impact metric provides an estimated amount of CO2 that trucks would emit to perform 
services that could be performed remotely if AMI technology was extended to the entire System 
area. 

2.5.6.2 Assumptions  
This section contains assumptions made when collecting, analyzing, and presenting the data:  
• 8.8 kg CO2 emissions/gallon for gas engines, 10.1 kg CO2 emissions/gallon for diesel 

engines conversion factor was used. 

• Meter reading truck tolls follow the same distance ratio as service truck rolls. 

2.5.6.3 Calculation Approach  
The AMI system provides remote service capabilities for certain types of consumer events. A list 
was compiled of all consumer event order types that lead to an avoided truck roll. The number of 
truck rolls avoided due to AMI was then calculated based on the number of consumer events 
with matching order type codes. 
 

Average mileage per truck roll and average vehicle fuel efficiency were calculated by month for 
each AEP Ohio service center in the Project and System areas. Project area CO2 emission 
avoidance was calculated using fuel efficiency and mileage avoided. This emission avoidance 
was then extrapolated to the System area based on number of consumers and average truck roll 
distances for each non-Project service center. 
 

The following queries and methods were used to generate results: 
The calculation that follows was used to determine avoided tons of CO2 per service center and 
month if AMI technology were deployed throughout the AEP Ohio System area: 
 
Truck rolls avoided per consumer in the Northeast Service Center were multiplied by the number 
of consumers without AMI technology per month times the average truck roll distance.  
This value was divided by the corrected average monthly fuel efficiency times (8.8 kg CO2 
emissions/gallon for gas engines, 10.1 kg CO2 emissions/gallon for diesel engines) times 
0.00110231131092 (kg to tons conversion factor). 
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2.5.6.4 Organization of Results  
The following section describes the amount of CO2 that could be avoided if AMI was deployed 
to the entire System area from: 
• Service-related truck rolls 

This section contains monthly graphs showing the amount of potential CO2 avoided as a 
result of a potential reduction in truck rolls. 

• Elimination of meter reading routes 
This section contains the analysis results from potential CO2 avoided due to the elimination 
of meter reading routes. Meters are read remotely through the AMI network.  

2.5.6.5 Data Collection Results  

 
Figure 20. Potential CO2 Avoided in System Area Due to AMI Truck Rolls Avoided 

Results for Service-Related Truck Rolls Avoided 
The average potential monthly CO2 avoided for January 2012 through December 2013 was 51 
tons per month, with a potential total of 1,232 tons if AMI were expanded to the entire System 
area.  

2.5.6.6 Summary 
CO2 emissions are a direct multiple of truck roll miles avoided. As a result, the variations and 
differences in CO2 emissions are consistent with truck rolls avoided and average truck roll 
mileage. 
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2.5.7 Pollutant Emissions - System area: SOX, NOX, and PM2.5 (M10-AMI) 
The AMI system has the potential to reduce the number of truck rolls required through the 
elimination of meter reading routes and the ability to perform services remotely, such as meter 
reading, meter connection and disconnection. 

2.5.7.1 Objective 
This impact metric provides an estimate of the amount of pollutants that would have been 
emitted by trucks to perform services that could be avoided if AMI technology was extended to 
the entire System area. 

2.5.7.2 Assumptions  
This section contains assumptions made when collecting, analyzing, and presenting the data:  
• A CARB limit value of 0.05 grams of NOX per mile was used. 

Source: United States EPA 40 CFR part 86 Subpart S tier 2 Bin 5 Emissions limits at 
50,000 mi 

• 0.01g PM2.5 emissions/mi conversion factor 

Source: United States EPA 40 CFR part 86 Subpart S tier 2 Bin 5 Emissions limits at 
100,000 mi 

• 0.165 g SOX emissions/gallon for gas engines, .0963 g SOX emissions/gallon for diesel 
engines conversion factor 

Calculated from: sulfur content of gasoline = 30 ppm  

Source: U.S. EPA 40 CFR parts 80, 85, and 86 AMS-FRL-6516-2 

Sulfur content of ULSD diesel fuel = 15 ppm 

Source: U.S. EPA Office of Transportation and Air Quality Emissions Facts (EPA420-F-
00-057) 
Molecular weight of SO2 = 64 g/mole 

Density of gasoline = 2.75 kg/gallon 

Density of diesel fuel = 3.21 kg/gallon 

• NOx and SOX emissions from light duty meter reading vehicles are considered negligible. 
All presented reductions in NOX and SOX are a result of service truck rolls. 

2.5.7.3 Calculation Approach  
Certain types of consumer events, such as check read requests, can be handled remotely by the 
use of the AMI system, thereby avoiding a truck roll. A list was compiled of all such consumer 
event order types. The number of truck rolls avoided due to AMI was then calculated based on 
the number of consumer events with matching order type codes. 
 
Average mileage per truck roll and average vehicle fuel efficiency was calculated by month for 
each AEP Ohio service center in the Project and System areas. Project area pollutant emission 
avoidance was calculated using fuel efficiency and mileage avoided.  
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This emission avoidance was then extrapolated to the System area based on number of 
consumers and average truck roll distances for each non-Project area service center. 
 
The following queries and methods were used to generate results: 
• Kilograms of SOX per service center and month that would be avoided if AMI technology 

were deployed throughout the AEP Ohio System area due to truck rolls avoided were 
calculated by multiplying the truck rolls avoided per consumer in the Northeast Service 
Center times the number of consumers without AMI technology per month times the 
average truck roll distance times either 0.165 g SO2 emissions/gallon for gasoline engines 
or 0.0963 g SO2 emissions/gallon for diesel engines, times 0.001 (g to kg conversion 
factor)  

• Kilograms of NOX per service center and month that would be avoided if AMI technology 
were deployed throughout the AEP Ohio System area due to truck rolls avoided were 
calculated by multiplying the truck rolls avoided per consumer in the Northeast Service 
Center times the number of consumers without AMI technology per month times the 
average truck roll distance times 0.05 g NOX emissions/mi times 0.001 (g to kg conversion 
factor). 

• Kilograms of particulate matter (PM2.5) per service center and month that would be avoided 
if AMI technology were deployed throughout the AEP Ohio System area due to truck rolls 
avoided were calculated by multiplying the truck rolls avoided per consumer in the 
Northeast Service Center times the number of consumers without AMI technology per 
month times the average truck roll distance times 0.01 g PM2.5 emissions/mi times 0.001 (g 
to kg conversion factor). 

2.5.7.4 Organization of Results  
The following section describes the amount of pollutants that could be avoided if AMI was 
deployed to the entire System area from the following sources:  
• Service-related truck rolls avoided  

This section contains monthly graphs showing the amount of potential pollutants avoided 
due to truck rolls avoided.  

• Elimination of meter reading routes 
This section contains the analysis of potential pollutants avoided due to the elimination of 
meter reading routes if AMI were extended to the entire System area.  

2.5.7.5 Data Collection Results 
As derived under Metric M09, System area meter reading potential mileage avoided is equal to 
371,071 miles/year. Using a CARB limit value of 0.05 grams of NOX per mile results in the 
potential for 18.6 kg NOX avoided per year. 
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SOX and PM2.5 emissions from light-duty gasoline vehicles, which are typically used for meter 
reading routes, provided a small contribution to this impact metric. 
 
• The average potential monthly net NOX avoided was 3.50 kg/month, with a total of 84.0 

kg. 

• The average potential monthly net SOX avoided was 0.858 kg/month, with a total of 20.6 
kg. 

• The average potential monthly net PM2.5 avoided was 0.700 kg/month, with a total of 
16.8kg. 

Service-Related Tuck Rolls Avoided 

 
Figure 21. Potential Pollutants Avoided in System Area Due to AMI Truck Rolls Avoided 

2.5.7.6 Summary 
Pollutant emissions are a direct result of multiple truck roll miles avoided, and in this case are 
scaled to the System area. As a result, the variations and differences in pollutant emissions over 
time are consistent with the same in truck rolls avoided and average truck roll mileage. 
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2.5.8 Meter Data Completeness (M11-AMI) 

2.5.8.1 Objective 
AMI technology has the potential to provide near real-time meter data to the utility. This impact 
metric reports the percentage of successfully received meter readings through the AMI system. 

2.5.8.2 Assumptions  
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• Any estimated readings are not counted as successful.  

• Total expected readings are based on the number of active AMI consumers.  

2.5.8.3 Calculation Approach  
The following queries and methods are used to generate results: 
• AMI readings received per meter and date were calculated by counting the number of non-

estimated readings in the Input Data Category (IDC). 

• AMI readings expected per meter, date, meter type, meter funding source, circuit, and 
substation were calculated by counting the number of intervals per day for normal and 
daylight savings on/off days times the number of AMI consumers. 

• AMI readings missed per meter, date, meter type, meter funding source, circuit, and 
substation were calculated by subtracting the number of AMI readings received from the 
number of AMI readings expected. 

2.5.8.4 Organization of Results  
The following section describes the completeness of data reported through the AMI system as 
follows:  
• Interval readings successfully reported through the AMI network  

This section contains graphs showing the number of meter readings expected vs. the 
number received each day. 

• Accuracy of reported meter data 
This section contains AEP Ohio’s results from analysis of meter data accuracy including 
their procedure for spot checking meters in the field. 
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2.5.8.5 Data Collection Results 

Interval Readings Reported Through the AMI Network 

 
 

Figure 22. AMI Interval Readings Expected and Received Daily 
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Figure 23. Percentage of Expected AMI Interval Readings Received Daily 

2.5.8.6 Summary 
More than 131,000 meters on 89 circuits are fully populated with AMI meters. On average, 95 
percent of the expected readings have been received from these circuits. The highest average is 
97.5 percent and the lowest average is 88 percent. More than 82 circuits exceeded 92.5 percent. 
 
Meter data completeness is consistent throughout the Project period, with a few exceptions 
resulting from power outages, back-office system outages, or communications network outages. 
In such cases, the missed readings are for short durations, with the exception of prolonged 
recovery for some meters after the Derecho storm in late June 2012. 
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2.5.9 Meters Reporting Daily (M12-AMI) 
AMI technology has the potential to provide near real-time meter data to the utility. 

2.5.9.1 Objective  
This impact metric reports the number of AMI meters that successfully receive meter data, at 
least once per day, through the AMI system. 

2.5.9.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• Estimated readings are not counted as successful. 

• Total expected readings are based on the number of active AMI consumers. 

2.5.9.3 Calculation Approach 
This metric presents the number of AMI meters that successfully report at least one 15-minute 
interval reading per day.  
 
The following queries and methods were used to generate results: 
AMI readings missed per meter, date, meter type, meter funding source, circuit, and substation 
were calculated by subtracting the number of AMI readings received from the number of AMI 
readings expected. 

2.5.9.4 Organization of Results  
The following section describes the completeness of data reported through the AMI system. The 
specific aspect of data completeness analyzed under this metric is the number of meters 
successfully reporting at least once per day.  
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2.5.9.5 Data Collection Results 

Results for Interval Readings Reported Through the AMI Network 

 
Figure 24. Percent of AMI Meters Reporting Each Day 

2.5.9.6 Summary 
Meters reporting daily remained relatively high and consistent over the Project time period. This 
metric does not include short-term communications outages or lost packets, since each meter is 
required to report a minimum of once per day, unlike the Meter Data Completeness (M11-AMI) 
metric. The exceptions were associated with major outages, including the late June 2012 through 
early July 2012 Derecho storm and the associated recovery. 
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2.5.10 Outage Response Time (M29-AMI) 

2.5.10.1 Objective 
The AMI system has the ability to notify AEP Ohio of consumer power outages in near real-
time. This notification is expected to precede the first consumer-reported outage.  

2.5.10.2 Assumptions  
This section does not apply. 

2.5.10.3 Calculation Approach 
This section does not apply. 

2.5.10.4 Organization of Results  
This section does not apply. 

2.5.10.5 Data Collection Results  
Refer to the next section, Outage Response Times and Last Gasp Study.  

2.5.10.6 Outage Response Times and Last Gasp Study 
The AMI technology was evaluated to determine if meters automatically reporting outages were 
beneficial to the outage reporting and restoration process.   

2.5.10.7 Evaluation of AMI Ping/Poll Functionality 
A ping signal sends a query to a meter to determine if it is in service. A poll signal sends a query 
to a meter to determine the single phase line to line voltage (240v) on the source side of the 
meter. Poll capability is not yet available for multiphase meters. The ability to ping/poll meters 
was incorporated into AEP’s PowerOn application. PowerOn is a web-based outage management 
application. 
 

Studies were performed to track the daily number of dispatchers using ping/poll, and the number 
of results that returned within one minute. Results varied between a high of 79 percent to a low 
of 41 percent (technical problems existed skewing results for that month). The overall average 
for the period was 65 percent of ping/poll queries returning within one minute. Evaluation of the 
AMI ping/poll features in PowerOn yielded the following results, with associated benefits: 
 
Everyday Use 
• The poll feature was useful for consumer voltage complaints or voltage concerns on a 

given circuit. 

• The ability to ping a single meter was useful for single-premises outages. 
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Storms Use 
• The ability to ping multiple meters was beneficial.  

• AMI meters were queried to indicate that restoration was complete, which was beneficial 
for consumer communication.  

• Evaluation during the June 29, 2012 Derecho demonstrated that the use of AMI ping/poll 
can be integrated into major storm restoration efforts to reduce time and effort and 
maximize employee efficiency.  

Evaluation of AMI Meter Outage Processing System 
The AMI Meter Outage Processing System was evaluated during daylight hours into late 
September 2012. Dispatch engineers noticed that recloser and breaker operations created spikes 
in meter traffic due to simultaneous, rapid powering down and up of multiple meters. This in turn 
increased the network delay and various communication problems. In the PowerOn system, this 
led to several false orders created that escaped the filters. In distribution automation (DA) the 
high volumes of meter messages (primarily power up) were sometimes conflicting with 
Distribution Automation (DA) signals to operate equipment and report status back to the control 
center. These conflicts caused communication losses for the DA operation.  
 
The solution formulated was to implement a sleep timer for meter power up messages.  That is, 
these messages would wait a predetermined time (set at five minutes) to send their messages. 
The five-minute delay would allow the DA commands and status indications to pass without 
competing with meter messages for communication resources.   
 
The sleep timer was added on September 21, 2012. Following implementation, additional 
problems were discovered in that the power up message shows the power up time as the actual 
time plus five minutes (the time the message is sent, not actual power up time). This problem has 
not yet been resolved and for this reason AMI Meter Outage Processing was disabled until a 
solution could be found.  

2.5.10.8 Evaluation of Meter Disconnects 
AEP Ohio is also working through a business process issue associated with consumer 
disconnects. When a consumer is disconnected, either for nonpayment or a consumer request for 
home repairs/maintenance, an order is created in the Order Processing System (OPS) for the 
meter disconnect. At that time a reconnect order is also created by the system, as the consumer 
will be reconnected the vast majority of the time. When two OPS orders are created for the same 
consumer, the OPS filter does not properly filter the AMI meter from reporting an outage to 
Trouble Entry Reporting System (TERS) and consequently PowerOn. This condition requires 
correction before AMI Meter Outage Processing is fully implemented. 
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2.5.10.9 Results 
Some AMI meter features provided benefits for service restoration and were incorporated into 
the business culture in 2012. Outage Reporting remains a challenge. 
• The ability to determine if a consumer’s service is energized (ping) and remotely read the 

meter voltage (poll) provide good benefit for service restoration, particularly in storms. 
AMI’s ping/poll functionality provides an important tool to better manage outages affecting 
AMI consumers, and is useful for managing the distribution system. Everyday use of 
ping/polls increases work crew efficiency and results in truck rolls avoided. The use of 
Ping/Poll during storms is helpful for verifying outage extent and provides valuable input 
for Outage Management System (OMS) modeling.   

• AMI meter-generated outages predicted correctly according to operating company rules a 
majority of the time.  

• Generally, AMI filters worked as designed. 

• Many system integration issues were resolved. 

• Test results reveal that using AMI meters to report outages has not yet proven beneficial to 
the business. Test periods in 2012 revealed multiple technical and business challenges that 
must be overcome before AMI outage reporting will prove successful. 

• During major storms the use of the AMI Meter Outage Process would be a hindrance as it 
would increase traffic on the Outage Management System.  
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2.5.11 Order Type Evaluation 
In addition to the required metrics for AMI, Meter Revenue Operations managers analyzed order 
type patterns before and after AMI meters were installed. The statistics that follow show that 
several order types have decreased significantly in AMI territory. Data does not represent a one-
for-one correlation of an order to a specific meter. 

Meter Order Types 
Order 
Type 

Description Years Totals Observations 

CL01 ELEC W/O FIELD 
READ 

2007 45,249 Field order readings are 
now automated using 
UIQ, resulting in a 75 
percent reduction in 
CL01s. 

2008 43,927 
2009 42,645 
2010 27,006 
2011 8,905 
2012 8,755 
2013 4,756 
Total 181,243 

     CL20 ELEC WITH REMOTE 
READ 

2010 8,904 • The CL20 Order type 
was not available 
prior to AMI.  

• This order type is 
related to order type 
CL01.  

2011 29,375 
2012 27,511 
2013 16,285 
Total 82, 075 

     CL30 REMOTE READ AND 
DE-ENERGIZE 

2010 2,395 • The CL30 order type 
was not available 
prior to AMI. 

• There were some dips 
in 2012 and 2013, but 
quantities stayed 
above the 2010 count 
of 2,395.  

2011 7,770 
2012 6,876 
2013 4,149 
Total 21,190 

     DN01 FLD READ & 
DISCONNECT 

2007 6,450 This order type 
represents an 
unauthorized use of 
electricity and 
required a meter 
reading service call 
prior to AMI. 

2008 4,947 
2009 5,194 
2010 2,605 
2011 521 
2012 439 
2013 247 
Total 20,403 
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Meter Order Types 
Order 
Type 

Description Years Totals Observations 

DN10 REMOTE READ & DE-
ENERGIZE 

2010 1,531 • This order type was 
not available prior to 
AMI technology. 

• DN10s are related to 
DN01 order types. 

2011 3,665 
2012 2,390 
2013 1,556 
Total 9,142 

     
IO11 EXCESS USE INACT 

ACCT 
2007 714 AEP Ohio back- 

office personnel were 
able to identify 
consumers who are 
using electricity on 
inactive accounts. 
This resulted in truck 
rolls avoided and loss 
reduction. 

2008 567 
2009 360 
2010 281 
2011 100 
2012 41 
2013 12 
Total 2,075 

     IO12 ENERGY RECOVERY 2007 477 This order type 
represents recovery 
from meter 
tampering. With 
AMI, tampering was 
discovered in near 
real-time, which 
resulted in a decrease 
in tampering. 

2008 620 
2009 598 
2010 647 
2011 241 
2012 307 
2013 324 
Total 3,214 

     IO40 CHECK READ/RE-
READING 

2007 6,697 Prior to AMI, this 
order type required a 
truck roll in most 
cases.  

2008 7,237 
2009 5,948 
2010 3,387 
2011 3,235 
2012 1,631 
2013 832 
Total 28,967 
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Meter Order Types 
Order 
Type 

Description Years Totals Observations 

IO41 READ & SOLVE 
ACCESS 

2007 474 Prior to AMI, this 
order type required a 
truck roll. Access 
issues and physical 
limitations were 
significantly reduced 
with AMI remote 
meter reading. 

2008 441  
2009 754 
2010 440 
2011 41 
2012 36 
2013 55 
Total 2,241 

     OP20 ELEC WITH REMOTE 
READ 

2010 689 This order type is 
associated with 
consumers moving 
into new premises. 
An OP20 was 
performed remotely 
with AMI, which 
resulted in truck rolls 
avoided. 

2011 2,584 
2012 2,559 
2013 1,674 
Total 7,506 

     OP30 REMOTE READ & 
ENERGIZE 

2010 3,284 This order type is 
associated with a 
consumer move and 
service reconnection. 
An OP30 was 
performed remotely 
with AMI, which 
resulted in truck rolls 
avoided. 

2011 11,876 
2012 11,368 
2013 6,671 
Total 33,199 

     OP97 ELEC CONNECT AT 
SERVICE 

2007 217 Prior to AMI, technicians 
had to travel to the 
service location and cut a 
pole to complete this 
operation.  With AMI, 

2008 244 
2009 241 
2010 161 
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Meter Order Types 
Order 
Type 

Description Years Totals Observations 

2011 54 OP97 orders were 
performed remotely. 2012 59 

2013 27 
Total 1,003 

     RN01 FIELD READ AND 
CONNECT 

2007 6,678 These orders have been 
reduced as a result of 
AMI technology. Prior to 
AMI, technicians had to 
travel to a site to read and 
connect a meter.  

2008 6,721 
2009 7,062 
2010 3,485 
2011 1,365 
2012 1,370 
2013 827 
Total 27,508 

     RN10 REMOTE READ & 
ENERGIZE 

2010 1,894 This order type is related 
to RN01. As RN01 
orders are reduced, RN10 
orders increased as a 
result of AMI remote 
read and energize 
(connect) capabilities.  
Note: Energize is a 
synonym for connect.  

2011 14,501 
2012 14,296 
2013 10,228 
Total 40,919 

Data for 2013 represents January through July 

Table 12. AMI Order Type Evaluation 
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2.6 AMI Conclusions 
AEP Ohio was able to eliminate 100 percent of the meter reading routes (187 routes) in the area 
where AMI was deployed. AMI also enabled AEP Ohio to reduce costs associated with meter 
operations activities. For example, through the use of remote service switch capabilities that 
enable secure connection and disconnection of electric service to consumer premises from the 
utility back office, AEP Ohio was able to reduce field visits associated with standard move 
in/move out orders.  
 
AEP Ohio was able to leverage this technology to reduce truck rolls required to perform 
disconnections for DNP and subsequent reconnections.  
 
The AMI deployment nearly eliminated the need for AEP Ohio to estimate monthly consumer 
electricity usage, resulting in a higher read rate in the Project area. The reduction of estimated 
bills led to greater billing accuracy and improved consumer satisfaction. When a consumer 
requested service termination, the AMI meter was read remotely and a final bill was sent without 
delays caused by manual reads. AMI meters equipped with a remote service switch enabled 
power to be turned on or off remotely. As a result, consumers could have service turned on in 
minutes, rather than waiting days.  
 
From a reliability perspective, meters were queried to get an indication of whether a consumer 
had power. This indication was useful to troubleshoot consumer issues. In addition, there were 
some environmental benefits associated with reduced vehicle emissions as a result of reduced 
vehicle miles traveled. 
 
Overall, the Project showed that implementing AMI technology provided significant cost, 
reliability, and environmental benefits for the utility and its consumers. Consumers in the System 
area were satisfied with the AMI technology and installation process. Less than 0.01 percent of 
consumers in the Project area requested to opt out of the technology, or experienced RF 
interference. 
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2.6.1 AMI Meter Outage Processing System 
The AMI Meter Outage Processing System was evaluated during daylight hours into late 
September 2012. Dispatch engineers noticed that recloser and breaker operations created spikes 
in meter traffic due to simultaneous, rapid powering down and up of multiple meters. This 
increased the network delay and contributed to various communication problems. In the 
PowerOn system, this led to several false orders created that escaped the filters, which required 
modifications to the existing filters. 
 
In Distribution Automation (DA) the high volumes of meter messages (primarily power up) were 
sometimes conflicting with DA signals to operate equipment and report status back to the control 
center. These conflicts caused communication losses for the DA operation. This issue has not 
been resolved. For this reason, AMI Meter Outage Processing System was disabled. 
 

2.6.2 Meter Disconnects 
AEP Ohio is also working through a business process issue associated with consumer 
disconnects. When a consumer is disconnected, either for nonpayment or a consumer request for 
home repairs/maintenance, an OPS order is created for the meter disconnect. At that time a 
reconnect order is also created by the system, as the consumer will be reconnected the vast 
majority of the time. When two OPS orders are created for the same consumer, the OPS filter, a 
subset of the Meter Outage Process filters, does not properly filter the AMI meter from reporting 
an outage to TERS and consequently PowerOn. This condition requires correction before AMI 
Meter Outage Processing is fully implemented. 
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2.7 Lessons Learned 
This section describes lessons learned for AMI technology. Lessons learned are provided for 
Technology, Implementation, and Operations. 

2.7.1 Technology 
• Ensure network is designed and operational before meters are installed. Network 

optimization is essential as soon as all meter installations are completed.  

• Recognize the importance of having temperature sensors on the meters’ microprocessors. 
AEP developed a process to ensure that sensor data is monitored and actionable.  

• Improve meter tracking process, including scrap meters for auditing purposes. 

• Develop good test cases and ensure due diligence up front. Test cases apply to meters and 
systems, network software, and communication card (firmware). 

• Monitor access points, relays, and components for performance and downtime. 

• Perform a gap analysis on reporting tools and systems to identify what is needed for 
optimum performance. Develop or purchase new tools where in-house technology does not 
exist.  

• Identify the best way to obtain and manage large quantities of AMI data for analytics and 
reporting, which requires expertise, tools, and planning.  

• Use the beneficial AMI ping/poll functionality. AEP is working with multiple vendors to 
enhance this functionality. 

2.7.2 Implementation 
• Develop a strong project communication plan. It is a critical component to project success. 

All project team members, consumers, and stakeholders must be included. 

• Install network equipment including access points and relays prior to meter installation  

• Develop meter installation schedule considering meter blackout dates. 

• Provide detailed instructions to the installation contractors. Quality control and oversight 
are important. This is critical for equipment installation and commissioning. For example, 
there were meter socket issues, but they were corrected midway through the 
implementation by having the installation contractor provide additional photos of meter 
sockets before and after installation. This is now an industry standard. 

• Develop and improve stringent processes to gauge and mitigate interdependencies when 
new technologies are implemented.  

• Perform a cost benefit analysis to determine best implementation model. Vendor-managed 
and vendor-hosted technology implementation is the most cost effective strategy for AEP 
Ohio. 

• Collaborate with vendors to enhance products and implementation. 
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• Provide necessary training and tools for expanded roles and responsibilities. 

• Perform a root cause analysis as technological issues arise to gain understanding and make 
improvements. 

2.7.3 Operations 
• Consider changes in management needs when deploying the AMI Meter Outage Processing 

in dispatching centers. The following are some of the changes to consider: 

 Business processes within the Distribution Dispatch Center (DDC) need to be 
established for handling single meter AMI outages with no associated consumer calls 
before dispatching a service vehicle.  

 Unless benefit can be realized for using AMI Meter Outage Processing in major 
storms, processes must be in place to disable the functionality before the storm enters 
the service territory. 

• Clarify and document roles and responsibilities in the project plan. 

• Collaborate with vendor representatives. Emerging technology requires frequent 
management consultation to ensure the accuracy and depth of their product knowledge.  

• Know the consumer. Keep messages simple, concise, and benefit-driven. 

• Provide an education process for internal and contract resources to enable them to act as 
ambassadors of the technology that strengthens consumer acceptance. 

• Integrate AMI ping/poll functionality into major storm restoration efforts to reduce time 
and effort and maximize employee efficiency.  

• Implement a sleep timer for meter power up messages to reduce communication losses for 
distribution automation operations. These messages will transmit at a predetermined time 
(set at five minutes). The five-minute delay would allow the DA commands and status 
indications to pass without competing with meter messages for communication resources.   
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3 DEMONSTRATED TECHNOLOGY – CONSUMER PROGRAMS 
3.1 Purpose  
The AEP Ohio gridSMART® Demonstration Project included the deployment of digital 
Advanced Metering Infrastructure (AMI) electric meters to the approximately 110,000 premises 
in the Project area to replace their existing analog electric meters. AMI meters feature 2-way 
communications between the consumer and the utility, the ability to measure and record usage in 
sub-hourly increments, and the ability to integrate supportive technologies such as programmable 
communicating thermostats, load control devices, and in-home displays into home area 
networks. 
 
The analog meters produce usage data only on a billing cycle basis with no accessible time of 
usage information, hence residential rates are primarily based on average cost of service. AEP 
Ohio’s standard tariff is a flat seasonal tariff with a declining block distribution rate in winter 
months and represents the average cost of electricity for generation and distribution. 
 
The actual cost of service is variable based primarily on the generation mix required to meet 
demand. Residential energy usage varies by season, day of week, and time of day, with AEP 
Ohio residential load normally reaching maximum values during late afternoon periods on the 
hottest summer days. The incremental cost of supplying this peak load is much greater than the 
cost of serving normal load as high variable cost generation needs to be kept available and run to 
serve these high load hours.  
 
With the deployment of AMI meters, tariffs were designed to more accurately reflect the 
underlying variability of the cost of service. Such variable price tariffs ranged from time-of-day 
rates, where the cost of electricity was lower during off-peak periods and higher during times of 
peak use, to real-time pricing programs, where rates most nearly aligned with actual wholesale 
market prices reflected in the locational marginal prices (LMP) of electricity. 
 
AEP Ohio’s deployment of AMI electric meters set the stage for a program to test several 
consumer programs that could impact utility generation and performance as well as consumer 
behavior. Using time-of-day tariffs and direct load control (DLC) riders, consumer programs 
were developed and implemented as an experimental part of the Project. 
 
The introduction of these new consumer programs provided participating consumers with the 
opportunity for cost savings because of the technology’s two-way communication functionality. 
Consumers were able to make choices based on the way electric rates varied throughout the 
course of a day. Depending on the program they were enrolled in, they had differing ways of 
interacting with the technology to make their choices. These consumer programs included time-
of-use prices, critical peak price events, DLC events, and real-time pricing. Several experimental 
time-of-day tariffs and DLC riders were tested in order to determine at what level these tariffs 
and riders, either directly or indirectly, might reduce a consumer’s electricity usage and reduce 
load for the utility. 
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Participants had the opportunity to more closely monitor their electric use and have greater 
control over their monthly electric costs by shifting usage from higher price periods to lower 
price periods or by reducing the demand on the electrical system during peak periods. From a 
utility perspective, a major goal of these consumer programs was to lower costs and peak 
demand during peak periods of high generation cost by altering the hourly loads for various 
residential consumer classes without negatively impacting customer satisfaction. 
 
Because the rate structures and technologies being introduced were new to most of AEP Ohio’s 
consumers, it was important that AEP Ohio provided consumer education and awareness 
programs to encourage participation in the programs. 
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3.2 Consumer Programs and Enabling Technologies 
Consumer programs required program creation that integrated the supporting technologies 
including AMI, in-home devices, and enabling networking and software. Several programs 
emerged from that development effort that were installed and activated for consumer enrollment 
and participation. Upon consumer subscription, AEP Ohio equipped residences in the Project 
area with auxiliary devices designed to provide usage, pricing, and event information, as well as 
the technical capabilities to respond to that information. These devices were essential to the 
implementation of consumer programs. 
 
Tariffs were approved for the various programs and branded for marketing purposes. The table 
below provides a brief comparison of the programs: 
 

Market Name Program Description 
eVIEW Consumer usage feedback device 
SMART Shift Two-tier time-of-day 
SMART Shift Plus Three-tier time-of-day with critical peak 

pricing events 
SMART Cooling Direct load control, thermostat only 
SMART Cooling Plus Direct load control with load control 

switch 
SMART Choice Real-time pricing with double auction 
Standard Residential Flat tariff with declining block rate, 

average cost 

Table 13. Consumer Programs Descriptions 

3.2.1 eViewSM 
The eView program consisted of providing consumers with an in-home 
device that interacted with the smart meter to provide the consumer 
with current electrical usage and pricing information, enabling them to 
make decisions about their energy consumption. The device 
communicated with the smart meter through wireless technology. 
Consumers could see the average price of electricity and how much 
they were using and were encouraged to experiment by turning various 
household appliances on and off to see the difference in usage and 
costs. The device held usage and average cost data in memory for 30 
days, which helped consumers who wanted to make comparisons and 
estimate upcoming bills.  
 
Later in the Project, eView devices were offered to consumers who signed up for the other 
consumer programs.  

3.2.2 SMART ShiftSM 
The SMART Shift program was a two-tiered pricing option for the consumer that did not require 
any additional equipment. Participants were provided with information to actively monitor and 
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choose whether they would shift their electric usage to an off-peak time by being charged a 
lower rate for electricity consumed before 1 p.m. and after 7 p.m. weekdays and on weekends 
during the summer months (June to September). Electricity usage between 1 p.m. and 7 p.m. was 
charged at the higher rate, which could influence consumer behavior and impact utility peak 
electricity consumption curve. The program was designed to enable consumers to lower their 
bills by shifting usage from the higher priced time periods to the lower priced time periods. 

3.2.3 SMART Shift PlusSM 
The SMART Shift Plus program was a three-tiered pricing 
option that offered the consumer incentives to modify their 
electric usage patterns during peak load times on weekdays of 
the summer months (June to September). An in-home display 
(IHD) and optional Programmable Communicating Thermostat 
(PCT) were installed in the consumer’s home to accommodate 
participation in the program. The PCT gathered and displayed 
information about how much electricity was being consumed 
and how much it cost. The IHD displayed the current electricity use and rate and notified 
consumers when a critical price period was occurring. Consumers were then able to choose how 
and when to conserve electricity, or shift usage from one period to another, that would result in 
savings on their bills. 
 
The tariff for this program permitted AEP Ohio to declare up to 15 critical peak pricing (CPP) 
events when AEP Ohio was experiencing unusually high demand. CPP events were not to 
exceed 5 hours per day during the calendar year. Energy consumed during these events was 
charged at a substantially higher rate, thus encouraging consumers to reduce their demand for 
power at times it cost AEP Ohio the most to produce. 
 
Pricing for non-CPP times had three tiers with only a few cents difference between those tiers. 
All pricing tiers are depicted in the table below. 
  

Rate Level Hours 
Low Midnight – 7 a.m. 

9 p.m. – midnight 
And Weekends 

Medium 7 a.m. – 1 p.m. 
7 p.m. – 9 p.m. 

High 1 p.m. – 7 p.m. 
CPP As called – up to 5 hours each 

event and up to 15 events per year 

Table 14. SMART Shift Plus Pricing Tiers 
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3.2.3.1 Smart Appliances 
As part of the SMART Shift Plus program, the deployment of 33 Smart Appliances was included 
in the experiment. The General Electric (GE) smart appliances that were installed in 20 homes 
were: 
• Washer 

• Dryer 

• Range 

• Refrigerator 

• Electric water heater 
 
The appliances were equipped with circuitry that communicated with the SMART Shift Plus 
power display device and allowed the consumer to see in real time how much electricity was 
being used. When the SMART Shift Plus device detected a higher price for power, the 
appliances responded accordingly. During a price increase or a defined critical peak period when 
usage costs were higher, the appliances were programmed to respond as follows. 
 
If… Then… 
The appliance was not running when a 
SMART Shift Plus unit signaled increased 
prices or a critical peak time began… 

The appliance didn’t run at all unless the 
consumer chose to override the programming 
using the appliance controls. 

The appliance was already running when a 
SMART Shift Plus unit signaled increased 
prices or a critical peak time began… 

The appliance went into energy-saver mode 
which curbed energy usage by slowing 
appliance power and lengthening the duration 
of the appliance cycles. If desired, the 
consumer was able to override this 
programming by using the appliance controls. 

 

3.2.4 SMART CoolingSM 
SMART Cooling was a direct load control (DLC) program, which enabled the utility to control 
electricity demand at the consumer’s premises by remotely adjusting the PCT that was installed 
upon enrollment in the program. At times of peak energy demand from May through September 
between the hours of noon and 8 p.m., AEP Ohio was permitted to declare up to 15 non-
emergency events. An additional 10 PJM Interconnection LLC (PJM) emergency events also 
could be declared during these months.  
 
During these events, AEP Ohio remotely adjusted participating consumer PCTs up to four 
degrees higher than the consumer’s programmed setting for a time period of up to five hours. 
Consumers could then elect to accept the increased setting and receive a bill credit, or they could 
override the setting and forfeit the credit.  
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3.2.5 SMART Cooling PlusSM 
This program was an add-on to the SMART Cooling program by installing a load control switch 
(LCS) in addition to the IHD and PCT devices. The LCS was installed on electric water heaters, 
pool pumps, or hot tubs as additional power demand that could be managed remotely. These 
consumers were offered an incentive to reduce demand by allowing the utility to interrupt the 
devices during DLC events. Consumers with water heaters and hot tubs could experience 15 
additional events during the months of October through April. Consumers had the ability to opt 
out during DLC events. 

3.2.6 SMART ChoiceSM (Real-Time Pricing with Double Auction) 
This program provided consumers the opportunity to participate in real-time pricing based on 
supply and demand for their particular power circuit. Pricing occurred every five minutes for 
each circuit included in the program. Consumers participated by using the home energy manager 
(HEM) and the enhanced programmable communicating thermostat (ePCT). For detailed 
information about this consumer program, see the Demonstrated Technology – Real-Time 
Pricing with Double Auction chapter of this document. 

3.3 Approach and Implementation 
Prior to development of the consumer programs, AEP Ohio determined that market research was 
required to understand which program features would appeal to consumers in the Project area. 
Consumer education requirements were also identified. Consumer demographic information was 
obtained and focus groups were conducted as the programs and technologies were developed. 
This approach provided a more effective rollout of the consumer programs, provided consumers 
with a better understanding of the various enabling technologies, and provided AEP-Ohio with 
information about which programs appealed to different types of consumers. 

3.3.1 Market Research and Consumer Segmentation 
One objective of the market research was to match consumer demographics with programs that 
would appeal to them and enable AEP Ohio to identify target markets for future programs and 
implement cost effective marketing strategies. The approach taken was to divide the Project area 
residential consumers into different marketing strata. Each stratum was created to be a 
proportional demographic representation of the Project area, containing all categories of 
residential consumers. A control group was also assigned as a baseline against which to measure 
the effectiveness of the various consumer programs. The control group consumers were not 
solicited for program participation so they received no marketing or educational materials. The 
resulting stratification model is illustrated in the following figure. 
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Figure 25. Consumer Segmentation 
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The residential consumers were divided into six different demographic groups for purposes of 
marketing and analysis.  Following are the groups and their definitions: 

Group Name / 
Number 

Description 

Optimizers 
(11 clusters) 

Comprised of affluent, middle-aged homeowners, mix of married/single, 
mostly without children. This group represents approximately 17.3 percent of 
AEP Ohio’s consumer base and 18.3 percent of budget billing consumers. 
Approximately 18.5 percent were high or extremely high users of electricity. 
This group was generally interested in energy efficiency programs, though 
none of the clusters were identified as being environmentally conscious. 

Budget Stretchers  
(9 clusters) 

This group consisted of low and middle income, mostly young renters, and 
single and without children. They represented approximately 12.7 percent of 
the consumer base and roughly 3.2 percent of budget billing consumers. This 
group was interested in energy efficiency programs with two of the nine 
clusters being identified as environmentally conscious.  

Big Bills (8 clusters) This group consisted of wealthy, middle-aged homeowners, married with some 
having children. Approximately 13.3 percent of the consumer base and around 
19.1 percent of budget billing consumers are in this group. High or extremely 
high users of electricity represented 31.2 percent of the group. Many were 
interested in reducing their bills, but were busy with families, careers, etc., 
which limited the time they were willing to commit to reduced usage efforts.  
One of the eight clusters was identified as being environmentally conscious. 

Remaining Budget 
Billed 
(16 clusters) 

This group consisted of households with a mix of incomes, late middle-aged 
and senior, both married and single, and with or without children. They 
represented 21 percent of the consumer base and 38 percent of budget billing 
consumers. High or extremely high users of electricity represented 11.8 
percent of the group. Since many were on fixed incomes, they were interested 
in ways to reduce their usage and save money. Two of the 16 clusters were 
identified as being environmentally conscious. 

Remaining with 
Children (9 clusters) 

This group consisted of mostly low to middle income families with children. 
They were both young and middle-aged and most owned their homes. They 
represented 17.5 percent of the consumer base and 10.7 percent of budget 
billing consumers. High to extremely high users of electricity represented 13.5 
percent of this group. These households were generally busy with family and 
were not concerned with energy efficiency. None of the clusters were 
identified as environmentally conscious. 

Remaining without 
Children (17 clusters) 

This group was very diverse in their incomes, ages and home ownership status. 
It also contained both married and single homes without children. They 
represented 18.2 percent of the consumer base and 10.7 percent of budget 
billing consumers.  Nine percent were high or extremely high users of 
electricity. These households were not generally concerned with energy 
efficiency. Two of the 17 clusters were identified as being environmentally 
conscious. 

Table 15. Demographic Groups Identified for Marketing Purposes
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3.3.2 Marketing Strategy 
Residential consumers received smart meters as part of the Project, which was the enabling 
technology for development of the consumer programs. One of the main objectives that AEP 
Ohio established as part of the experimental design was to actively attract, educate, enlist, and 
retain consumers in consumer programs that provide tools and information to reduce cost, 
consumption, and peak demand. The primary marketing objective was to educate the consumer 
on the technology, the benefits to the consumer, and assist them in saving energy costs and being 
environmentally responsible. A complete marketing communications plan was necessary to 
provide that education, create awareness, and drive consumer program participation. 
 
Using extensive market research and the resulting consumer segmentation, AEP Ohio was able 
to intelligently target specific demographics for each consumer program being implemented in 
the Project area. That market intelligence also helped ascertain the marketing channels and 
tactics that were used. For example, it was not feasible to use mass media – television, radio, and 
print – because those channels would advertise to people who were not part of the demonstration 
area or demographic. Thus, list management was used to direct specific marketing messages to 
the various consumer strata throughout the marketing effort. 
 
Several different marketing channels were employed so that all eligible consumers were aware of 
their options: 
• Web 

• Direct mail 

• Telemarketing 

• Email 

• Door-to-door 

• Community events 

• gridSMART Mobile 
 
AEP Ohio experimented with different types of outreach to discover the best method or 
combination of methods to communicate with its consumers based on both the nature of the 
Project as well as the competition for electric service in the Project area. AEP Ohio focused on 
direct mail and was motivated to test different marketing channels 

3.3.3 Consumer Outreach and Education 
A key component to obtaining consumer interest and enrollments was to educate consumers 
about the programs and the potential opportunities for those consumers. AEP Ohio adopted a 
multi-channel approach to consumer education. Initial mailings were sent to each consumer 
informing them about the upcoming Project. Follow-up mailings with mostly educational 
information about smart meters were sent periodically for several months thereafter to entice and 
build interest for the upcoming technologies. AEP Ohio used a multi-channel approach to 
consumer outreach and education that included the gridSMART Website, gridSMART mobile, 
and a school teaching program within the Project area. 
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3.3.3.1 gridSMART Website 
AEP Ohio expanded the Website content of www.aepohio.com to include information about 
gridSMART and consumer programs. The Website provided details about the Project as well as 
links to the different consumer programs available. The programs became open for online 
enrollment as they were rolled out to the Project area.  
 

 
Figure 26. AEP Ohio gridSMART Demonstration Project Website 
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3.3.3.2 gridSMART Mobile 
In addition to the Website and ongoing direct mail campaigns, AEP Ohio created the 
gridSMART Mobile unit as shown below. 
 

 
Figure 27. gridSMART Mobile 
This custom-built recreational vehicle (RV) contained six interactive exhibits designed to 
educate consumers about different aspects of the Project. Upon entering the vehicle, consumers 
were able to view a brief computer-driven, multi-media presentation. This presentation consisted 
of a video explaining the basics of the Project accompanied by a unique sound and light 
presentation that included a realistic display of thunder and lightning. 
 
Following the presentation, participants received an introduction to smart meters, which was the 
impetus for consumer programs. This display provided a side-by-side comparison of the smart 
meter and the traditional meter and explained the benefits of using smart meters. 
 
Other exhibits in the mobile unit included a unique seven-foot-long sliding computer monitor 
that allowed visitors to explore all components of AEP Ohio’s holistic smart grid approach, 
including a variety of new technologies meant to help identify power outages, restore service 
faster, and make the distribution network more efficient. Visitors also could test their knowledge 
by competing in an interactive gridSMART trivia game. 
 
When the Project’s focus turned to enrolling consumers in the programs, the mobile unit was 
modified to be more of an enrollment site with more space designated for consumers to sign up 
for the programs in person. 
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3.3.3.3 Other Education 
AEP Ohio worked with the Ohio Energy Project to develop and implement the gridSMART 
Education Program with 40 teachers and their students and families in 25 schools located 
throughout the Project area. Energy curriculum emphasized the new technologies and programs 
while correlating them to Ohio’s Science Content Standards. This partnership supported learning 
objectives to help students with standardized assessments, and it raised awareness about the 
gridSMART technologies for potential participants within the Project area. 

3.3.4 Enrollments 
AEP Ohio chose to pilot the consumer programs first with selected employees that resided within 
the demonstration area. This type of live testing helped work out some of the potential issues that 
might have otherwise impacted consumer satisfaction. Once that testing was complete, the 
rollout of the programs to consumers began. 
 
Upon completion of equipment testing and successful trials at AEP Ohio and in AEP employee 
homes in the Project area, programs were offered to consumers designated for program offerings 
under the stratification method described above in the Market Research and Consumer 
Segmentation subsection.  
 
AEP Ohio used several methods to communicate to its consumers regarding enrollment in 
Consumer Programs. In considering the cost of using various methods and programs, AEP Ohio 
considered the following factors:  
• Cost per enrollee 

• Number of expected enrollees 

• Return on investment  
 
While implementing the Project, the utility market in Ohio moved from a regulated utility market 
to a competitive retail market. As of March 1, 2012, there were 14 competitive retail electric 
service (CRES) providers actively serving consumers in AEP Ohio’s service territory, which 
meant they were potentially within the Project area as well. This shift to a competitive market 
had an impact on enrollments for consumer programs because consumers who enrolled with a 
CRES provider could no longer participate in the gridSMART Consumer Programs. 

3.3.4.1 Consumer Acceptance 
When consumers contacted AEP Ohio directly regarding potential program enrollment, each 
consumer was asked how they found out about the program and the primary motivation for 
pursuing program enrollment. Most consumers learned about the program from the program 
mailers, and most participated primarily to save money. The following illustrations provide the 
responses to those questions. 
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Figure 28. Consumer Enrollment Survey Results 

 
Figure 29. Consumer Awareness Survey Results 
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3.3.4.2 Customer Satisfaction 
AEP Ohio conducted consumer satisfaction surveys throughout the course of the Project to better 
understand the consumers who were participating in the various programs. The survey results 
shown below indicated that the majority of participants wanted to reduce their electricity usage 
and realize the benefits of that reduction with lower monthly electric bills. When surveyed at the 
conclusion of the programs, the survey results showed that most participants perceived an impact 
on their monthly electric bills. Overall, these results are an indication that people like having the 
tools to reduce usage and costs and are likely to accept and participate in future consumer 
programs offered in the electric utility industry. 

 
Figure 30. Survey Results - Importance of Limiting/Reducing Electricity Used at Home 
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Figure 31. Survey Results - Overall Satisfaction with gridSMART Consumer Programs 
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Figure 32. Survey Results - Perceived Impact on Monthly Electric Bills 

3.4 Analysis 
The primary objectives of the Consumer Programs technologies in this demonstration project 
were: 
• To demonstrate consumer use of demand response programs to reduce energy 

consumption, peak demand, and fossil fuel emissions. 

• To actively attract, educate, enlist, and retain consumers in innovative business models that 
provide tools and information to reduce cost, consumption, and peak demand. 

 
To understand whether the demonstration project achieved those objectives, analysis was 
conducted using a control group against the consumer segments defined at the beginning of the 
Project. It is important to understand exactly what was measured and why. The following metrics 
provide an analysis and some comparison of the consumer programs experiment. 
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3.5 Impact Metrics Required for Consumer Programs 
Consumer Programs and supporting devices had the potential to influence consumer usage 
patterns by enabling consumer control. Utilities could provide incentives for consumers to 
modify their usage and behavior to reduce peak loading and enable load shifting. Consumers in 
various account classes, demographic groups, and strata were expected to modify their behaviors 
and consumption patterns as a result of participating in any of the consumer programs offered. 
 
The following impact metrics are associated with the consumer programs technology set. Five 
are related to the Project area, and two are related to the Systems area.  

Metric 
ID 

Metric 
Scope 

Metric Description Consumer 
Programs 

M01 Project Hourly Consumer Electricity Usage M01-CP 
M02 Project Monthly Consumer Electricity Usage M02-CP 
M03 Project Peak Load and Mix M03-CP 
M07 Project CO2 Emissions M07-CP 
M08 Project Pollutant Emissions (SOX, NOX, PM2.5) M08-CP 
M09 System CO2 Emissions M09-CP 
M10 System Pollutant Emissions (SOX, NOX, PM2.5) M10-CP 

Table 16. Impact Metrics Addressing Consumer Programs Technology Performance 
Refer to the Metrics Analysis for Consumer Programs section that follows for details. 
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3.6 Metrics Analysis for Consumer Programs 
This section provides details for each Consumer Programs metric, and includes those requested 
by the DOE during the definitization of the Cooperative Agreement. Trends were not always 
observed, however data is presented for each metric. 
 
Please note that Project area and System area metrics related to emissions did not include the 
potential impact of shifting load over 24 hours.  

3.6.1 Hourly Consumer Electricity Usage (M01-CP) 
This impact metric illustrates the average consumer’s usage profile based on demographics and 
the premises’ location.  

3.6.1.1  Organization of Results 
All load profile data for this metric include information from 2012 and 2013. 
 
Various views of data were selected to quantify and visualize this impact metric. The key 
parameters of interest include time, account class, and the account’s applicable tariff. For 
residential accounts, applicable demographic data were used.  
 
The time varying aspect of consumer behavior is addressed by:  
• Aggregating data by three seasons- Summer, Winter and Autumn/Spring combined 

• Aggregating data for different day types into three groupings 

• Weekdays – Monday through Friday 

• Saturday 

• Sunday 

• Graphing usage data as a function of each hour of the 24-hour day 
 
The account class was set as the three traditional groupings of consumers: Industrial, 
Commercial and Residential. Residential consumers were categorized by account class, tariff, 
and demographic. 

3.6.1.2  Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• Usage patterns were relatively consistent across spring and fall seasons. 
• Usage patterns were relatively consistent across all weekdays. 
• The Standard Residential tariff was a reasonable proxy for the baseline consumption patterns 

of consumers on program tariffs. 

3.6.1.3 Calculation Approach 
This impact metric provides an analysis of average daily usage patterns for consumers grouped 
by combinations of day of week, season, demographic, and tariff. 
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The following queries and methods were used to generate results: 
The hourly consumer electricity usage was calculated by averaging hourly consumer electricity 
usage into 24 hourly bins. 
 

3.6.1.4   Data Collection Results 
Hourly Load Profiles by Account Class: Summer/Winter, Industrial and Commercial 
 

 
Figure 33. Summer Industrial Hourly Load Profile (Weekday) 
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Figure 34. Winter Industrial Hourly Load Profile (Weekday)      
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Figure 35. Summer Commercial Hourly Load Profile (Weekday) 
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Figure 36. Winter Commercial Hourly Load Profile (Weekday) 
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Weekday Hourly Residential Load Profiles by Tariff for Each Season 

 
Figure 37. Summer Hourly Load Profile by Tariff (Weekday 2012) 

 
Figure 38. Summer Hourly Load Profile by Tariff (Weekday 2013) 
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Figure 39. Winter Hourly Load Profile by Tariff (Weekday) 

 
Figure 40. Autumn/Spring Hourly Load Profile by Tariff (Weekday) 
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Figure 41. Summer Hourly Load Profiles (Saturday 2012) 
  

 
Figure 42. Summer Hourly Load Profiles (Sunday 2012) 
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Figure 43. Summer Hourly Load Profiles (Saturday 2013) 

 
Figure 44. Summer Hourly Load Profiles by Tariff (Sunday 2013) 
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Figure 45. Winter Hourly Load Profiles by Tariff (Saturday) 
 

 
Figure 46. Winter Hourly Load Profiles by Tariff (Sunday) 
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Figure 47. Autumn/Spring Hourly Load Profiles by Tariff (Saturday) 
 

 
Figure 48. Autumn/Spring Hourly Load Profiles by Tariff (Sunday) 
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3.6.2  Conclusions  

3.6.2.1 Load Shapes by Consumer Class and Season 
Industrial loads had a large differential in peak and off-peak usage patterns, with a fast rise in 
loads between 6 a.m. and 9 a.m. and a subsequent drop in load around 5 p.m. They also had 
higher winter usage and a slightly less pronounced peak, with an approximate 20 percent higher 
peak in the winter compared to the summer. Commercial loads in the Project area had an 
afternoon peak around 3 p.m., with a much broader peak in the winter. 
 
Residential loads had an evening peak, which changed from about 7 p.m. in the summer to 9 
p.m. in the winter; this change was driven primarily by the switch from air conditioning (which 
moved peak consumption to earlier in the day), to heating (which pushed peak consumption to 
the evening hours). The spring and autumn residential load shapes exhibited a similar (although 
lower) evening peaking pattern as the winter season. The additional impacts of less daylight and 
more heating load contributed to a winter peak that was over 20 percent higher than in the 
spring/autumn. The summer peak was over 40 percent higher than the autumn/spring peak due to 
the large residential air conditioning load. This increase was despite the fact that there was a 
reduction in lighting loads due to additional daylight availability in the summer in the Project 
area. 

3.6.2.2 Tariff Impacts  
The time-of-day (TOD) tariffs (SMART Shift and SMART Shift Plus) each defined the peak 
period to be from 1 p.m. to 7 p.m. from June 1 to September 1. Both the SMART Shift and 
SMART Shift Plus consumers had lower consumption than the standard residential tariff (flat 
rate) consumers during the peak time periods in 2012. In 2013 however, the SMART Shift and 
SMART Shift Plus consumers had lower consumption during the first hours of the peak period 
and higher consumption during the last 2 hours and higher overall peak.  After the peak period 
(approximately 7 p.m. to midnight) the time-of-day consumers’ consumption was greater than 
the flat rate consumers in 2012 and 2013.  
 
In the winter, the SMART Shift consumers had higher overall usage and a similar load shape 
compared to standard residential consumers. SMART Shift Plus consumers had a lower 
overnight and mid-day usage with sharper morning and evening peaks compared to standard 
residential consumers. During winter months, standard residential consumers were charged a 
declining block rate; SMART Shift and SMART Shift Plus consumers were charged a flat rate 
that was lower than the standard residential tariff. 
 
The autumn/spring load profiles appeared similar across all three tariffs, with the TOD 
consumers exhibiting higher morning and evening peaks. 
 
The TOD behavior may have been driven by PCTs, which allowed consumers to program 
different set points for specific time periods within a day. A typical PCT program had specific 
morning and evening time periods (representing the times consumers prepared for work/school 
and return home), which may have resulted in the higher consumption for the TOD/CPP 
consumers during the morning and evening time periods. 
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3.6.3 Monthly Consumer Electricity Usage (M02-CP) 
This impact metric measures the cost impact to electricity consumers as a result of various 
consumer programs. 

3.6.3.1  Organization of Results 
This metric presents average monthly bills for residential, commercial, and industrial consumer 
classes for the years 2011 through 2013. The residential graphs are distinguished by tariff and 
demographic and depict residential monthly average costs. The first residential graph shows the 
average monthly bill per consumer by tariff. The second graph shows the average monthly bill 
per consumer by demographic.  

3.6.3.2  Assumptions 
Please see the Calculation Approach for this metric. 

3.6.3.3  Calculation Approach 
This impact metric provides an analysis of average bill amount and average energy consumption 
for consumers grouped by demographic and marketing stratum. 
 
The following queries and methods were used to generate results: 
• Average monthly consumer electricity usage was calculated by averaging the billed usage 

for the ending month of the billing period for all residential consumers on the standard 
residential tariff. 

• Average monthly consumer electricity usage per tariff was calculated by averaging the 
billed usage for the ending month of the billing period for all residential consumers on the 
standard residential, SMART Shift, and SMART Shift Plus tariffs. 

• Average monthly consumer cost was calculated by averaging the billed amount for the 
ending month of the billing period for all residential consumers on the standard residential 
tariff. These data points were not normalized for rate changes occurring within the period. 

• Average monthly consumer cost per tariff was calculated by averaging the billed amount 
for the ending month of the billing period for all residential consumers on the standard 
residential, two-tier TOD, and three-tier TOD with SMART Shift Plus tariffs. 

• Hourly outdoor temperature in degrees Fahrenheit for Port Columbus International Airport 
was collected from the National Oceanic and Atmospheric Administration: 
http://hurricane.ncdc.noaa.gov/pls/plclimprod/poemain.accessrouter?datasetabbv=DS3505
&countryabbv=&georegionabbv= 
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3.6.3.4  Data Collection Results 
Residential Monthly Cost Data 
 

 
Figure 49. Average Residential Monthly Usage for Tariffs 
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Figure 50. Average Residential Monthly Bill Amount for Tariffs 
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Figure 51. Average Residential Monthly Bill Amount for Consumers With vs. Without 
eVIEW 
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Figure 52. Comparison of Residential, Commercial, and Industrial Monthly Bill Amounts 
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Enrollments in eVIEW commenced in February 2012 and increased in 2013 due to canvassing 
efforts. The monthly enrollment and removal counts are presented in the figure below. 
 

 
Figure 53. eVIEW In-Home Display Device Deployment by Month 
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Enrollments in SMART Shift commenced in February 2011 and increased in 2013 due to 
canvassing efforts. The monthly enrollment and removal counts are presented in the figure 
below.  

 
Figure 54. Consumer Enrollment by Month - SMART Shift 
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Enrollments in SMART Shift Plus commenced in November 2011 and increased in 2013 due to 
canvassing efforts. The monthly enrollment and removal counts are presented in the figure 
below. 

 
Figure 55. Consumer Enrollment by Month - SMART Shift Plus 
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Enrollments in SMART Cooling commenced in April 2011 and increased in 2013 due to 
canvassing efforts. The monthly enrollment and removal counts are presented in the figure 
below.  

 
Figure 56. Consumer Enrollment by Month - SMART Cooling 
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Following a successful canvassing effort in 2013, enrollment efforts stopped after June 1, 2013 
when the summer season began and data collection needed to be stabilized. The monthly 
enrollment and removal counts are presented in the figure below. 

 
Figure 57. Consumer Enrollment by Month - SMART Choice 
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3.6.4 Peak Load and Mix (M03-CP) 
This impact metric examines the impact of the various consumer programs on the daily usage 
peaks. This impact metric compares the impacts across account classes, such as residential, 
commercial, and industrial. Various consumer strata and demographic data were used to 
determine which programs had the most impact on peak load and mix. 

3.6.4.1  Organization of Results 
This impact metric assesses the ability of programs, tariffs, and technologies to influence 
consumers to shift their load away from traditionally typical peak periods.   
 
The key parameters of interest included time, account class, the account’s applicable tariff, and 
for residential accounts, applicable demographic data. 
• The time variant aspect of the data was handled by graphing data as a function of each hour 

of the day.  

• Account class was set as the three traditional groupings of consumers – industrial, 
commercial and residential. 

• Residential consumers were categorized by account class, tariff, and demographic.   

• Three key demographic groups were identified with the remainder of the consumers placed 
in one of three groups  

• Consumers on a fixed billing program 

• Consumers with and without children in the household 

• Consumers without children in the household  

• Commercial and Industrial Monthly Average 

3.6.4.2  Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• For consumers on a program tariff, the most significant peak reductions occur on DLC and 

CPP event days. 

• The Regular Residential tariff is a reasonable proxy for the baseline consumption patterns 
of consumers on program tariffs. 
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3.6.4.3 Calculation Approach 
This impact metric provides an analysis of average daily usage patterns during selected peak 
days for consumers grouped by tariff. 
 
The following queries and methods were used to generate analysis and graphs: 
• Peak load and mix was calculated by averaging hourly consumer electricity usage into 24 

hourly bins. 

• Hourly outdoor temperature in degrees Fahrenheit for Port Columbus International Airport 
was collected from the National Oceanic and Atmospheric Administration here: 
http://hurricane.ncdc.noaa.gov/pls/plclimprod/poemain.accessrouter?datasetabbv=DS3505
&countryabbv=&georegionabbv=  

• Direct Load Control events per meter were selected based on the type of Direct Load 
Control device installed on a consumer’s premises. 

3.6.4.4  Data Collection Results 
Usage Data by Account Class and Hour of the Day for the Peak Week 
 

 
Figure 58. Overlay of Peak Load Days - Residential 2012 
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Figure 59. Overlay of Peak Load Days - Residential 2013 
 

 
Figure 60. Overlay of Peak Load Days - Commercial 2012 
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Figure 61. Overlay of Peak Load Days - Commercial 2013 
 

 
Figure 62. Overlay of Peak Load Days - Industrial 2012 
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Figure 63. Overlay of Peak Load Days - Industrial 2013 
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Load Profile Data by Account Class for the Peak Day 
 

 
Figure 64. Residential Load Profile for System Peak Day - June 29, 2012 
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Figure 65. Residential Load Profile for System Peak Day - July 17, 2013 
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Figure 66. SMART Cooling DLC Event - June 21, 2012 
 

6/21/2012 DLC Event Summary 
Average Event Load Reduction 1.338 kW / consumer 
   
Peak Load Rebound -0.605 kW / consumer 
   
Event Energy 2.676 kWh / consumer 
Rebound Energy -2.422 kWh / consumer 
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Figure 67. SMART Cooling DLC Event - June 28, 2012 
 

6/28/2012 DLC Event Summary 
Average Event Load Reduction 1.173 kW / consumer 
 

  Peak Load Rebound -0.696 kW / consumer 
 

  Event Energy 2.345 kWh / consumer 
Rebound Energy -3.283 kWh / consumer 
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Figure 68. SMART Cooling DLC Event - July 17, 2012 
 

7/17/2012 DLC Event Summary 
Average Event1 Load Reduction 0.814 kW / consumer 
Average Event2 Load Reduction 0.956 kW / consumer 
 

  Peak Load Rebound -0.748 kW / consumer 
 

  Event1 Energy 1.628 kWh / consumer 
Event2 Energy 1.912 kWh / consumer 
Rebound Energy -2.916 kWh / consumer 
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Figure 69. SMART Shift Plus CPP Event - July 17, 2013 
 

7/17/2013 CPP Event Summary 
Average Event Load Reduction 0.338 kW / consumer 
 

  Peak Load Rebound -0.484 kW / consumer 
 

  Event Energy 1.352 kWh / consumer 
Rebound Energy -1.919 kWh / consumer 

 

3.6.4.5  Summary 
The load and temperature curves for residential, commercial, and industrial consumers for the 
selected CPP and DLC event days demonstrate a fairly consistent response to the events. For 
both programs, the length of the events had a significant impact on the average reduction in KW 
over the event. For two hour events, consumers provided around 1.2-1.3 KW of average 
reduction across the duration of the event, while for four hour events, this number was reduced to 
~0.6 to 0.8 KW. The variations can be attributed to temperature and other weather factors as well 
as variations in consumer behavior and the initial temperatures of the residences at the start of 
each event due to HVAC cycling randomness.  
 
The post-event rebound behavior was also fairly consistent across both programs in terms of 
KW, and overall there was little or no net KWh savings. Some of this behavior can be attributed 
to the loss of diversity in the HVAC cycling across the population of participants, which was 
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evidenced by the lower overall consumption for these consumers during the early morning hours 
following an event. Once the events ended, the majority of the HVAC turned at nearly the same 
time, their natural hysteresis resulted in the overall average indoor temperature across the 
population being lower than normal once the post-event cycling had occurred. Thus, there was 
overall fewer overnight cycles occurring for the population. 
 
The consistency of the behavior across the DLC and CPP consumers was attributed to the 
method of response for both. In both cases, the HVAC thermostat set point was set back in 
response to the event. The default CPP adjustment was equal to the typical DLC setback, and the 
consistency of the CPP response indicated that consumers were not reprogramming the setback 
settings but left them on the default setting. 
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3.6.5 Project CO2 Emissions (M07-CP) 
This impact metric examines the impact to CO2 emissions resulting from changes in consumer 
usage behaviors in the Project area. In principle, the reduction of energy use or shifting of energy 
use to different times of day had an impact on the CO2 emitted by the generation fleet. This 
impact metric compares the impacts against account classes, such as residential, commercial, and 
industrial. Various consumer strata and demographic data were used to determine which 
programs had the most impact to CO2 emissions. 

3.6.5.1  Organization of Results 
This metric presents the impact of Consumer Programs on CO2 emissions by quantifying the 
difference in energy consumption from new tariffs and technologies versus traditional residential 
flat-rate electric tariffs.  
 
CO2 Emissions Avoided by Month 
This metric is displayed as a graph that shows the CO2 emissions avoided by the consumers on 
the experimental for SMART Shift, SMART Shift Plus, and SMART Choice. 

3.6.5.2  Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• Differences in CO2 emissions per kWh due to shifting load from peak to off peak times are 

insignificant compared to the total CO2 avoided through kWh reductions. 

• CO2: 0.00068956 tons/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West 
Region 

3.6.5.3 Calculation Approach 
Load reduction was calculated as the difference between usage for consumers on an 
experimental tariff versus usage of similar consumers on the standard residential tariff. These 
results are reported for consumers grouped by demographic and by stratum.   
 
Load reduction was translated into CO2 reduction using typical generation emissions factors. 
 
The following queries and methods were used to generate the analysis: 
• Energy consumption reductions per month 

• Consumer class 

• Consumer stratum 

• Consumer demographic 

• Tariff 
 
The calculation was done by subtracting the average billed hourly usage for residential 
consumers not on the standard residential tariff from average billed hourly usage for residential 
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consumers on the standard residential tariff for the same month, consumer class, consumer 
stratum, and consumer demographic. 
 
Tons of CO2 avoided per month, consumer stratum, consumer demographic, and tariff for 
consumer programs were calculated by multiplying the amount of CO2 emissions avoided by the 
ratio of all consumers on a circuit to residential consumers not on the standard residential tariff. 

3.6.5.4  Data Collection Results 

 
Figure 70. Monthly CO2 Emissions Avoided or Contributed by Three Tariffs 
 

3.6.5.5  Summary 
Since the TOD and TOD/CPP consumers used less overall energy than the consumers on the 
standard residential tariff they contributed to lower CO2 emissions. Based on this simple 
comparison, consumer programs resulted in nearly 196 metric tons of CO2 reductions during the 
Project time period. Establishing pre-tariff baselines for the TOD/CPP and TOD consumers 
allowed for a more accurate accounting of these reductions.  
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From the data available, it appears that the TOD tariff encouraged conservation in the summer 
months yet may have led to slightly increased energy consumption (and thereby CO2 emission) 
in the winter when the rates are lower than the standard tariff. Both TOD and CPP tariffs showed 
small values of CO2 reduction when they were first introduced and larger values of reduction 
after they had been in place for several months. This was most likely due to a combination of an 
increase in the number of consumers participating in each tariff along with changes in behavior 
as consumers gained a better understanding of how to adjust their usage patterns for maximum 
savings. 
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3.6.6 Project Pollutant Emissions (M08-CP) 
This impact metric examines the potential impact on pollutant emissions resulting from changes 
in consumer usage behaviors. In principle, the reduction of energy use or shifting of energy use 
to different times of day had an impact on the pollutants emitted by the generation fleet. This 
impact metric compares the impacts against account classes, such as residential, commercial, and 
industrial in the Project area. Various consumer strata and demographic data were used to 
determine which programs had the most impact to pollutant emissions. 

3.6.6.1  Organization of Results 
This metric presents the impact of consumer programs on pollutant emissions by quantifying the 
difference in energy consumption from new tariffs and technologies against traditional flat-rate 
electric tariffs.  

Pollutant emissions avoided by month 
This metric is displayed as a graph that shows the pollutant emissions avoided by the consumers 
in the Project area on the experimental tariffs SMART Shift, SMART Shift Plus, and SMART 
Choice. 

3.6.6.2  Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
 
• Differences in pollutant emissions per kWh due to shifting load from peak to off peak times 

are insignificant compared to the total pollutant emissions avoided through kWh 
reductions. 

• SOx: 0.00263084 kg/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 

• NOx: 0.00117934 kg/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 

• PM2.5: 0.001 kg/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 

3.6.6.3  Calculation Approach 
Load reduction due to consumer programs was calculated as the difference between usage for 
consumers on an experimental tariff versus usage of similar consumers on the standard 
residential tariff. These results are reported by tariff by month.   
 
Load reduction was then translated into pollutant reduction using typical generation emissions 
factors. 
 
The following queries and methods were used to generate the metric analysis: 
• Energy consumption reductions per month, consumer class, consumer stratum, consumer 

demographic, and tariff based on consumer programs were calculated by subtracting the 
average billed hourly usage for residential consumers not on the standard residential tariff 
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from average billed hourly usage for residential consumers on the standard residential tariff 
for the same month, consumer class, consumer stratum, and consumer demographic. 

• Kilograms of NOX avoided per month, consumer stratum, consumer demographic, and 
tariff for consumer programs were calculated by multiplying the energy consumption 
reductions by 0.00117934 (kilograms per kWh). 

• Kilograms of PM2.5 avoided per month, consumer stratum, consumer demographic, and 
tariff for consumer programs were calculated by multiplying the energy consumption 
reductions by 0.001 (kilograms per kWh). 

• Kilograms of SOX avoided per month, consumer stratum, consumer demographic, and tariff 
for consumer programs were calculated by multiplying the energy consumption reductions 
by 0.00263084 (kilograms per kWh). 

3.6.6.4  Data Collection Results 

 
Figure 71. Monthly Pollutant Emissions Avoided or Contributed by Three Tariffs 
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3.6.6.5 Summary 
NOX and SOX emissions reductions behaved the same as the CO2 emissions reductions. Both the 
TOD and TOD/CPP consumers consumed less overall energy. Based on a comparison of these 
consumers’ consumption to that of standard residential consumers, consumer programs resulted 
in approximately 749 kg of SOX, 335 kg of NOX, and 284 kg of PM2.5 reductions during the 
Project time period. The attribution of these reductions to the particular tariff was verified by 
baseline analysis for both consumer populations. 
 

From the data available, the TOD tariff encouraged conservation in the summer months yet may 
have led to slightly increased energy consumption (and thereby pollutant emission) in the winter, 
when the rates were lower than the standard tariff. Both TOD and CPP tariffs showed small 
values of pollutant reduction when they were first introduced and larger values of reduction after 
they had been in place for several months. This reduction was most likely due to a combination 
of an increase in the number of consumers participating in each tariff along with changes in 
behavior as consumers gained a better understanding of how to adjust their usage patterns for 
maximum savings. 
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3.6.7 System CO2 Emissions - System area (M09-CP) 
This impact metric examines the potential impact to CO2 emissions resulting from consumer 
usage behaviors in the System area. In principle, the reduction of energy use or shifting of energy 
use to different times of day should have an impact on the CO2 emitted by the generation fleet. 
This impact metric compares the impacts against account classes, such as residential, 
commercial, and industrial. Various consumer strata and demographic data were used to 
determine which programs have the most impact to CO2 emissions. 

3.6.7.1  Organization of Results 
This metric presents the impact of consumer programs on CO2 emissions by quantifying the 
difference in energy consumption from new tariffs and technologies versus traditional flat-rate 
electric tariffs.  

CO2 Emissions Avoided by Month 
This metric is displayed as a graph that shows the CO2 emissions avoided by the consumers 
projected into the System area as if they were on the experimental tariffs  SMART Shift, 
SMART Shift Plus, and SMART Choice. 

3.6.7.2  Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• Consumer behavior changes due to program tariffs would be similar for consumers outside 

the Project area. 

• CO2: 0.00068956 tons/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West 
Region 

3.6.7.3 Calculation Approach 
The following queries and methods were used to generate results: 
Load reduction was calculated as the difference between usage for consumers on an 
experimental tariff versus usage of similar consumers on the standard residential tariff. These 
results are reported for consumers grouped by demographic and by stratum.   
 
Load reduction was translated into CO2 reduction using typical generation emissions factors. 
This reduction was then extrapolated onto the System area based on the ratio of total circuit load 
between the Project and System areas. 
 
Tons of CO2 avoided per month, consumer stratum, consumer demographic, and tariff for 
Consumer Programs were calculated by multiplying the energy consumption reductions by 
0.00068956 (tons per kWh). 
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3.6.7.4  Data Collection Results 

 
Figure 72. Monthly Projected Potential CO2 Emissions Avoided or Contributed by Three 
Tariffs 

3.6.7.5 Summary 
The System area CO2 reductions were an extrapolation of the Project area CO2 reductions. This 
resulted in 2,212 metric tons of CO2 avoided in the System area over this two year period. This 
extrapolation assumed that the current percentages of consumers on each tariff for the Project 
remained constant as they were extended to the entire System area. Additional reductions could 
be achieved by extending the tariffs to higher percentages of consumers although the result may 
not be linear.  
 
From the data available, it appeared that the TOD tariff encouraged conservation in the summer 
months, yet may have led to slightly increased energy consumption (and thereby CO2 emission) 
in the winter when the rates were lower than the standard tariff. Both TOD and CPP tariffs 
showed small values of CO2 reduction when they were first introduced and larger values of 
reduction after they had been in place for several months. This was most likely due to a 
combination of an increase in the number of consumers participating in each tariff along with 
changes in behavior as consumers gained a better understanding of how to adjust their usage 
patterns for maximum savings. 
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3.6.8 System Pollutant Emissions (M10-CP) 
This impact metric examines the potential impact on pollutant emissions if consumer programs 
were extended to the System area. In principle, the reduction of energy use or shifting of energy 
use to different times of day may have an impact on the pollutants emitted by the generation 
fleet. This impact metric compares the impacts against account classes, such as residential, 
commercial, and industrial in the system area. Various consumer strata and demographic data 
were used to determine which programs have the most impact to pollutant emissions. 

3.6.8.1 Organization of Results 
This metric presents the impact of consumer programs on pollutant emissions by quantifying the 
difference in energy consumption from new tariffs and technologies versus traditional flat-rate 
electric tariffs.  

Pollutant emissions avoided by month 
This metric is displayed as a graph that shows the pollutant emissions avoided by the consumers 
projected into the system area as if they were on the experimental tariffs SMART Shift, SMART 
Shift Plus, and  SMART Choice. 

3.6.8.2  Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• Consumer behavior changes due to program tariffs would be similar for consumers outside 

the Project area. 

• SOX: 0.00263084 kg/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 

• NOX: 0.00117934 kg/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 

• PM2.5: 0.001 kg/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 

3.6.8.3  Calculation Approach 
The following queries and methods were used to generate results: 
Load reduction due to consumer programs was calculated as the difference between usage for 
consumers on an experimental tariff versus usage of similar consumers on the standard 
residential tariff. 
 
Load reduction was translated into pollutant reduction using typical generation emissions factors, 
and was extrapolated to the System area based on the ratio of total circuit load. 
 
The following queries and methods were used to generate the analysis and graphs: 
• Kilograms of NOX per month, circuit, and consumer demographic that would be avoided if 

Consumer Programs were deployed throughout the System area were calculated by 
multiplying the kilograms of NOX emissions avoided by the ratio of all consumers on a 
circuit to residential consumers not on the standard residential tariff. 
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• Kilograms of PM2.5 per month, circuit, and consumer demographic that would be avoided if 
consumer programs were deployed throughout the System area. These were calculated by 
multiplying the kilograms of PM2.5 emissions avoided by the ratio of all consumers on a 
circuit to residential consumers not on the standard residential tariff. 

• Kilograms of SOX per month, circuit, and consumer demographic that would be avoided if 
consumer programs were deployed throughout the System area. These were calculated by 
multiplying the kilograms of SOX emissions avoided by the ratio of all consumers on a 
circuit to residential consumers not on the standard residential tariff. 

3.6.8.4  Data Collection Results 

 
Figure 73. Monthly Projected Pollutant Emissions Avoided or Contributed by Three 
Experimental Tariffs 

3.6.8.5 Summary 
The system NOX and SOX reductions are an extrapolation of the Project area NOX and SOX 
reductions. This calculation resulted in approximately 8,442 kg of SOX, 3,787 kg of NOX, and 
3,207 kg of PM2.5 reductions in the System area during this two year period. This extrapolation 
assumed that the current percentages of consumers on each tariff for the Project remain constant 
as they are extended to the entire System area. Additional reductions can be achieved by 
extending the tariffs to higher percentages of consumers although the result may not be linear.  
 
SMART Shift resulted in conservation during the summer months with mixed results in the 
winter months when the rates were lower than the standard tariff. SMART Shift Plus resulted in 
greater conservation on a per customer basis and SMART Choice had minimal overall impact. 
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The increase in the year one to year two total avoidances were directly related to the significant 
increase in participation for all the tariffs in year two. 
 

3.6.9 Comparison of Average Energy and Demand Impacts 
Below is a comprehensive comparison of the results of the Consumer Programs impacts. 
 

Summer 2012 Premises  
Average Hourly Per 
Premises Energy 
(kWh) Impact  

Average Per 
Premises Demand 
(kW) Impact 

SMART Shift  877 -0.3 -0.3 

SMART Shift Plus  108 -0.1 -0.2 
SMART Cooling Events  898 -1.2 -1.5 
eVIEW  318 -0.1 -0.2 

 

Summer 2013 Premises  
Average Hourly Per 
Premises Energy 
(kWh) Impact  

Average Per 
Premises Demand 
(kW) Impact 

SMART Shift  1848 -0.1 -0.2 
SMART Shift Plus  619 -0.2 -0.3 
SMART Shift Plus/CPP 
Events 619 -0.6 -0.7 

SMART Cooling Events  1966 -1.1 -1.2 
SMART Choice 217 -0.1 -0.2 
eVIEW  1573  0.1 0.0 

 
• Premises counts are for analysis purposes only and include those premises that were active 

in the tariff/program from June 1 to September 30 of the analysis year and are not 
representative of the total enrollment in these programs 

• During high-cost hours for tariff-based consumer programs or event hours for event-based 
consumer programs 

• Excludes SMART Cooling Event Dates 

• Excludes SMART Shift impacts on those SMART Shift premises that also have SMART 
Cooling 

• SMART Shift/Standard Tariff Consumers 

• Excludes SMART Shift impacts on those SMART Shift premises that also have eVIEW 

• Excludes SMART Shift Plus CPP Event Dates 
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3.7 Consumer Programs Conclusions 
The Project provided useful information about consumer programs linked to AMI-driven 
technologies. It demonstrated that programs can be successfully implemented, but significant 
changes to back-office IT systems and business processes were required. The results indicated 
that consumers would participate in programs when given adequate information and enabling 
technologies. Dedicated customer service representatives were essential to handle significant call 
volume and address concerns as a high priority. Some consumers were motivated to modify their 
energy usage patterns when provided with appropriate tools and the potential for savings on their 
electric bills. However, overall energy usage impacts from these programs were minimal.  
 
The SMART Shift and SMART Shift Plus programs exhibited lower energy and demand impacts 
in 2013 than they did in 2012. A milder weather season in 2013, an increased number of 
participants in 2013, less program communication in 2013, or a combination of those factors may 
have contributed to the difference in 2013 results. 
 
Consumers participating in the SMART Cooling Program significantly reduced their demand 
during thermostat adjustment events. This reduction resulted in approximately twice the demand 
reductions achieved by those in SMART Shift Plus Program equivalent Critical Peak Pricing 
events. Thermostat adjustment provided the largest demand reduction for approximately the first 
hour. As temperatures in participants’ homes began reaching the new thermostat set-points, 
HVAC operations resumed. This indicated that proper timing of the events and thermostat 
adjustment to coincide with AEP Ohio’s peak load conditions was a critical component for 
program success. 
 
Overall, program participants were satisfied with their experience. Customer satisfaction ratings 
ranged 67 to 76 percent, depending on the program. Program participants perceived an average 
savings of $20 per month on their summer electricity costs. 
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3.8 Lessons Learned 

3.8.1 Technology 
• Perform thorough testing of all equipment and software in collaboration with vendor 

suppliers to ensure its readiness for implementation with consumers. 

• Engage internal resources to assist with field testing of new technology and equipment to 
get meaningful feedback that further evolves the programs. 

3.8.2 Implementation 
• Form close working relationships with vendors and partners from the beginning to ensure 

strong knowledge transfer, thus creating internal subject matter experts. 

• Allow sufficient time in the project plan to ensure the technology and processes are tested 
and ready for public implementation to save time and costs and preserve positive consumer 
perceptions. 

• Provide in-depth training for participating consumers to help them better understand how to 
use the equipment and what to expect prior to or at the time of installation. 

• When developing and implementing this kind of new technology, be sure to provide in-
depth communication and training to regulators, so they better understand the full extent 
and impact of the tariffs and riders being requested. This Project required regulatory 
approval for various tariffs associated with the consumer programs. AEP Ohio met with 
regulators throughout the program onset to review tariff designs, potential participant 
impacts and overall program goals. Modifications to most of the programs resulted from 
these reviews.  

• Carefully plan time-sensitive pieces of the proposed tariffs and riders to ensure coordinated 
timing with the actual rollout of technology and equipment to consumers. 

3.8.3 Operations 
• Consumer service groups and representatives must be fully trained and ready to support 

consumer inquiries immediately upon installation of new equipment and implementation of 
programs. An example of specialized training is ping/poll functionality. 

• A focus on tight communication between the various impacted areas is necessary to ensure 
readiness for upcoming called events and pricing. 

• The scope and depth of this new technology requires cooperation and communication 
across impacted functional teams. 
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4 DEMONSTRATED TECHNOLOGY – REAL-TIME PRICING WITH 
DOUBLE AUCTION 

4.1 Purpose 
The Real-Time Pricing with double auction (RTPda) project was an experimental, collaborative 
research project between American Electric Power (AEP), AEP Ohio, Battelle, and Pacific 
Northwest National Laboratory (PNNL). 
 
Branded as SMART ChoiceSM, the RTPda program offered participating consumers an 
opportunity to take advantage of variable electric prices over the course of a billing cycle. The 
RTPda consumer program gave the electricity consumer choices to effectively manage their own 
power usage in a more intelligent and informed manner. The program offered a complete 
demand response system that collected real-time market prices, so consumers could self-manage 
their power usage based on market price and comfort settings they controlled on their 
thermostats. 
 
Throughout the operations phase of the project, RTPda experiments were performed and analysis 
was conducted to assess the impacts and effectiveness of the research project based on the 
following objectives: 
 
• Identify energy and demand changes. 

• Determine benefits for both consumer and utility. 

• Determine ability to manage distribution circuit load during congestion events. 

• Determine technical and operational feasibility of a large scale deployment. 

• Document lessons learned, technical and operational gaps, and overall consumer 
experience and satisfaction. 

4.2 Technology 
The RTPda program was a complex combination of several internal and external systems and 
data sources, many of which were linked together for the first time. The interdependent data flow 
between devices and systems was critical for RTPda to function properly.  
 
RTPda participation was predicated on the consumer having an AMI meter. In addition, 
consumers were given two pieces of hardware – a Home Energy Manager (HEM) and an 
enhanced Programmable Communicating Thermostat (ePCT). The HEM was the central 
premises controller that contained the integral logic that allowed RTPda to function properly.  
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4.2.1 Home Energy Manager (HEM) 
The HEM was a customized piece of hardware that communicated 
with the following: 
• AMI meter at the consumer’s home 

• ePCT 

• Smart Grid Dispatch (SGD) system at AEP’s operations center 
 
The HEM monitored and controlled the ePCT within the home based 
on settings the consumer selected. 
 
To ensure security, the HEM used Secure Sockets Layer (SSL) 
encrypted communications to send information to and from the SGD application via a cellular 
network. To further enhance security, a unique security certificate for each HEM was created. 
This security certificate was verified against the list of valid certificates and against the list of 
certificates that had been revoked before any communication took place.  

4.2.2 Enhanced Programmable Communicating Thermostat (ePCT) 
The customized ePCT was controlled by the HEM, provided  real-
time control of the HVAC temperature setting, and acted as the 
interface between the HEM and the consumer. The ePCT display 
provided the consumer with the estimated price for electricity, in 
$/kWh, for the 5-minute interval.  
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4.2.3 Real Time Pricing Integration Layer 
The Real-Time Pricing Integration Layer (RTPi) was critical to all RTPda functions (see figure 
below). The RTPi was a complex platform used to route data between back office applications, 
including Meter Data Management (MDM), AEP Cost Engine (ACE), and SGD.  
 

 
Figure 74. RTPi 

4.2.4 Smart Grid Dispatch 
The Smart Grid Dispatch (SGD) subsystem functioned as the primary interface between the 
HEM and AEP’s back office systems via the RTPi. The SGD managed the auction process for 
the markets within the RTPda program.  
 
For the RTPda program, consumers who were served from one of four AEP Ohio distribution 
circuits within the Project area were eligible to participate. Each of the four distribution circuits 
was considered a separate market; the four individual markets ran simultaneously. The SGD 
managed the electricity market for each distribution circuit. 

4.2.4.1 Performance Monitoring and Control User Interface 
The Performance Monitoring and Control (PMC) application was the utility interface into the 
SGD. The PMC allowed the authorized utility operator to adjust system settings as well as view 
pertinent real-time data. The figure below illustrates the home page of the PMC and available 
features. 
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Figure 75. PMC Home Page 

PMC Functionality 
The Market Data function provided a view of historical cleared price data for each distribution 
circuit presented in graphical form. The operator could click on any point on the graph and view 
the supply and demand curves for a particular 5-minute interval.  

 
The HEM Status function allowed authorized operators to view the HEMs by status. Operators 
could also view HEM events for a particular date range. Examples of HEM events included loss 
of cellular communication and hardware events.  

 
The Consumer Information function allowed the operator to view various pieces of information 
and data related to an RTPda participant such as: 
• Device history information including Occupancy Mode (home, away, or night), Comfort 

Setting (slider setting from 0 percent to 100 percent), thermostat set-point, whether or not 
the thermostat was in override mode, and the observed temperature in the home. 

• Meter reading history information including meter register read, reading time stamp, and 
instantaneous demand reading in kW. 

• HEM events and status history 
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The following figures show two views of the Consumer Information screen. 

 
Figure 76. Consumer Information - Device History Screen 
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Figure 77. Consumer Information – Meter Reading History Screen 

The Consumer Messages and Standard Messages function allowed the utility to initiate messages 
to consumers, such as program welcome messages or notifications of upcoming congestion test 
events. Messages could be sent to the ePCTs of the entire RTPda consumer group or to a subset 
of consumers.  
 
The SGD Maintenance function provided access to the following features: 
• Circuit Parameters 

• Tariff Parameters 

• Global Parameters 
The circuit parameters included the rated circuit capacity, the circuit capacity percent, and retail 
cost multiplier (RCM). The circuit capacity percent was lowered during the RTPda experiments 
to artificially induce congestion on distribution circuits. If the product of rated circuit capacity 
and circuit percent capacity resulted in a value lower than current circuit load, the circuit would 
go into congestion.  

 
The RCM price ($44.25/MWH divided by the average PJM locational marginal price) was used 
to calculate the auction clearing price during non-congestion intervals (the locational marginal 
price multiplied by the RCM). The figure below shows an example of circuit parameters data. 
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Figure 78. Circuit Parameters Screen 

The Tariff Parameters function allowed the operator to define other riders and taxes that would 
apply to the consumer’s bill; these would be added to the cleared price to determine an estimated 
cost of electricity. Updated riders and taxes were provided each month during the program and 
input into the Rider Tax field in the Tariff Parameters screen. The total (cleared price + rider tax) 
displayed on the consumer’s thermostat every 5 minutes to give the consumer an estimate of the 
current cost of energy in $/kWh.  

Security 
Access to the PMC interface was restricted to authorized users. Windows-based authentication 
verified access to the application and Active Directory credentials established on the Domain 
Controller authenticated each user and determined the level of access. 
 
There were three major categories of access – SGD Admin, SGD Support and SGD Field Rep.  
The roles are defined below: 
• SGD Admin –a limited number of users were designated with this access level since an 

SGD Admin could change, add, and delete parameters within the PMC as well as 
decommission HEMs.   

• SGD Support –Information Technology (IT) personnel were designated with this access 
level. SGD Support users could view information and control firmware changes in the 
HEMs. 

• SGD Field Rep – provided read-only access to authorized employees who needed to view 
information in the PMC. 
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4.2.5 HEM Bids 
The ePCT was configured by the consumer during installation to address their preference for 
comfort and economy. For each programmed period of operation, the homeowner specified their 
desired temperature (TSet), their minimum and maximum temperature (TMin, TMax), and their 
preference for more comfort or more savings through the slider bar. Their slider selection was 
represented by the slope (k).   
 

The HEM received the 5-minute market price of electricity from the SGD. The HEM kept track 
of an average price of electricity (Pavg). The average was calculated over the previous 24-hour 
period and was updated each interval to adjust for trends in pricing. The HEM then generated a 
bid for the associated location. The bid was based on complex algorithms that included but was 
not limited to the current market price and factors from the ePCT.    
 

In the figure below, an elevated cleared price (Pclear) caused the ePCT to offset the set temperature 
in the house to TOffset Set from TSet. Because the observed temperature in the house, TObserved, was 
lower than the offset set temperature, the bid price (Pbid) from the HEM was lower than the 
cleared price. Because the bid price is less than the cleared price the HEM did not win the 
auction and the HVAC did not run during that interval.     

 
Figure 79. Bid Algorithm Calculation 

4.2.6 Auction Process 
The SGD aggregated the bids from all households on a given distribution circuit to develop the 
demand curve.  The SGD also developed a supply curve which was a function of the real-time, 
5-minute wholesale electricity price from PJM (the Regional Transmission Operator for this 
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region), the RTPda tariff, and other factors. A cleared price was established by the intersection of 
the two curves. This cleared price became the new prevailing retail real-time cost for electricity 
for the next 5-minute period. For illustrative purposes, the figure below shows the supply and 
demand curves which were generated by SGD using a complex set of algorithms.  
 

 
Figure 80. Illustrative Example of Supply Curve, Demand Curve and Cleared Price 
The red curve represents the aggregated demand for power during the next increment of time (for 
example, 5 minutes) and the blue curve represents the supply side of power generation 
 
Energy costs to the consumer increased under certain conditions: 
• When demand on a circuit was high, causing it to exceed the circuit congestion limit. 

• When the local market price of energy was high. 
 
SGD managed 288 auctions each day for each circuit in the Project area; one for each 5-minute 
period during a 24-hour day. 
 
Double-auction was a process where bids to buy power (from the HEM) and bids to sell power 
(from utility) were submitted independently.  
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4.2.7 AEP Cost Engine 
The AEP Cost Engine (ACE) determined the energy cost portion of the consumer’s electric bill. 
ACE used the following types of data to determine the energy cost, including but not limited to: 
• Consumer circuit ID 

• The 5-minute interval usage 

• The associated 5-minute cleared price 

• Consumer’s bid 

• Congestion status 
 
ACE aggregated the cost of energy for each of the 5-minute periods of the billing cycle. ACE 
then computed any credits the consumer may have earned. There were two possible credits 
available to the consumer: 
• RTP incentive – available when the consumer voluntarily reduced their usage during a 

congestion event. 

• RTP rebate – to ensure the consumer paid no more per KWh than other non RTPda 
consumers on the same circuit. This provision ensured revenue neutrality. 

 
This data was sent to the AEP billing engine for inclusion on the consumer’s monthly electric 
bill.  
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4.3 Approach and Implementation  

4.3.1 Development and Testing 
The SGD and the PMC were developed by Battelle, and the interfaces into the back office 
systems were developed by AEP.  
 
Due to the complex nature of this experimental program, AEP Ohio elected to perform extensive 
testing of the RTPda technology before introducing it to the general population of consumers. A 
fully functioning internal production evaluation environment was installed and AEP employees 
were invited to participate. This phase of evaluation was called the Virtual Operations Test 
(VOT), which allowed AEP to exercise the software with real consumers to ensure the 
technology operated as expected. After the successful VOT, the RTPda program was rolled out to 
AEP Ohio consumers in the RTPda Project area.  

4.3.2 Consumer Outreach – Education, Marketing and Enrollment 
RTPda, marketed as SMART ChoiceSM, was included in the overall outreach plan for consumer 
programs. See the Consumer Programs chapter for additional information. 

4.3.3 Customer Service 
Customer service was a high priority for AEP Ohio. In addition to AEP Ohio’s normal customer 
service, the following steps were taken to ensure RTPda consumers were satisfied with the 
experimental program.  
• Due to the complex nature of the RTPda program, all enrollments and equipment 

installations were closely monitored. 

• The primary contact for the RTPda consumers was an outside organization (call center) that 
was specifically trained on the RTPda operation. A dedicated toll free number was provided 
to all RTPda consumers. 

• AEP Ohio internal resources were available 24 x7 to answer any questions the call center 
could not resolve or inquiries from consumers who contacted AEP Ohio directly. 

• A service representative was dispatched immediately to resolve any issues with the 
installed equipment, up to and including replacement of a device. 
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4.3.4 Consumer Survey Results 
Consumers participating in the RTPda offering were surveyed at selected points in time in order 
to quantify their overall satisfaction with the program. AEP contracted with an independent third 
party research firm for most of the consumer research reported here.  
 
The final survey was administered to eligible RTPda participants (HEM and ePCT installed and 
functional for a minimum of 30 days) as of 12/02/2013. Of the 256 eligible RTPda consumers 
there were 154 completed surveys. The focus of this survey was to gauge participant final 
perceptions of the program. 
 
Overall satisfaction with the RTPda program was at 76.4 percent (total “satisfied” and “very 
satisfied” responses), the highest level measured over the three RTPda participant surveys. This 
represents a slight gain from the 69.8 percent recorded in the SMART Choice Survey #2 and a 
return to the early satisfaction level of 73.8 percent noted in SMART Choice Survey #1. 
 

 
Figure 81. Overall Satisfaction with SMART Choice (RTPda) 
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Figure 82. Overall Satisfaction with SMART Choice (RTPda) Over Time 
When participants were asked about the perceived impact of the RTPda program on their monthly 
electric bills, about half (51.4 percent) indicated it either ‘decreased slightly’ (37.2 percent) or 
‘decreased’ (14.2 percent). The average reduction in the monthly bills attributed to the RTPda 
program for these individuals was $22.15. Some respondents (9.5 percent) indicated that the 
program resulted in their monthly electric bills either “increased slightly” (6.1 percent) or 
“increased” (3.4 percent) with the average monthly increase at $22.23. 
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Figure 83. Perceived Impact on Monthly Electric Bill 

4.4 Data Collection Results 
This section is broken out into three levels to detail the impacts and performance and their 
propagation in the RTPda project.  
• The most basic level is the HEM at consumer premises. This is the primary building block 

of the entire RTPda system. This level contains the consumer response to market 
fluctuations and circuit congestion.   

• The next higher level is the aggregation of all HEMs on a circuit. At a circuit level the 
utility starts to see how the aggregated HEMs impact the distribution network. The utility 
can see the impact during peak load hours, congestion events and high price periods.   

• The highest level is the circuits aggregated to a program level. At this level the utility can 
see the impacts across multiple circuits and can determine the overall average impact.  This 
allows the utility to perform comparative analysis against the other consumer programs. 
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4.4.1 Experiments 

4.4.1.1  Non-Experiment 
During normal operation of the RTPda project, the HEM monitored the cost of power to the 
consumer at 5-minute intervals. At each interval the HEM adjusted the set temperature of the 
ePCT and the bid price based on the cleared price and the observed temperature in the house. If 
the price fluctuated significantly during an interval, the HEM offset the set temperature in the 
ePCT to reduce the power consumed during the higher price interval.   

4.4.1.2 Experiments 
For the RTPda project, experiments were initiated to test the functionality of the system as well as 
to test consumer response to pricing events. During an experiment, artificial congestion was 
placed on the circuits using the PMC application. The simulation was accomplished by lowering 
the rated circuit capacity of each distribution circuit to a point that was lower than the current 
circuit load. This artificially induced congestion caused the pricing portion of the double auction 
algorithm to reach the price cap of $1,000/MWh, which was a user-defined default setting in the 
PMC. The pricing spike caused the HEMs to offset the set temperature in the ePCT based on 
consumer-defined slider settings. To fully test system functionality, these experiments were 
performed over a broad span of days and times. In total, 96 experiments were run, providing a 
total of 293 hours of testing.  
 
The table below presents a density chart of the experiments performed during the RTPda program 
over various timeframes. As an example, of the 293 hours of testing performed, 12.35 percent of 
the total hours were performed on a Sunday with 4.53 percent of the total hours done on a 
Sunday between 3 p.m. and 5:55 p.m. 
 

 

12am - 
5:55am 

6am - 
8:55am 

9am - 
11:55am 

12pm - 
2:55pm 

3pm - 
5:55pm 

6pm - 
11:55pm Total 

Sunday 0.00% 1.23% 1.23% 4.12% 4.53% 1.23% 12.35% 
Monday 0.00% 0.00% 0.82% 1.99% 8.68% 3.74% 15.23% 
Tuesday 0.00% 0.82% 0.38% 3.29% 11.90% 2.47% 18.87% 
Wednesday 0.41% 2.88% 1.17% 3.53% 5.63% 0.69% 14.31% 
Thursday 0.00% 0.82% 1.54% 2.13% 10.67% 3.70% 18.87% 
Friday 0.00% 0.82% 0.34% 2.74% 1.65% 4.94% 10.50% 
Saturday 0.00% 0.41% 3.70% 3.70% 1.23% 0.82% 9.88% 
Total 0.41% 7.00% 9.19% 21.51% 44.29% 17.60%   

    Table 17. RTPda Experiments Density Chart 

141 
 



Real Time Pricing With Double Auction 
 

The figure below is an expanded graphical representation of the table above. The majority of 
events (approximately half of the total experiment hours) were conducted between 3 p.m. and 
5:55 p.m. This time frame was typically when AEP Ohio experienced a peak load hours event. 
 

 
Figure 84. Hourly Distribution of RTPda Experiments 
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The figure below illustrates the hourly distribution of RTPda experiments; some congestion 
events were induced to coincide with Critical Peak Price (CPP) events. 
 

 
 
Figure 85. RTPda Experiment Distribution by Day and Time 

4.4.2 Consumer Level - HEMs 

4.4.2.1 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• The described behavior of a HEM was applicable during the summer season. 

• During the summer season, there was no restriction on time of the experiments or the 
duration. 

• The described behavior of a HEM applied to HEMs that had been commissioned and were 
fully operational. 

• The described behavior of a HEM applied to HEMs that were not placed on hold via the 
ePCT by the consumer. 
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4.4.2.2 Hot Day 
On days with elevated temperatures, the HEM responded as anticipated and reacted to Locational 
Marginal Price (LMP) price spikes. On days when artificial congestion was induced these 
reactions were much more pronounced. When the HEM registered that the cleared price hit the 
price cap, it offset the set temperature of the ePCT to the maximum offset based on the consumer 
settings. As time progressed, the observed temperature inside the premises increased due to the 
elevated exterior temperature. In response, the HEM began to increase the bid price during each 
auction. The observed temperature in the premises continued to climb reaching the new set 
temperature. Once the observed temperature exceeded the offset set temperature, the HEM 
instantaneously increased the bid price to the maximum placing the HEM into a must-run state. 
During the must-run state, the HEM kept the bid price equal to or higher than the cleared price. 
In a must-run state the HEM will not issue any further temperature adjustments to the ePCT.   
 
At the end of the experiment or when congestion was no longer an issue, the cleared price would 
begin to fall. This change caused the set temperature of the ePCT to return to its programmed 
value. The HEM stayed in a must-run state until the observed temperature was less than or equal 
to the set temperature, and the HEM lowered its bid price and returned to normal participation in 
the auctions. 
 
The figure below illustrates a HEM-level view from a non-experiment hot day.  
• When the observed temperature (red line) was less than the set temperature (dark blue line) 

the bid price (green line) was less than the cleared price (purple line). In these intervals the 
HEM had not won the auction.  

• When the observed temperature was higher than the set temperature, the bid price was 
greater than or equal to the cleared price. In these intervals, the HEM won the auction. On 
this day there was no experiment scheduled, so the LMP was the major influencing factor 
on the oscillation in the set point.  

 
This effect occurred at approximately 11 a.m. through 4 p.m. as the LMP (light blue line) 
fluctuated. This fluctuation caused the cleared price to fluctuate proportionately. As the cleared 
price rose and fell during this period, the set temperature mirrored the movement, shifting the 
temperature up during higher priced intervals and back down during lower priced intervals.  
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Figure 86. HEM Level Hot Non-Experiment Day 
The figure below illustrates a HEM level view from an experiment on a hot day.  
• When the observed temperature (red line) was less than the set temperature the bid price 

(green line) will be less than the cleared price, (purple line). In these intervals the HEM had 
not won the auction.  

• When the observed temperature is higher than the set temperature the bid price will be 
greater than or equal to the cleared price. In these intervals the HEM won the auction. On 
this day the, prior to the experiment, the set temperature in the house (dark blue line) 
fluctuates slightly during the day based on the cleared price and the consumer’s slider 
settings. At 1 p.m. a congestion event started and the cleared price offset to the max bid 
price independent of the LMP price (light blue line).  

 
During this event the set temperature offset from 68°F to 77°F. During the event the observed 
temperature climbed causing the bid price to rise. At approximately 4 p.m. there was a change in 
the consumer setting that caused the set temperature to drop to 73°F. The new set temperature 
was lower than the observed temperature causing the bid price to spike to the max bid price. 
With the cleared price equal to the bid price, the HEM won the auction and began to cool the 
house. The observed temperature was greater than the set temperature for the remainder of the 
day as the house rebounded from the experiment. 
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Figure 87. HEM Level Hot Experiment Day 

4.4.2.3 Cold Day 
On an experiment day with lower outside temperatures, the consumer level system reacted as 
expected. At the point where congestion was applied to the circuit, the cleared price responded 
by increasing to the price cap. The set temperature of the house offset to the maximum allowed 
temperature. However, the reduced exterior temperature caused the interior temperature of the 
premises to rise at a much slower pace. The HEM responded by keeping the bid price lower than 
what was observed during hot days. Consequently, the HEM never reached a must-run state 
leading to a reduced premises temperature recovery time after the congestion event. 
 
The figure below illustrates a HEM-level view from a non-experiment cold day.  
• When the observed temperature (red line) was less than the set temperature, the bid price 

(green line) was less than the cleared price (purple line). In these intervals, the HEM did 
not win the auction.  

• When the observed temperature was higher than the set temperature, the bid price was 
greater than or equal to the cleared price. In these intervals, the HEM won the auction.  

 
 

Experiment Start: 1:00 pm 
Experiment Duration: 4 hours 
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On this day there was not an experiment scheduled, so the LMP was the major factor impacting 
the set temperature. On this day the LMP did not fluctuate through a wide range, which caused 
fewer set temperature changes than on the hot day. During this day there were only a few 
intervals in the morning when the observed temperature was higher than the set temperature 
causing the bid price to raise past the cleared price.   

 

 
Figure 88. HEM Level Cold Non-Experiment Day 
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The figure below illustrates a HEM level view from an experiment on a cold day.  
• When the observed temperature (red line) was less than the set temperature, the bid price 

(green line) was less than the cleared price (purple line). In these intervals, the HEM did 
not win the auction.  

• When the observed temperature was higher than the set temperature, the bid price was 
greater than or equal to the cleared price. In these intervals the HEM won the auction. At 5 
a.m. a congestion event started causing the cleared price to rise to the max bid price thereby 
causing the set temperature to rise from 68°F to 75°F.  

 
During this event there was not a significant climb to the observed temperature because of the 
colder outdoor temperature. Because there was not a significant climb to the observed 
temperature, the bid price remained much lower during the experiment. The experiment was 
released at 7 a.m. Because there was little deviation to the observed temperature, there was little 
to no rebound period after the event.    

 

 
Figure 89. HEM Level Cold Experiment Day 

Experiment Start: 5:00 am 
Experiment Duration: 2 hours 

148 
 



Real Time Pricing With Double Auction 
 

4.4.3 Distribution Circuit Level 

4.4.3.1  Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• The described behavior of a circuit applied during the summer season. 

• During the summer season, there was no restriction on time of the experiments or 
restrictions on the duration of the experiments. 

• During the experiments, no RTP load shifted from the experiment circuits. 

• The described behavior of the circuit applied to intervals when there were no 
communication or back office data issues. 

4.4.3.2  Calculation Approach 
The RTPda project had participants on four different distribution circuits. The system allowed for 
the tracking and recording of: 
 
• Responsive load – the sum of all the RTPda HVAC loads on the circuit. 

• Active load – the amount of responsive load that cleared to run in the market period – 
participation in an auction. 

• Inactive load – the amount of responsive load that did not clear to run in the market period 
– nonparticipation in an auction. 

• Unresponsive load – the total circuit load minus the responsive load during the market 
period on the circuit. 

 
The RTPda circuit loads included the unresponsive load, which were those consumers not 
participating in the RTPda program, and the responsive load or those consumers who were 
enrolled in the program. The active load and inactive load values were included in the responsive 
load portion of the circuit. These values represented the load on the circuit that contributed to the 
RTPda load. At a circuit level, these values are the sum of all of the HEMs participating at each 
interval. During a congestion event these load values responded according to market prices and 
the user settings on each ePCT on that circuit.  

 
The load response was based on several criteria. During a congestion experiment the resources 
were purposefully engaged. At the start of the experiment, the responsive load was reduced as 
the HEMs offset their set temperatures due to the price increase. As the experiment continued, 
the responsive load remained suppressed, reducing the total load on the circuit. On a hot day the 
observed temperatures in the premises climbed. Because of the individual HEM settings, the 
houses on the circuit reached their offset set temperature at different times.  The load slowly 
ramped back up in the congestion period as the resources were exhausted. If the congestion were 
to remain in place on the circuit, all of the resources on the circuit would eventually become 
exhausted and the load reduction on the circuit would be minimal.   
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These results were obtained by inducing congestion on days when peak demand reduction was 
needed. On days that peak demand reduction was required, the consumer was typically 
consuming power with their HVAC because of the high outside temperatures. The induced 
congestion released those power resources allowing maximum reduction. This method was used 
on several days during the experimental period. On a day with high forecasted loads, congestion 
events were scheduled to coincide with the critical peak pricing (CPP) program. A congestion 
event was also used during the PJM emergency demand response event to assist with overall 
load reduction.      

 
The results on a cooler day are slightly different. As with the hot day, an initial responsive load 
reduction occurred at the start of the experiment. The cooler temperatures reduced the initial load 
reduction because of a smaller number of resources consuming power. The lower temperatures 
diminished the ramp up of the resources during the congestion event, allowing the congestion to 
hold longer on the circuit without the resources being exhausted.         
 
The following figure illustrates a circuit level view from a hot non-experiment day. The blue line 
represents the total load on the circuit and the red line represents the total load minus the RTP 
load. On this day the load curve was a typical summer curve with low circuit load during the 
morning hours and the load peaking during mid to late afternoon. The green line represents the 
RTP load.  During this day the RTP load was only responding to PJM prices. If there was a spike 
in the PJM price the circuit saw a reduction in RTP load. For example, the PJM price spiked 
from 3:40 to 3:50 p.m. from $124 to $660. This spike caused the RTP load reduction highlighted 
in the figure with the red circle. The RTP load fluctuated for the remainder of the day due to PJM 
prices. 
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Figure 90. Circuit Level Hot Non-Experiment Day 
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The figure below illustrates a circuit level view from a non-experiment cold day. The blue line 
represents the total load on the circuit and the red line represents the total load minus the RTP 
load. On this day the load curve was close to a typical summer curve with low circuit load during 
the morning hours and the load peaking during mid to late afternoon; however, it is slightly 
flatter than a typical summer curve because of the colder temperatures. The green line represents 
the RTP load.  During this day there were no significant reductions and the overall RTP load was 
down because of the colder temperatures. The RTP load fluctuated for the remainder of the day 
due to PJM prices.    
 

 
Figure 91. Circuit Level Cold Non-Experiment Day 
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The figure below illustrates a circuit level view on a hot day.  The blue line represents the total 
load on the circuit, and the red line represents the total load minus the RTP load. On this day the 
load curve was a typical summer curve with low circuit load during the morning hours and the 
load peaking during mid to late afternoon. The green line represents the RTP load. During non-
experiment hours, the load fluctuation was minimal; however, there was a significant reduction 
of load shortly before the experiment due to a sharp increase in the PJM price. Once the 
experiment started at 1 p.m. there was another reduction in RTP load from approximately 100 
kW to 60 kW. An overall reduction was sustained through the duration of the experiment; 
however in this experiment, at approximately 3 p.m., the RTP load started to slowly climb 
because the HEMs were reaching a must-run state. The RTP load reduction continued until the 
end of the experiment, and the load was released at 5 p.m. The RTP load fluctuated for the 
remainder of the day due to PJM prices.        
 

 
Figure 92. Circuit Level Hot Experiment Day 

Experiment Start: 1:00 PM 
Experiment Duration: 4 hours 
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The figure below illustrates a circuit level view on a cold day experiment.  The blue line 
represents the total load on the circuit, and the red line represents the total load minus the RTP 
load. On this day the load curve was a typical summer curve with low circuit load during the 
morning hours and the load peaking during mid to late afternoon; however, the total load was 
reduced because of the cooler temperatures. The green line represents the RTP load. At 5 a.m. 
the experiment started, and the RTP load was reduced on the circuit from approximately 85 kW 
to 72 kW. This reduction was sustained through the experiment duration of 2 hours. At 7 a.m. the 
RTP load was released. The circuit saw a rebound from the RTP load for a short duration. The 
RTP load fluctuated for the remainder of the day due to PJM prices. 
 

 
Figure 93. Circuit Level Cold Experiment Day 

Experiment Start: 5:00 AM 
Experiment Duration: 2 hours 
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The figure below illustrates a circuit level view of an experiment on a holiday. The blue line 
represents the total load on the circuit, and the red line represents the total load minus the RTP 
load. On this day the load curve was a typical summer curve with low circuit load during the 
morning hours and the load peaking during mid to late afternoon. The green line represents the 
RTP load.  During non-experiment hours the load fluctuation was minimal. At 10:15 a.m. 
congestion was induced on the circuit. The RTP load responded, and there was a reduction in 
RTP load dropping from approximately 90 kW to 55 kW. As the experiment progressed, the load 
reduction was fairly constant for the duration of the experiment. At 12:10 pm the congestion was 
released, and the RTP load rebounded on the circuit. The RTP load fluctuated for the remainder 
of the day due to PJM prices. 
 

 
Figure 94. Circuit Level Holiday Experiment Day 

Experiment Start: 10:15 AM 
Experiment Duration: 1 hour 55 minutes 
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The figure below illustrates a circuit level view of an experiment on a PJM emergency day. The 
blue line represents the total load on the circuit, and the red line represents the total load minus 
the RTP load. On this day the load curve was a typical summer curve with low circuit load 
during the morning hours and the load peaking during mid to late afternoon. During this day 
PJM called an emergency event starting at 1:30 p.m. and lasting until 7:30 p.m. The green line 
represents the RTP load. During non-experiment hours, the load fluctuation was minimal with a 
slight price spike prior to the experiment causing a reduction for a short interval. At 3 p.m. the 
experiment started, and the RTP load reduced from approximately 115 kW to 85 kW. The 
reduction was sustained with a slight climb in RTP resources for the 4-hour duration of the 
experiment. At the completion of the experiment, the resources rebounded. The RTP load 
fluctuated for the remainder of the day due to PJM prices.   
 

 
Figure 95. Circuit Level PJM Event Experiment Day 
 

Experiment Start: 3:00 pm 
Experiment Duration: 4 hours 
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4.4.4 Consumer Program Level 
The RTPda data from all four distribution circuits was aggregated in order to calculate the overall 
average consumer energy and demand impacts at the consumer program level. The energy and 
demand impacts were calculated by comparing the average RTPda premises hourly usage to the 
average hourly usage of a control group composed of comparable standard tariff consumers (see 
section 4.x for a full description of the calculation approach using control groups). The consumer 
program level of analysis provides insights into the impacts of RTPda as a tariff rather than just a 
series of experiments.  

4.4.4.1 RTPda – Overall Impacts 
This metric examines the overall impacts of the RTPda program on consumers’ energy usage and 
demand. This metric measured the average changes in consumer consumption during various 
periods of the day on experiment weekdays and weekends, and non-experiment weekdays and 
weekends. It also included two RTPda experiment days – the summer 2013 peak day and a PJM 
emergency event day. 

4.4.4.2 Organization of Results 
This metric assessed the ability of RTPda and associated technologies to influence consumers to 
decrease or shift their energy usage away from high-cost periods of the day.  
 
For the analysis of the average experiment weekdays (Figure 96) and weekends (Figure 97) and 
non-experiment weekdays (Figure 98) and weekends (Figure 99), a high-cost period was defined 
as the hours from 1 p.m. to 7 p.m. For the summer 2013 peak day (Figure 100) and a PJM 
emergency event day (Figure 101), the analysis used the high-cost periods of the day as 
determined by the program experiments. 
 
The key parameters of interest included experiment and non-experiment days (regardless of the 
time of day of the event), day types (weekdays and weekends), peak day and PJM emergency 
day, hour of the day and hourly kWh usage. 

4.4.4.3 Assumptions  
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
This impact metric provided an analysis of the average hourly RTPda premises energy reduction 
between 1 p.m. and 7 p.m., the total average daily kWh reduction for RTPda premises, and the 
maximum daily kW reduction for the average RTPda premises for: 
• Experiment weekdays and weekends 

• Non-experiment weekdays and weekends 

• The summer 2013 peak day  

• A PJM emergency event day 
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4.4.4.4 Calculation Approach 
The following queries and methods were used for the analysis: 
• Average hourly kWh reduction was calculated by averaging hourly usage by day type 

(event days, non-event days, weekdays, weekend days, summer peak day and PJM 
emergency day) for RTPda premises and control group premises, and taking the hourly 
average of the differences between the groups of premises between 1 p.m. and 7 p.m. 

• Total average daily kWh reduction energy was calculated by averaging hourly usage by 
day type for RTPda premises and control group premises, and taking the hourly average of 
the differences between the groups of premises for the entire day. 

• Maximum daily kW reduction was calculated by averaging hourly usage by day type for 
RTPda premises and control group premises, and taking the maximum hourly difference 
between the groups of premises between 1 p.m. and 7 p.m. 

• Only those RTPda consumers participating in the program for the period of June 1, 2013 
and September 30, 2013 were included in this analysis. To include those consumers that 
were enrolled for only part of the summer would have required recalculating the control 
group for each unique set of consumers. 
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4.4.4.5 Energy and Demand Analysis – Summer 2013 
 

 
Figure 96. Event Days - Summer 2013 Weekdays 
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Figure 97. Event Days - Summer 2013 Weekends 
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Figure 98. Non Event Days - Summer 2013 Weekdays 
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Figure 99. Non Event Days - Summer 2013 Weekends 
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Figure 100. Peak Event Day - July 17, 2013 
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Figure 101. PJM Event Day - September 11, 2013 
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4.4.4.6 Data Collection Results 
RTPda consumers reduced their average hourly consumption by 0.1 kWh between the hours of 1 
p.m. and 7 p.m. on experiment weekdays and weekends. They reduced their average hourly 
consumption by the same amount on non-experiment weekdays. There were no observed 
changes in RTPda average hourly kWh consumption on non-experiment weekends. 
 
There were similar results regarding the maximum kW reduction between these hours as well. 
These observations are not inconsistent given the possible distribution of the RTPda experiments 
across all hours of all days which tended to spread consumption impacts of the experiments over 
a wider range of hours. That there was an observed reduction in kWh consumption is perhaps 
indicative of the self-selection bias of these consumers that actively opted into this program. 
   
When this analysis is applied to specific days when there were RTPda experiments, the impacts 
of the program were more clearly observed.   
 
RTPda experiments were conducted on AEP’s summer peak day of July 17, 2013 between 3 p.m. 
and 6 p.m. and on the PJM emergency curtailment event day of September 11, 2013 between 3 
p.m. and 6 p.m. 
 
The reduction in the observed average hourly kWh consumption of RTPda consumers during the 
hours of the experiments on these days was 0.3 and 0.4 kWh respectively. The max kW 
reduction during the hours of the experiments on these days was 0.4 and 0.5 kW respectively. 
 
Total daily kWh reduction measured the extent to which consumers shifted their kWh 
consumption from high-cost to low-cost periods of the day or reduced their kWh consumption 
altogether. For non-experiment weekdays and weekends, consumers decreased their total daily 
kWh consumption, but on experiment weekdays, consumers shifted their kWh consumption to 
the low-cost hours of the day. On the AEP summer peak day, consumers decreased their total 
daily kWh consumption more than on the average days. On the PJM emergency curtailment day, 
consumers tended to shift their kWh consumption to the lower-cost period of the day. 
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Day Types 
Average 
Hourly kWh 
Reduction(1) 

Total Daily 
kWh 
Reduction 

Max kW 
Reduction(1) 

Experiment Days Weekdays 0.1 0.6 0.2 
Weekends 0.0 0.3 0.1 

Non- Experiment Days 
Weekdays 0.1 1.0 0.2 
Weekends 0.1 1.0 0.2 

Peak Day(2) n/a 0.3 1.9 0.4 

PJM Emergency Day(3) n/a 0.4 0.4 0.5 

Table 18. Energy and Demand Analysis - Summer 2013 
 

Notes: 
• Between 1 p.m. and 7 p.m., the SMART Shift Plus high-cost period used for comparison 

purposes only. 

• Peak day was Wednesday, July 17. 

• PJM emergency day was Wednesday, September 11. 

4.5 RTPda Conclusions 
Real-Time Pricing with double auction was an experimental or beta project to understand what it 
would take to make this technology a viable program offering to the general public. There were 
several positive outcomes of the program: 
 
• The theories behind the algorithms were proven correct. The HEMs generated bids, SGD 

accumulated the supply information and auctions took place. The price the consumer paid 
for energy varied with each 5-minute interval during the day. 

• During a congestion event, load on the congested circuit was reduced by the participating 
RTPda consumers. As the interval prices increased, the premises thermostat was adjusted to 
reduce demand. This is evident in the figures contained in the Distribution Circuit Level 
section of this chapter. 

• Consumer response was observed by the consumer’s participation in the auctions through 
the ePCT settings.  

• In general, the consumer comments were positive and satisfaction with the RTPda program 
was high. 

 

In addition to the positive outcomes, there were challenges to overcome before a full deployment 
could be considered. 
 

• Some consumers who wanted to participate in the RTPda program could not because of the 
lack of cellular service at their premises. This lack of cellular coverage impacted the 
number of participating consumers, thereby reducing the amount of potential RTPda load on 
a circuit. Although cellular service was the most cost effective and easiest to implement for 
the Project, other technologies should be explored. 
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• Often multiple trips to a consumer’s premises were required in order to get the equipment 
installed, commissioned, and fully functional. After installation, continuous monitoring was 
required to ensure the equipment remained in a fully functional state. 

• There were challenges in getting the real-time data processed through the legacy back 
office applications and back to the consumer premise in a timely manner. To account for 
this delay, a workaround was implemented that offset the 5-minute pricing by two intervals 
or ten minutes. In other words, the real-time 5-minute LMP for an interval ending at 12:05 
was used for the auction with a timestamp of 12:15. 

• The combined cost of the ePCT, HEM, and cellular communication for individual premises 
was too costly for the utility to absorb without some cost recovery mechanism such as in 
the tariff, through an additional rider, or by increasing the pricing in the tariff to recoup the 
cost of equipment and installation. 

• Other consumer programs had greater financial value to the consumer and the utility than 
the RTPda program. For detailed results, see the Consumer Programs chapter of this report. 

4.6 Lessons Learned 

4.6.1 Technology 
• Software development needs to be done with the utility’s perspective to ensure it is 

properly aligned with operational functions.   

• Thorough testing of software and equipment is essential in preparation for rolling out a 
complex technology. 

4.6.2 Implementation 
• Collaboration and preparation is essential to manage an experimental, collaborative 

research project. With this type of project, allowing enough time for research and 
development is essential to meet objectives. The use of proven project management tools is 
effective to develop the technologies and ensure collaboration.  

• Develop clear communications to provide expectations to vendors for user acceptance 
testing processes and feedback mechanisms. 

• Select vendors and service providers that more closely align with program goals that 
accommodate effective collaboration and consistent outcomes and deliverables. 

• When performing updates to a user interface, application, or device, the documentation 
must be updated accordingly. Documentation enhances consumer support as well as back 
office operations. 

4.6.3 Operations 
• Consistent communications between devices is dependent on a reliable cellular network. 

Although cellular service was the most cost effective and easiest to implement for the 
Project, other technologies should be explored. 

• Align software development goals with ongoing operational systems. 
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5 DEMONSTRATED TECHNOLOGY – DISTRIBUTION 
AUTOMATION CIRCUIT RECONFIGURATION 

5.1 Purpose  
Distribution Automation and Circuit Reconfiguration (DACR) operating in conjunction with the 
Distribution Management System (DMS) leveraged two-way communication and infrastructure 
improvements to improve reliability. Automatic network reconfiguration quickly restored power 
to de-energized loads, even under complex circuit arrangements that were not suitable for simple 
loop schemes. DACR control systems could transfer loads automatically between circuits after 
an outage. This reduced outage times by allowing these networks to automatically respond to 
fault conditions and outages. It encompassed many system-wide control objectives in the 
distribution system, including: 
• Improved circuit reliability and customer experience. 

• Provided enhanced service restoration. 

• Enabled data sharing with adjacent control areas. 

• Enabled communications link failure detection. 

• Demonstrated enhanced situational awareness. 

• Demonstrated two-way communication among devices with DMS, central control center 
visibility, and automated outage recovery. 

• Demonstrated equipment sensors that provided near real-time condition/status. 

• Used integrated back office systems to provide remote and automated data collection, 
analysis, visualization, and action. 

• Improved effectiveness of traditional protection practices. 

5.2 Technology  
DACR provided a system to remotely monitor, coordinate, and operate distribution circuit 
equipment, working behind the scenes to keep the power on. DACR automatically detected fault 
conditions and outages and strategically rerouted the paths of electricity within the electrical 
grid. For consumers, this resulted in improved reliability with fewer outages and quicker 
restoration times. DACR reduced the number of consumers impacted by an outage as well as 
decreased the amount of time consumers were without power by rerouting the flow of electricity. 
Any remaining outage areas were identified by the technology and crews were dispatched 
efficiently, which reduced restoration time.   
 
Distribution substation breakers and line reclosers were designed to attempt to clear a fault by 
de-energizing the line for a few seconds to see if the fault cleared. If the fault persisted, the 
recloser de-energized the line and locked out until repairs were made and it was manually 
switched back in.  
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Traditional circuit reconfiguration was based on distribution loop schemes that were effective for 
well-defined circuits. These schemes traditionally operated without communication by 
monitoring voltage at each switch to detect outages and restore loads. The drawback of using a 
loop scheme was that control decisions relied only on loss of voltage. DACR leveraged 
communications and coordinated control to improve reliability. DACR generally included 
Supervisory Control and Data Acquisition (SCADA), remote sensors, monitors, switches, digital 
relays, and controllers with embedded intelligence. The Distribution Automation Controller 
(DAC) was the intelligence behind DACR. All of the available circuit routes were programmed 
into each DAC. Together, these components gathered near real-time information to provide fault 
location, outage isolation, circuit reconfiguration, service restoration, and remote equipment 
monitoring. When a fault occurred, the DAC looked at data from all devices in its control. It 
then: 
• Determined which line section was faulted. 

• Identified devices that could be switched to isolate that section and restored power to the 
un-faulted sections. 

• Checked to make sure no sections were overloaded. 

• Commanded the devices to switch. 
 
After performing these steps, the DAC sent a message to the Distribution Dispatch Center 
(DDC) to update the Distribution Management System (DMS) and the Outage Management 
System (OMS). This reconfiguration was designed to occur within two minutes.  
 
During storms it was necessary to locate multiple fault locations, make repairs, and switch 
consumers back into service after repairs were made.  DACR combined with DMS and OMS 
enabled the DDC operators to view outage locations and monitor how the DACR system isolated 
the problem areas. This visualization allowed the DDC operators to perform remote switching to 
restore service in addition to what the DACR logic was able to accomplish automatically. The 
remote switching was done without dispatching distribution line crews to the switch locations 
and expedited restoration of service to the consumer. 
 
The following figure provides a schematic diagram for a typical DACR system. 
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Figure 102. Example DACR System Architecture.1 

1 A more detailed discussion of DACR than is practical here is available in:  Greer, R., Allen, W., and Dulmage, A., 
"Distribution Automation Systems With Advanced Features," 55th Annual IEEE Rural Electric Power Conference, 
Chattanooga, TN, 2011. 
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5.3 Approach and Implementation 
The AEP Ohio gridSMART Demonstration Project deployed DACR on 70 circuits in the Project 
area. As the DACR system was being designed, it was determined that line devices on the 70 
circuits would be upgraded to allow for two- way communication, monitoring, and control via 
the DMS system. Monitoring and control capability was available on circuit breakers, reclosers, 
regulators, and capacitor banks. This allowed visualization of the distribution system conditions 
at all times and enabled proactive correction activities through remote switching of devices or 
crew dispatch.   
 
The DACR system was monitored by the DMS, which provided alarms and visualization of the 
outage area to the DDC operators. This resulted in reduced outage times.  Each DACR 
deployment included equipment from Schweitzer Engineering Laboratories (SEL) and G&W 
Electric (G&W).  Replacement of existing station circuit breaker relays with SEL-351S relays 
enabled SEL DACs to function as controllers for circuits with circuit reconfiguration capability. 
On these circuits, DACs communicated with SEL-651R recloser controls, which were connected 
to G&W Viper reclosers. G&W Viper reclosers, SEL-651R recloser controllers, and SEL-3354 
Distribution Automation Controller (DAC) automatically reconfigured circuits, isolated faulted 
line segments, and restored power to customers affected by an outage.   
 
These systems used the DAC deployed in substations to communicate with recloser controllers 
on circuits associated with each station. When a recloser opened for a permanent fault, the 
recloser controller communicated with the substation DAC via a wireless mesh radio network, 
enabling the DAC to make decisions based on the state of the faulted circuit.  The DAC then 
commanded the applicable normally closed recloser(s) on the other side of the faulted section of 
the line to open.  When possible, it also instructed a normally open recloser at a tie point to an 
energized circuit to close and restore power to the open isolating recloser. 
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5.4 Impact Metrics Required for DACR 
The following 19 impact metrics are associated with the DACR suite of technologies; 17 relate 
to the Project area and 2 relate to the System area. 

Metric ID Metric 
Scope 

Metric Description DACR 

M13 Project Distribution Circuit Load M13-CR 
M14 Project Distribution Circuit/Equipment 

Overload  
M14-CR 

M15 Project Deferred Distribution Capacity 
Investments 

M15-CR 

M16 Project Equipment Failure Incidents M16-CR 
M17 Project Distribution Equipment Maintenance 

Cost 
M17-CR 

M18 Project Distribution Operations Cost M18-CR 
M19 Project Distribution Circuit Switching 

Operations 
M19-CR 

M21 Project Distribution Restoration Cost M21-CR 
M25 Project Truck Rolls Avoided M25-CR 
M26 Project SAIFI M26-CR 
M27 Project SAIDI/CAIDI M27-CR 
M28 Project MAIFI M28-CR 
M29 Project Outage Response Time M29-CR 
M30 Project Major Event Information M30-CR 
M31 Project Distribution Operations Vehicle 

Miles 
M31-CR 

M32 Project CO2 Emissions M32-CR 
M33 Project Pollutant Emissions (SOX, NOX, 

PM2.5) 
M33-CR 

M34 System CO2 Emissions M34-CR 
M35 System Pollutant Emissions (SOX, NOX, 

PM2.5) 
M35-CR 

Table 19. Impact Metrics Addressing DACR Technology Performance 
Refer to the Metrics Analysis for DACR section that follows for details. 
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5.5 Metrics Analysis for DACR 
This section provides details for each DACR metric, and includes those requested by the DOE 
during the definitization of the Cooperative Agreement. Trends were not always observed, 
however data is presented for each metric. 

5.5.1 Distribution Circuit Load (M13-CR) 

5.5.1.1 Objective 
This impact metric examines circuit load for all circuits in the DACR Project area to historical 
data for the same circuits to identify the impact of DACR on circuit loads. 

5.5.1.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
On an operational circuit, DACR will not influence circuit load. However, DACR improves 
reliability so the circuit will operate a higher percentage of the time. 

5.5.1.3 Calculation Approach  
The following queries and methods were used to generate results: 
• Circuit load was measured as the instantaneous real power supplied to a circuit's voltage 

regulator, measured in kW. Power at the circuit regulator was recorded every 15 minutes 
for each of the three phases (A, B, C). Instantaneous real power was computed as the sum 
of real power over all three phases.  

• Circuit load per circuit, substation, and time were collected.  

• Substation load per substation and time were calculated by summing the load of circuits 
originating at substations.  

• Hourly outdoor temperature in degrees Fahrenheit for Port Columbus International Airport 
was collected from the National Oceanic and Atmospheric Administration. 

5.5.1.4 Organization of Results  
This section provides circuit load graphs showing the total circuit load for each DACR Project 
area circuit. Each graph shows percentile results for real power, reactive power, and apparent 
power for all circuits in the Project area. 
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5.5.1.5 Data Collection Results 

 
Figure 103. Circuit Load Real Power Percentiles (DACR Project) 

 
    Figure 104. Circuit Load Reactive Power Percentiles (DACR Project)  
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Figure 105. Circuit Load Apparent Power Percentiles (DACR Project) 

5.5.1.6 Summary 
As anticipated, there was no influence on normal Distribution Circuit Load due to DACR.  
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5.5.2 Distribution Circuit or Equipment Overload Incidents (M14-CR) 

5.5.2.1 Objective 
This impact metric reports equipment overload events within the Project area in order to quantify 
any reduction in the number of overload events on circuits with DACR capability.   

5.5.2.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
Circuit and substation SCADA reports, event logs, and direct equipment notifications/alarms 
recorded switching operations performed to relieve equipment overloading.  Any such events 
that resulted in equipment failure contributed to the cumulative count total. 

5.5.2.3 Calculation Approach 
The following queries and methods were used to generate results: 
• Equipment overload events per equipment, equipment type, circuit, substation, and time 

were collected.  

• Hourly outdoor temperature in degrees Fahrenheit for Port Columbus International Airport 
was collected from the National Oceanic and Atmospheric Administration. 

5.5.2.4 Organization of Results 
This metric was intended to present a table of circuit overload events reported within the DACR 
Project area. No such events occurred during the Project. 

5.5.2.5 Data Collection Results 
No overload events occurred during the Project. DACR did not influence the number of 
equipment overload events. 

5.5.2.6 Summary 
DACR did not influence the number of equipment overload events. 
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5.5.3 Deferred Distribution Capacity Investments (M15-CR) 

5.5.3.1 Objective 
This impact metric provides a description of all distribution capacity investments that were 
deferred due to distribution automation. 

5.5.3.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
Semi-annual variance analysis of distribution capital investment plan was performed. 

5.5.3.3 Calculation Approach 
No planned or deferred distribution capacity investments occurred within the DACR Project 
area; therefore, no calculation approach was necessary. 

5.5.3.4 Organization of Results 
This metric is a study of deferred distribution capacity investments due to circuit reconfiguration 
distribution automation. 

5.5.3.5 Data Collection Results 
AEP Ohio reviewed planned projects in Distribution Load Forecasting where DACR circuits 
would be involved.  No projects were deferred as a result of DACR. DACR did not influence 
distribution capacity investments. 

5.5.3.6 Summary 
DACR did not influence distribution capacity investments. 
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5.5.4 Equipment Failure Incidents (M16-CR) 

5.5.4.1 Objective 
This impact metric provides counts of equipment failure events within the Project and System 
areas in order to quantify the effects DACR has on equipment failures. 

5.5.4.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
Circuit and substation SCADA reports, event logs, and direct equipment notifications/alarms 
recorded switching operations performed to relieve equipment overloading. Any such events that 
resulted in equipment failure contributed to the cumulative count total. Failures for the following 
equipment types in this report included:  
• Capacitor Banks 

• Distribution Transformers 

• Reclosers 

• Switches 

• Voltage Regulators 
 
Other equipment types had no failures. 

5.5.4.3 Calculation Approach 
The following queries and methods were used to generate results: 
• Equipment failure events per date, equipment type, circuit, and substation were collected 

by linking equipment compatible units to circuit equipment types. 

• Equipment failure rate was calculated by the total number of failures divided by the total 
number of installations for each equipment type. 

 
The part of the System area excluding the footprint of the Project area was referred to as the non-
Project area. 

5.5.4.4 Organization of Results 
This metric shows equipment failure event information grouped by equipment type by month 
and equipment failures associated with substations in the Project area compared to the non-
Project area. Each graph shows the quantity of equipment failures on the vertical axis and 
separates the columns by either type of equipment, month, or substation. 
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5.5.4.5 Data Collection Results 

 
Figure 106. Equipment Failure Events by Year (Project vs. Non-Project Area) 
 
 

 
Figure 107. Equipment Failure Rate by Year (Project vs. Non-Project Area) 
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Figure 108. Equipment Failure Events by Substation (Project and Non-Project Area) 

5.5.4.6 Summary 
No increase in equipment failure events was evident from the data.    
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5.5.5 Distribution Equipment Maintenance Cost (M17-CR) 

5.5.5.1 Objective 
This impact metric provides monthly cost data for distribution maintenance activities throughout 
the Project and System areas. 

5.5.5.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
Maintenance assumptions identified here are solely for the purpose of this reporting metric and 
do not follow traditional AEP Ohio accounting policies. 
 
Maintenance costs in the Project area included:  
• Non-warranty asset replacement of capacitors, regulators, reclosers, and associated controls 

or protective devices 

• Estimated inspection  

• Equipment failures 

• IT infrastructure maintenance  

• Telecommunications infrastructure  
 
Maintenance costs in the non-Project area included: 
• Total asset replacement costs on capacitors, regulators, reclosers, and associated controls or 

protective devices 

• Inspection programs including repairs 

• Equipment failures 
 
The part of the System area excluding the footprint of the Project area was referred to as the non-
Project area. 

5.5.5.3 Calculation Approach  
The following queries and methods were used to generate results: 
 
Distribution equipment maintenance labor, material, vehicle fleet, and construction overhead 
costs per circuit, substation, and work order close date were calculated by summing labor, 
material, vehicle fleet, and construction overhead costs. 

5.5.5.4 Organization of Results 
This metric presents monthly average equipment maintenance costs per circuit for both the 
Project and non-Project areas. Each graph shows average maintenance costs per circuit by month 
separated by components of construction overhead, labor cost, fleet cost, material costs, and the 
sum of all four, components. Two graphs are presented; one for the Project area and one for non-
Project area. 
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5.5.5.5 Data Collection Results 

 
Figure 109. Average Equipment Maintenance Cost per Circuit by Month (Project Area) 
 

 
Figure 110. Average Equipment Maintenance Cost per Circuit by Month (Non-Project 
Area) 
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5.5.5.6 Summary 
The patterns and profiles of costs between the Project area and the non-Project area appear to be 
within normal month-to-month variation for the Project area. These are based on events in the 
Project area, and not indicative of impacts of DACR. 
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5.5.6 Distribution Operations Cost (M18-CR) 

5.5.6.1 Objective 
This metric provides an estimate of the cost reduction and/or addition achieved by the 
elimination of inspection programs and reduction in truck rolls due to the installation of the 
DACR system. 

5.5.6.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• Inspection costs were not addressed here. Consequently operation cost reductions were 

estimated solely from truck rolls avoided. 

• Truck roll assumptions: 
 Truck rolls avoided by DACR were due to multi-step outages and scheduled switching 

events. 

 A short truck roll was 15 minutes and a standard (long) truck roll was 90 minutes. 

 Operations were conducted by one service staff member in one service truck. 

5.5.6.3 Calculation Approach 
Analysis was conducted by counting the number of remote switching operations and assigning 
each as either a short or standard truck roll avoided. Standard truck rolls represented a crew 
traveling from the service center to a switching location. Short truck rolls represented a crew 
traveling from one switching device to another nearby switching device on the same circuit or on 
an adjacent circuit. Cost was determined based on conversion factors for vehicle and labor rates. 

The following queries and methods were used to generate results: 

• Short truck rolls avoided per equipment, equipment type, month, circuit, and substation due 
to DACR technology were calculated by selecting remote equipment switching events that 
occurred during multi-step restoration outages.  These were combined with remote recloser 
switching events that occurred within five minutes of another remote recloser switching 
events on the same circuit. 

• Standard truck rolls avoided per equipment, equipment type, month, circuit, and substation 
due to DACR technology were calculated by selecting remote recloser switching events 
which occurred more than five minutes after another remote recloser switching event on the 
same circuit that did not occur during an outage with a single restoration step. 

• Vehicle savings from truck rolls avoided per equipment, equipment type, month, circuit, 
and substation due to DACR technology were calculated by summing short truck rolls 
avoided multiplied by $7.50 per truck roll with standard truck rolls avoided multiplied by 
$45.25 per truck roll. 

• Labor savings from truck rolls avoided per equipment, equipment type, month, circuit, and 
substation due to DACR technology were calculated by summing short truck rolls avoided 
multiplied by $15.75 per truck roll with standard truck rolls avoided multiplied by $94.00 
per truck roll. 
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5.5.6.4 Organization of Results 
This metric provides savings from avoided truck rolls per month associated with DACR. 

5.5.6.5 Data Collection Results 

 
 

Figure 111. Net Dollar Value of Truck Rolls Avoided  

5.5.6.6 Summary 
The DACR technology had a greater savings due to avoided truck rolls during the summer 
months, driven by a combination of a larger number of maintenance operations, construction 
projects, and weather events occurring in the summer season. 
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5.5.7 Distribution Circuit Switching Operations (M19-CR) 

5.5.7.1 Objective  
This impact metric counts the number of switching actions performed by the DACR system and 
compares these numbers to historical manual switching data to estimate effects on operational 
costs. 

5.5.7.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
Data collected prior to the implementation of the DMS system are artificially inflated due to the 
previous lack of a single system of record for tracking switching events. 

5.5.7.3 Calculation Approach  
The following queries and methods were used to generate results: 
• Equipment switching events per equipment, equipment type, date, current state, circuit, 

substation, and event type were calculated by counting equipment switching events. 

• Short truck rolls avoided attributable to DACR technology were calculated by selecting 
those remote switching events that occurred during outages that were combined with two 
recloser switching events within 5 minutes of one another on the same circuit. This analysis 
was segmented by equipment type, month, circuit, and substation, and excluded outages 
with a single restoration step. 

5.5.7.4 Organization of Results  
Switching events are presented as counts of device operations by device type over time.  
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5.5.7.5 Data Collection Results  

 
Figure 112. Automated Device Operations per Day 

 
Figure 113. Remote Device Operations per Day 
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5.5.7.6 Summary 
There was insufficient data available to draw conclusions about the overall number of events and 
whether they were declining as the DACR technology was tuned and operational experience 
matures, or increasing, and the effect of weather events on the number of switching events.  

189 
 



Distribution Automation Circuit Reconfiguration 
 

5.5.8 Distribution Restoration Cost (M21-CR) 

5.5.8.1 Objective 
This impact metric compares Customer Minutes of Interruption (CMI) avoided for manual 
switching activities to automated switching by DACR.   

5.5.8.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
Cost savings for CMI avoided was attributed to achieving reduced labor and associated costs 
such as reduction in lodging expenses. Using both major and non-major event data from 2005 
through 2009, a 5-year average was computed. This extended time period accounts for annual 
variation caused by weather events. 

5.5.8.3 Calculation Approach  
Using a charge code set up for restoration on DACR circuits, the following queries and methods 
were used to generate results: 
• Distribution restoration CMI per circuit, substation, outage, and date were calculated by 

subtracting the time of the first customer call from the time of the outage in minutes 
multiplied by the number of customers affected by the outage. 

• Distribution restoration CMI costs per circuit, substation, outage, and date were calculated 
by subtracting the time of the first customer call from the time of the outage in minutes 
multiplied by the number of customers affected by the outage multiplied by $0.052 yields 
dollars per minute. 

• CMI avoided per circuit, substation, and month for non-jurisdictional major event days 
were calculated by selecting the CMI avoided reported by AEP Ohio. 

• CMI avoided costs per circuit, substation, and month for non-jurisdictional major event 
days were calculated by multiplying the CMI avoided reported by AEP Ohio by $0.052 
yields dollars per minute. 

5.5.8.4 Organization of Results  
This metric presents CMI avoided by DACR and the associated cost savings of reducing CMI.  
Each graph shows the total customer minutes or equivalent cost impact of avoided CMI by 
month due to DACR. 
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5.5.8.5 Data Collection Results  
 

        
 
  

 
 

 
Figure 116. Total Project Area CMI With and Without DACR 

Figure 115. CMI Avoided Due to DACR Figure 114. Dollar Value of CMI Avoided 
Due to DACR 
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5.5.8.6 Summary 
DACR was able to successfully reduce CMI when outages occurred in the Project area, which 
resulted in a corresponding dollar value savings. Some months showed greater savings than 
others, including some months with no savings. This may be due to the location of the outages 
on the circuit. Only the outages that were in an area where a circuit reconfiguration was possible 
were capable of resulting in a CMI reduction. CMI impacts varied in direct proportion to the 
number of outage events that occurred and were typically driven by weather patterns. 

5.5.9 Truck Rolls Avoided (M25-CR) 

5.5.9.1 Objective 
This metric provides a count of the number of switching actions performed by the DACR system 
that would otherwise have required a truck roll for manual switching. 

5.5.9.2  Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
All circuit reconfiguration events would have been previously performed by a dispatched crew 
before the installation of DACR. 

5.5.9.3 Calculation Approach  
Analysis was conducted by counting the number of remote switching operations and assigning 
each as either a short or standard truck roll avoided. Standard truck rolls represented a crew 
traveling from the service center to a switching location. Short truck rolls represented a crew 
traveling from one switching device to another nearby switching device on the same circuit or on 
an adjacent circuit.  
 
The following queries and methods were used to generate results: 
• Short truck rolls avoided per equipment, equipment type, month, circuit, and substation due 

to DACR technology were calculated by selecting remote equipment switching events that 
occurred during multi-step restoration outages.  These were combined with remote recloser 
switching events that occurred within five minutes of another remote recloser switching 
event on the same circuit. 

• Standard truck rolls avoided per equipment, equipment type, month, circuit, and substation 
due to DACR technology were calculated by selecting remote recloser switching events 
which occurred more than 5 minutes after another remote recloser switching event on the 
same circuit that did not occur during an outage with a single restoration step. 

5.5.9.4 Organization of Results  
Truck rolls avoided by automated DACR switching may be one of two types: Standard truck 
rolls represented a crew traveling from the service center to a switching location. Short truck 
rolls represented a crew traveling from one switching device to another nearby switching device 
on the same circuit or on an adjacent circuit. These graphs show the total count of short and 
standard truck rolls avoided by month. 
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5.5.9.5 Data Collection Results  

 

Figure 117. Short Truck Rolls Avoided due to DACR 

 

Figure 118. Standard Truck Rolls Avoided due to DACR 
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5.5.9.6 Summary 
Truck rolls were primarily avoided due to the reconfiguration that happened after outages.  
Therefore the number of truck rolls avoided per month varied greatly depending on weather 
events. Due to the short duration of the project, the average number of truck rolls avoided over 
time may not have been consistent with those experienced during the Project. 
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5.5.10 SAIFI (M26-CR) 

5.5.10.1 Objective 
This metric provides a report of actual System Average Interruption Frequency Index (SAIFI) 
for DACR project circuits as well as calculations of what SAIFI would have been without 
DACR. 

5.5.10.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
This analysis assumed that customers restored within five minutes using DACR did not 
experience a sustained outage, in accordance with IEEE 1366 definitions. 

5.5.10.3 Calculation Approach  
Actual SAIFI data was reported directly by AEP Ohio. SAIFI without DACR was calculated 
using customers interrupted (CI) avoided due to DACR. 
 
The following queries and methods were used to generate results. Note that major event days 
were calculated as defined in IEEE 1366: 
• SAIFI With DACR: SAIFI per month, circuit, and substation was calculated by dividing CI 

excluding major event days by the number of consumers served on the circuit:   
SAIFI = CI / customers served. 

• SAIFI Without DACR: SAIFI per month, circuit, and substation was calculated by adding 
the avoided CI excluding major event days to the CI with DACR excluding major event 
days and dividing that sum by the number of consumers served on the circuit. 

5.5.10.4 Organization of Results  
This metric presents a comparison of monthly SAIFI for System area circuits with and without 
DACR capabilities. The graph and tables show the total SAIFI per month for all Project area 
circuits.  
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5.5.10.5 Data Collection Results  
 

 
 

Figure 119. SAIFI with and without DACR for Project Area Circuits 
 

Project Area (70 circuits) 

  Year With DACR Without DACR % Improvement 

SAIFI 
2011 1.606 1.673 4.0% 

2012 1.226 1.400 12.4% 
2013 0.869 1.151 24.5% 

Table 20. SAIFI Comparisons  

5.5.10.6 Summary 
Project area DACR circuits consistently demonstrated lower SAIFI values than those same 
circuits without DACR. The DACR impact on SAIFI will vary from circuit to circuit and from 
year to year depending on the number and location of outages. 
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5.5.11 SAIDI/CAIDI (M27-CR) 

5.5.11.1 Objective 
This metric provides a report of actual System Average Interruption Duration Index (SAIDI) and 
Customer Average Interruption Duration Index (CAIDI) for DACR project circuits as well as a 
calculation of what SAIDI and CAIDI would have been without DACR. Each graph shows the 
total SAIDI or CAIDI per month for circuits with and without DACR. 

5.5.11.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
This analysis assumed that customers restored within five minutes using DACR did not 
experience a sustained outage, in accordance with IEEE 1366 definitions. 

5.5.11.3 Calculation Approach  
Actual SAIDI and CAIDI data were reported directly by AEP Ohio. SAIDI and CAIDI without 
DACR were calculated using customers interrupted (CI) and customer minutes interrupted 
(CMI) avoided due to DACR. 
 
The following queries and methods were used to generate results. Note that major event days 
were calculated as defined in IEEE 1366: 
 
• SAIDI with DACR: SAIDI per month, circuit, and substation was calculated by dividing 

CMI excluding major event days by the number of customers served on the circuit:   
SAIDI = CMI / customers served. 

• SAIDI without DACR: SAIDI per month, circuit, and substation was calculated by adding 
the avoided CMI for non-jurisdictional major event days to the CMI with DACR excluding 
major event days and dividing that sum by the number of customers served on the circuit. 

• CAIDI with DACR: CAIDI per month, circuit, and substation was calculated by dividing 
SAIDI with DACR by SAIFI with DACR:  CAIDI = SAIDI / SAIFI. 

• CAIDI without DACR: CAIDI per month, circuit, and substation was calculated by 
dividing SAIDI without DACR by SAIFI without DACR. 

5.5.11.4 Organization of Results  
This metric presents a comparison of monthly SAIDI and CAIDI for Project area circuits with 
and without DACR capabilities. 
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5.5.11.5 Data Collection Results  

 
Figure 120. CAIDI with and without DACR for all Project Area Circuits   

 
 

 
Figure 121. SAIDI with and without DA for All DACR Project Area Circuits   
 

Project Area (70 circuits) 

  Year With DACR Without DACR % Improvement 

SAIDI 
2011 180.9 186.5 3.0% 

2012 161.4 175.7 8.2% 
2013 99.7 123.1 19.0% 

CAIDI 
2011 112.6 111.4 -1.1% 
2012 131.6 125.6 -4.8% 

2013 114.7 107.0 -7.3% 

Table 21. SAIDI/CAIDI Comparisons 
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5.5.11.6 Summary 
DACR technology had more impact on SAIDI than on CAIDI. DACR technology reduced the 
number of impacted consumers and resulted in a reduction in SAIDI, on individual outages. The 
impact of DACR on the SAIDI of the Project area will vary from year to year depending on the 
number and location of outages as well as annual weather events. CAIDI measured the average 
outage duration for only those consumers who experience a sustained outage.  

Once DACR technology minimized the impact of an outage, consumers not able to be restored 
by DACR experienced similar outage duration as consumers on non-DACR circuits. Service that 
would have been restored quickly in the past could now be restored so quickly that a sustained 
interruption was not experienced. It appeared that consumers who experienced a sustained 
outage were interrupted for a longer duration because CAIDI increased. The reason for the 
increase was that short duration outages were removed from the average that CAIDI represented. 
The fundamental time to repair each fault/outage was not impacted directly by DACR 
technology. 
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5.5.12 MAIFI (M28-CR) 

5.5.12.1 Objective 
This metric provides an estimation of monthly Momentary Average Interruption Frequency 
Index (MAIFI) in the Project area. 

5.5.12.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
Only recloser and breaker operations that resulted in interruptions lasting less than 5 minutes in 
duration and did not result in a lockout contributed to the MAIFI. 

5.5.12.3 Calculation Approach  
The following queries and methods were used to generate results: 

MAIFI is defined as the number of momentary customer interruptions occurring in a time period 
divided by the number of customers served. 

 
The number of momentary customer interruptions per month was computed in several steps. 

1. All customers were assigned to a recloser or breaker zone. 

2. The energy state was determined for each zone through time accounting for circuit 
reconfiguration. 

3. Any time a zone was de-energized and then re-energized for a period of 5 minutes or less, 
momentary customer interruptions were counted for all customers in the zone. Note that 
momentary interruptions occurring less than 5 minutes before or after a sustained interruption 
or previously counted momentary interruption were not included in this count. 

Once a count of momentary customer interruptions was determined, MAIFI was then computed 
for each month over the Project area. 

5.5.12.4 Organization of Results  
This metric presents the monthly MAIFI for Project area circuits.  
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5.5.12.5 Data Collection Results  

 
Figure 122. Monthly MAIFI With and Without DACR circuits 

5.5.12.6 Summary 
Historical data for comparison was not available prior to the Project because AEP did not have a 
mechanism for tracking MAIFI. This was an example of how distribution automation improved 
visibility pf AEP’s distribution system. 
 
The value of MAIFI with and without DACR showed that circuit reconfiguration contributed a 
very small increase in the number of momentary interruptions. This was expected because circuit 
reconfiguration effectively converted sustained outages into momentary interruptions for 
consumers in zones that were reconfigured. 
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5.5.13 Outage Response Time (M29-CR) 

5.5.13.1 Objective 
This metric is intended to gauge the improvement in the response time that occurs as a result of 
DACR notification.   

5.5.13.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
This analysis assumed that outage response time was defined as the time it took for AEP Ohio to 
become aware that an outage had occurred.  This metric did not include the time it took to 
correct the outage. 

5.5.13.3 Calculation Approach  
The following queries and methods were used to generate results: 
 
For each outage reported on circuits with DACR installed, the time of the first associated lost- 
power customer event was compared to the DACR reported outage start time. 

5.5.13.4 Organization of Results  
Data required for this metric requires reliable matching of customer event calls with specific 
outages reported by DACR.   This customer/DACR event matching was not achievable under the 
current record keeping system. 

5.5.13.5 Data Collection Results  
No results are available. 

5.5.13.6 Summary 
This consumer to DACR event matching was not achievable under the current record keeping 
system. 
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5.5.14 Major Event Information (M30-CR) 

5.5.14.1 Objective 
This metric describes the DACR system’s performance and usage during major events that occur 
during the demonstration period. 

5.5.14.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
To demonstrate the impact of DACR on major event service, results achieved during the 
Derecho event are presented. 

5.5.14.3 Calculation Approach  
Not applicable  

5.5.14.4 Organization of Results  
This metric presents the findings of an AEP Ohio produced study of the Derecho event 

5.5.14.5 Data Collection Results  
The following major events were extracted from a special AEP Ohio study enumerating these 
events: 
• DACR systems had limited ability to restore consumers within the first hour. 

• 1,420 consumers on three circuits were restored to service automatically. 

• DACR was disabled when the DDC determined the magnitude of damage. 

• SCADA switching (53 remote recloser operations) of distribution line devices resulted in: 
 Restoration to service of approximately 10,000 consumers after repairs was 

completed. 

 Transfer and shedding load from limited circuits in abnormal and extreme loading 
conditions. 

 Estimated savings of 30-60 minutes per truck roll, resulting in approximately 40 
hours of crew time saved where resources could be utilized elsewhere on the System. 

 Utilization of AMI meters to close over 300 outage tickets eliminating the use of field 
resources for verification. 

5.5.14.6 Summary 
DACR integration with the Distribution Management System (DMS) had positive impact on 
outage locating and restoration following major events. 
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5.5.15 Distribution Operations Vehicle Miles (M31-CR) 

5.5.15.1 Objective 
This metric provides an estimate of the number of vehicle miles avoided due to DACR and 
compares it with mileage from a similar area without DACR. 

5.5.15.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
All avoided truck rolls would have been dispatched from the normally assigned service center. 

5.5.15.3 Calculation Approach  
The following queries and methods were used to generate results: 
 
Analysis was conducted by counting the number of remote switching operations and assigning 
each as either a short or standard truck roll avoided. Standard truck rolls represented a crew 
traveling from the service center to a switching location. Short truck rolls represented a crew 
traveling from one switching device to another nearby switching device on the same circuit or on 
an adjacent circuit.  
 
The following queries and methods were used to generate results: 
• Distribution operation vehicle miles per service center, month, vehicle, and vehicle 

characteristics for sections of circuits with DACR were calculated by multiplying vehicle 
mileage by the percentage of the circuit with DACR divided by 100. The distribution 
operation vehicle miles per service center, month, vehicle, and vehicle characteristics for 
sections of circuits without DACR were calculated by multiplying vehicle mileage by the 
percentage of the circuit without DACR divided by 100. 

• Vehicle miles avoided due to DACR technology per service center, circuit, and month were 
calculated by summing the sum of urban (5 miles), rural (20 miles), and combination (10 
miles) standard truck roll distances for standard truck rolls avoided with the sum of urban 
(2 miles), rural (4 miles), and combination (3 miles) short truck roll distances for short 
truck rolls avoided. 

5.5.15.4 Organization of Results  
This metric presents total vehicle miles avoided due to DACR by month.  The graph shows the 
total miles avoided per month. 
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5.5.15.5 Data Collection Results  

 
Figure 123. DACR Vehicle Miles Avoided  

5.5.15.6 Summary 
The DACR system and DMS reduced the number of miles driven to address operational 
activities. The average number of miles avoided is estimated at 298.3. 
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5.5.16 CO2 Emissions - Project area (M32-CR) 

5.5.16.1 Objective 
This impact metric provides an estimate of the amount of avoided and/or added CO2 emitted due 
to reduced driving miles resulting from use of DACR technology. 

5.5.16.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• The only significant impacts on CO2 emissions due to DACR are achieved through truck 

rolls avoided since DACR has little direct impact on consumer usage patterns. 

• SOX: 0.00263084 kg/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 

• NOX: 0.00117934 kg/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 

• PM2.5: 0.001 kg/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 

 

5.5.16.3 Calculation Approach  
CO2 reduction was calculated as a function of vehicle miles avoided using emissions data 
specific to AEP Ohio’s distribution service fleet vehicles. 
 
The following queries and methods were used to generate results: 
• Short truck rolls avoided per equipment, equipment type, month, circuit, and substation due 

to DACR technology were calculated by selecting remote equipment switching events that 
occurred during multi-step restoration outages.  These were combined with remote recloser 
switching events that occurred within five minutes of another remote recloser switching 
events on the same circuit. 

•  Standard truck rolls avoided per equipment, equipment type, month, circuit, and substation 
due to DACR technology were calculated by selecting remote recloser switching events 
which occurred more than 5 minutes after another remote recloser switching event on the 
same circuit that did not occur during an outage with a single restoration step. 

• AEP Ohio determined an average fuel economy value for each vehicle. Corrected average 
monthly fuel efficiencies in miles per gallon per service center, month, and fuel type for 
vehicles used by the AEP Ohio Distribution business unit were calculated by calculating 
the average of monthly vehicle mileages divided by monthly quantity of fuel for each 
vehicle. Because some suspect monthly vehicle mileages (i.e., 703,281 miles) were 
received, if the average of monthly vehicle mileages divided by monthly quantity of fuel 
divided by the average monthly average fuel economy value was not between .5 and 2, 
average monthly average fuel economies were substituted for the average of monthly 
vehicle mileages divided by monthly quantity of fuel to calculate the corrected average 
monthly fuel efficiencies. 
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• Tons of CO2 avoided per service center, circuit, and month due to truck rolls avoided due to 
DACR technology were calculated by dividing vehicle miles avoided by the corrected 
average monthly fuel efficiency times (8.8 kg CO2 emissions/gallon for gas engines, 10.1 
kg CO2 emissions/gallon for diesel engines) times 0.00110231131092 (kg to tons 
conversion factor). 

5.5.16.4 Organization of Results  
The following section describes the amount of CO2 avoided due to DACR as a result of truck 
rolls avoided. The graph shows the amount of CO2 avoided due to the net number of truck rolls 
avoided in the Project area. 

5.5.16.5 Data Collection Results  
 

 
Figure 124. DACR CO2 Emissions Avoided for the Project Area 

5.5.16.6 Summary 
Emissions reductions were a direct multiplier of avoided truck miles. CO2 emissions were 
primarily reduced by the automated reconfiguration that happened after outages. Therefore the 
amount of CO2 emissions reduced per month varied greatly depending on weather events.  
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5.5.17 Pollutant Emissions - Project area: SOX, NOX, PM2.5 (M33-CR) 

5.5.17.1 Objective 
This impact metric provides an estimate of the amount of avoided and/or added pollutants 
emitted during driving miles due to use of DACR technology. 

5.5.17.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
The significant impacts on pollutant emissions due to DACR were achieved through truck rolls 
avoided as DACR had little direct impact on consumer usage patterns. 
 
• For the purposes of calculating SOX for this metric, SO2 emissions from vehicles was used 

as the measure for that metric.  

• A CARB limit value of 0.05 grams of Nitrogen Oxides (NOX) per mile  

Source: United States EPA 40 CFR part 86 Subpart S tier 2 Bin 5 Emissions limits at 50,000 
mi 

• 0.01 g PM2.5 emissions/mi conversion factor 
Source: United States EPA 40 CFR part 86 Subpart S tier 2 Bin 5 Emissions limits at 
100,000 mi 

• 0.165 g SOX emissions/gallon for gas engines, .0963 g SOX emissions/gallon for diesel 
engines conversion factor  

Calculated from: sulfur content of gasoline = 30 ppm  

Source: U.S. EPA 40 CFR parts 80, 85, and 86 AMS-FRL-6516-2 

Sulfur content of ULSD diesel fuel = 15 ppm 

Source: U.S. EPA Office of Transportation and Air Quality Emissions Facts (EPA420-F-00-
057) 
Molecular weight of SO2 = 64 g/mole 

Density of gasoline = 2.75 kg/gallon 

Density of diesel fuel = 3.21 kg/gallon 
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5.5.17.3 Calculation Approach  
Pollutant reduction was calculated as a function of vehicle miles avoided using emissions data 
specific to AEP Ohio’s distribution service fleet vehicles. 
 
The following queries and methods were used to generate results: 
• Short truck rolls avoided per equipment, equipment type, month, circuit, and substation due 

to DACR technology were calculated by selecting remote equipment switching events that 
occurred during multi-step restoration outages.  These were combined with remote recloser 
switching events that occurred within five minutes of another remote recloser switching 
events on the same circuit. 

• Standard truck rolls avoided per equipment, equipment type, month, circuit, and substation 
due to DACR technology were calculated by selecting remote recloser switching events 
which occurred more than 5 minutes after another remote recloser switching event on the 
same circuit that did not occur during an outage with a single restoration step. 

• AEP Ohio determined average fuel economy value for each vehicle. Corrected average 
monthly fuel efficiencies in miles per gallon per service center, month, and fuel type for 
vehicles used by the AEP Ohio Distribution business unit were determined by calculating 
the average of monthly vehicle mileages divided by monthly quantity of fuel for each 
vehicle. Because some suspect monthly vehicle mileages (i.e., 703,281 miles) were 
received, if the average of monthly vehicle mileages divided by monthly quantity of fuel 
divided by the average monthly average fuel economy value was not between 0.5 and 2.0, 
average monthly average fuel economies were substituted for the average of monthly 
vehicle mileages divided by monthly quantity of fuel to calculate the corrected average 
monthly fuel efficiencies. 

• Kilograms of NOX avoided per service center, circuit, and month due to truck rolls avoided 
due to DACR technology were calculated by multiplying vehicle mileage avoided 
multiplied by 0.05 g NOX emissions per mile multiplied by 0.001 (g to kg conversion 
factor). 

• Kilograms of PM2.5 avoided per service center, circuit, and month due to truck rolls avoided 
due to DACR technology were calculated by multiplying vehicle mileage avoided 
multiplied by 0.01 g PM2.5 emissions per mile multiplied by 0.001 (g to kg conversion 
factor). 

• Kilograms of SO2 avoided per service center, circuit, and month due to truck rolls avoided 
due to DACR technology were calculated by dividing vehicle miles avoided by the 
corrected average monthly fuel efficiency multiplied by (.165 g SO2 emissions/gallon for 
gas engines, .0963 g SO2 emissions/gallon for diesel engines) multiplied by 0.001 (g to kg 
conversion factor). 

5.5.17.4 Organization of Results  
The following section describes the amount of pollutants avoided due to DACR as a result of 
truck rolls avoided. The graph shows the amount of pollutants avoided due to the net number of 
truck rolls avoided in the Project area. 
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5.5.17.5 Data Collection Results  
 

 
Figure 125. DACR Pollutant Emissions Avoided - Project Area  

5.5.17.6 Summary 
Emissions reductions were a direct multiplier of avoided truck miles. Pollutant emissions were 
primarily reduced by the automated reconfiguration that happened after outages. Therefore, the 
amount of pollutant emissions reduced per month varied greatly depending on weather events.  
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5.5.18 CO2 Emissions– System (M34-CR) 

5.5.18.1 Objective 
This metric provides an estimate of the CO2 emissions that would be avoided by eliminating 
DACR related truck rolls throughout the entire System area. 

5.5.18.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• DACR impacts were consistent per circuit mile between the Project and non-Project areas. 

• 8.8 kg CO2 emissions/gallon for gas engines, 10.1 kg CO2 emissions/gallon for diesel 
engines conversion factor.  

Source: United States EPA Office of Transportation and Air Quality Emissions Facts 
(EPA420-F-05-001) 

5.5.18.3 Calculation Approach  
Project area CO2 reduction was calculated as a function of vehicle miles avoided using emissions 
data specific to AEP Ohio’s distribution service fleet vehicles. This reduction was then 
extrapolated to the System area based on the number of circuit miles in each area. 
 
The following queries and methods were used to generate results: 
Tons of CO2 per service center and month that would be avoided if DACR technology were 
deployed throughout the System area estimated truck rolls avoided were calculated by 
multiplying the tons of CO2 eliminated due to truck rolls avoided due to DACR technology 
multiplied by the ratio of circuit miles without DACR technology to circuit miles with DACR 
technology. 

5.5.18.4 Organization of Results  
The following section describes the amount of CO2 avoided due to DACR as a result of truck 
rolls avoided. The graph shows the amount of CO2 avoided due to the net number of truck rolls 
avoided in the System area. 
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5.5.18.5 Data Collection Results  
 

 
Figure 126. DACR CO2 Emissions Avoided - System Area 
 

5.5.18.6 Summary 
Emissions reductions were a direct multiplier of avoided truck miles. CO2 emissions were 
primarily reduced by the automated reconfiguration that happened after outages. Therefore the 
amount of CO2 emissions reduced per month varied greatly depending on weather events.  
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5.5.19 Pollutant Emissions - System area: SOX, NOX, PM2.5 (M35-CR) 

5.5.19.1 Objective  
This metric provides an estimate of the pollutant emissions that would be avoided by eliminating 
DACR related truck rolls throughout the entire System area. 

5.5.19.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• DACR impacts were consistent per circuit mile between the Project and non-Project areas. 

• A CARB limit value of 0.05 grams of Nitrogen Oxides (NOX) per mile was used. 
Source:  United States EPA 40 CFR part 86 Subpart S tier 2 Bin 5 Emissions limits at 50,000 
mi 

• 0.01 g PM2.5 emissions/mi conversion factor 
Source: United States EPA 40 CFR part 86 Subpart S tier 2 Bin 5 Emissions limits at 
100,000 mi 

• 0.165 g SOX emissions/gallon for gas engines, 0.0963 g SOX emissions/gallon for diesel 
engines conversion factor  

Calculated from: sulfur content of gasoline = 30 ppm  

Source: U.S. EPA 40 CFR parts 80, 85, and 86 AMS-FRL-6516-2 

Sulfur content of ULSD diesel fuel = 15 ppm 

Source: U.S. EPA Office of Transportation and Air Quality Emissions Facts (EPA420-F-00-
057) 

Molecular weight of SO2 = 64 g/mole 

Density of gasoline = 2.75 kg/gallon 

Density of diesel fuel = 3.21 kg/gallon 

5.5.19.3 Calculation Approach  
Project area pollutant reduction was calculated as a function of vehicle miles avoided using 
emissions data specific to AEP Ohio’s distribution service fleet vehicles. This reduction was then 
extrapolated to the System area based on number of circuit miles in each area. 
 
The following queries and methods were used to generate results: 
• Kilograms of SO2 per service center and month that would be avoided if DACR technology 

were deployed throughout the AEP Ohio System area due to truck rolls avoided were 
calculated by multiplying the kilograms of SO2 avoided due to truck rolls avoided due to 
DACR technology by the ratio of circuit miles without DACR technology to circuit miles 
with DACR technology. 

• Kilograms of NOX per service center and month that would be avoided if DACR 
technology were deployed throughout the AEP Ohio System area due to truck rolls avoided 
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were calculated by multiplying the kilograms of NOX avoided due to truck rolls avoided 
due to DACR technology by the ratio of circuit miles without DACR technology to circuit 
miles with DACR technology. 

• Kilograms of PM2.5per service center and month that would be avoided if DACR 
technology were deployed throughout the AEP Ohio System area due to truck rolls avoided 
were calculated by multiplying the kilograms of PM2.5 avoided due to truck rolls avoided 
due to DACR technology multiplied by the ratio of circuit miles without DACR technology 
to circuit miles with DACR technology.  

5.5.19.4 Organization of Results  
The following section describes the amount of pollutant avoided due to DACR as a result of 
truck rolls avoided. The graph shows the amount of pollutant avoided due to the net number of 
truck rolls avoided in the System area. 

5.5.19.5 Data Collection Results  
 

 
Figure 127. DACR Pollutant Emissions Avoided for System Area 

5.5.19.6 Summary 
Emissions reductions were a direct multiplier of avoided truck miles pollutant emissions were 
primarily reduced by the automated reconfiguration that happened after outages. Therefore the 
amount of pollutant emissions reduced per month varied greatly depending on weather events. 
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5.6 DACR Conclusions 
The most significant advantages of DACR were its impacts to reliability and its use during major 
events. Excluding major events, the Project, through the deployment of DACR on 70 circuits, 
was able to reduce Customer Minutes of Interruption (CMI) by 1,602,647 minutes, improving 
reliability for 19,309 consumers in 2012 and by 2,606,781 minutes, improving reliability for 
31,407 consumers in 2013, as shown in the table below. 
 

Project area (70 circuits) 

Year Outages Customers 
Interrupted 

Customer 
Minutes 

Interrupted 

# of Events 
(Automation 
Impacted CI) 

Customers 
Restored via 
Automation 

Customer 
Minutes Avoided  

2010 2,244 163,380 17,940,145 n/a n/a n/a 
2011 1,951 177,147 19,953,044 3 7,427 616,441 
2012 1,838 136,741 17,989,775 16 19,309 1,602,647 
2013 1,903 96,902 11,116,587 27 31,407 2,606,781 

Table 22. DACR Outage Summary  
 
Although weather conditions were the primary driver for changes in SAIFI and SAIDI, AEP 
Ohio could attribute some improvements of these indices from the DACR deployment. DACR 
technology had more impact on SAIFI than on SAIDI. DACR technology was typically able to 
reduce the number of consumers impacted by a specific outage resulting in a reduction in SAIFI. 
CAIDI represented the average outage duration for only those consumers who experienced a 
sustained outage and increased slightly. 
 
Once DACR technology minimized the impact of an outage, consumers not able to be restored 
by DACR experienced similar outage duration as consumers on non-DACR circuits. Service that 
would have been restored quickly in the past could now be restored so quickly that a sustained 
interruption was not experienced. It appeared that consumers who experienced a sustained 
outage were interrupted for a longer duration because CAIDI increased. The reason for the 
increase was that short duration outages were removed from the average that CAIDI represented. 
The fundamental time to repair each fault/outage was not impacted directly by DACR 
technology. 
 
During major events, DACR systems had limited ability to restore consumers within the first 
hour. DACR was initially disabled to ensure crew safety. When safety conditions were resolved, 
the system was enabled to aid restoration. 
 
In addition to the reliability benefits described above, the systems also enabled crew labor 
savings, up to 2 hours per event, and in some instances avoided service calls entirely. This 
provided opportunities for AEP Ohio to perform additional proactive work on circuits in need of 
service, further enhancing reliability. 
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5.7 Lessons Learned 
This section describes lessons learned for DACR technology. Lessons learned are provided for 
Technology, Implementation, and Operations. 

5.7.1 Technology 
• Implementation of a fully integrated vendor solution eliminates the need for multiple 

firmware upgrades and system enhancements. 

• Provide training and process improvement to achieve the full benefit of the technology.  

• Communications or control failures must return the field equipment to local control. 

• Review and analysis of large amounts of data are essential to obtain the full benefits of 
DACR. 

• Expand the design of circuit reconfiguration technologies to account for consumers with 
alternate feed sources, multiple station transformers and switching configurations. 

5.7.2 Implementation  
• Use compatible interface standards when integrating products to reduce failures and 

consumer service delays. 

• Work closely with selected vendors to enhance existing products and facilitate integration 
with legacy equipment and systems. 

• Develop standardized work processes for testing, configuring and commissioning devices 
and automation schemes. 

• Plan and design the implementation of the voltage sensing equipment to enable installation 
on a one-pole structure. 

5.7.3 Operations 
• Standardize technology architecture and upgrades.  

• Establish acceptance testing, customer support, and escalation procedures. 

• Maintain a comprehensive inventory of spare components. 

• Develop a formal process to integrate configuration control. 

• Optimize the system to improve performance.  

• Continue data collection and analysis to quantify long-term impacts to operations and 
maintenance costs. 
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6 DEMONSTRATED TECHNOLOGY – VOLT VAR OPTIMIZATION 
6.1 Purpose 
Volt VAR Optimization (VVO) is a demand-side management program that reduces energy 
consumption and demand without consumer interaction or participation. The primary focus of 
VVO is to reduce circuit demand and energy consumption by flattening and lowering voltage on 
the circuit while maintaining consumer service voltage standards. As a secondary goal VVO also 
attempts to provide reactive power support. Consumers realize lower consumption with the same 
level of comfort and service.  

6.2 Technology 
Traditionally voltage regulation on a circuit has been achieved by setting the voltage at the 
beginning of the circuit high enough so that voltages at the end of the circuit remained within 
acceptable limits. This approach provided acceptable service voltage even during peak load but 
did not result in the most efficient operation of the circuit. Voltage control devices, both 
regulators and shunt capacitors, traditionally have been operated using local set points. While the 
set points may be coordinated, capacitor and voltage regulator controls operate independently 
without communication to a master control that coordinates their operation. These independently 
operating, stand-alone devices may not optimize overall system efficiency. 
 
VVO dynamically controls and coordinates multiple devices to manage both voltage and reactive 
power. System-wide efficiency is achieved by simultaneously coordinating operations using 
continuous measurements from multiple sensors distributed across the circuit. 
 
The following figure shows a typical VVO implementation with components of the VVO system 
identified on a map showing the circuit layout. 
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Figure 128. VVO Example  
As shown in the VVO example, controls are placed on regulators and capacitors with a central 
controller installed at the substation. Distributed sensors, including end-of-line (EOL) monitors, 
supply the central controller with circuit, environmental, or other data. The central controller 
processes this data and instructs the control devices to adjust voltage and power factor on the line 
as needed. The controllers and monitors work together to maintain the voltage and power factor 
at a desirable level, thus reducing overall energy consumption. 
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6.3 Approach and Implementation 
Similar to traditional voltage regulation methods, conceptual approaches to achieve VVO and the 
commercial systems to implement them vary widely. As part of the AEP Ohio gridSMART® 

Demonstration Project, two separate VVO systems were deployed. 
 
Because VVO technology was evolving, commercial vendors had no ready-to-go system in 
place. AEP Ohio selected two vendors in order to gain experience installing the technology and 
to quantify the energy efficiency and demand reduction results. 
  
One of the systems was General Electric Coordinated Volt VAR Control (CVVC). The CVVC 
provided command and control for S&C Electric Company's IntelliCAP® capacitor controllers 
and for Cooper CL6-B voltage regulator controllers while monitoring EOL voltages. Cooper 
CL6-B controllers operated both circuit voltage regulators and line voltage regulators. IntelliCAP 
controllers operated switched capacitor banks. The integrated system provided voltage and VAR 
support to flatten and lower a circuit’s voltage profile while promoting unity power factor. 
 
AEP Ohio also deployed the PCS Utilidata VVO system. The PCS system provided command 
and control for S&C Electric Company's IntelliCAP® capacitor controllers and for Cooper CL6-
B voltage regulator controllers while monitoring EOL voltages. Cooper CL6-B controllers 
operated both circuit voltage regulators and line voltage regulators. IntelliCAP controllers 
operated switched capacitor banks. The integrated system provided voltage and VAR support to 
flatten and lower a circuit’s voltage profile while promoting unity power factor. 
 
Seventeen circuits, including 13kV and 34.5kV circuits, were selected for VVO installations. 
AEP Ohio installed the technology, including upgraded controls on existing regulators and 
capacitors, to determine the effectiveness on non-optimized circuits. 
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6.4 Impact Metrics Required for VVO 
The following impact metrics are associated with the VVO suite of technologies; 10 relate to the 
Project area and 2 relate to the System area. 

Metric 
ID 

Metric 
Scope 

Metric Description VVO 

M03 Project Peak Load and Mix  M03-VVO 

M13 Project Distribution Circuit Load  M13-VVO 

M15 Project Deferred Distribution Capacity Investments  M15-VVO 

M16 Project Equipment Failure Incidents  M16-VVO 

M17 Project Distribution Equipment Maintenance Cost  M17-VVO 

M20 Project Distribution Capacitor Switching Operations  M20-VVO 

M22 Project Distribution Losses (%)  M22-VVO 

M23 Project Distribution Power Factor  M23-VVO 

M32 Project CO2 Emissions M32-VVO 

M33 Project Pollutant Emissions (SOX, NOX, PM2.5)  M33-VVO 

M34 System CO2 Emissions  M34-VVO 

M35 System Pollutant Emissions (SOX, NOX, PM2.5)  M35-VVO 

Table 23. Impact Metrics Addressing VVO Technology Performance 
Refer to the Metrics Analysis for VVO section that follows for details. 
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6.5 Metrics Analysis for VVO 
This section provides details for each VVO metric, and includes those requested by the DOE 
during the definitization of the Cooperative Agreement. Trends were not always observed, 
however data is presented for each metric. 
 
Please note that Project area and System area metrics related to emissions did not include the 
potential impact of shifting load over 24 hours. 

6.5.1 Peak Load and Mix (M03-VVO) 

6.5.1.1 Objective 
The VVO dynamically flattens and lowers circuit voltage profiles to reduce energy consumption 
and demand while maintaining consumer service voltage standards. This impact metric provides 
an overview of residential electrical demand by circuit and the cumulative effects of VVO for 
selected circuits and months. 

6.5.1.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
For circuits where Advance Metering Infrastructure (AMI) meters were available, peak load was 
measured as the sum of AMI real power readings. Where AMI was not available, the 
instantaneous real power supplied to a circuit's voltage regulator, measured in kW, was used.  
Power was recorded every 15 minutes for each of the three phases (A, B, and C). Instantaneous 
real power was computed as the sum of real power over all three phases. 
• For this metric, peak load and mix includes only residential consumers. 

• Hourly VVO On versus VVO Off load was temperature normalized using the approach 
described in the calculation subsection below. Additional weather factors and behavioral 
shifts across seasons/weeks were not considered. 

6.5.1.3 Calculation Approach 
The following queries and methods were used to generate results. 
 
VVO peak load and mix were analyzed in three steps: 
1. Determine temperature correction functions. 
2. Apply temperature corrections. 
3. Bin data into load profiles. 
 
An extract of hourly data was created to select weekday load data from all residential consumers 
on the circuit being analyzed.  Each data point in this extraction consists of a time stamp, average 
residential load aggregated over the entire circuit, and a temperature value. This data extract was 
then subdivided into two sets: one set for days during which the VVO system was operated in a 
day/on day/off sequence, and a second set for days in which the VVO system was operated in a 
steady on or off state.   
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Temperature Normalization 
Temperature normalizations were determined from the steady state data set.  First, the data set 
was grouped by hour of the day. Then, for each hour, an average load was calculated. Next, each 
record was assigned a load ratio equal to load reading divided by average load as well as a 
temperature difference equal to the temperature reading minus 65 degrees F. For each hour, 
scatter plots were generated showing temperature difference versus load ratio and fitted using 
third order polynomial curves. The resulting polynomial functions were then used as temperature 
correction factors in subsequent stages of this analysis. 
 
Temperature Correction 
All raw temperature readings from the experimental day/on day/off data set were corrected using 
third order polynomials described above. Unique correction functions were used for each hour of 
the day as well as for VVO day/on versus VVO day/off times. All load readings were normalized 
to the monthly average temperature for each corresponding hour. 
 
Load Profile 
Load profile graphs were generated for each month by binning temperature corrected load values 
from the day/on day/off data set by hour of the day. Separate series were used to show readings 
when VVO was on versus readings taken when VVO was off. 

6.5.1.4 Organization of Results 
The following section presents load profile graphs for consumers on VVO circuits. These graphs 
each contain two lines, one line showing hours in which VVO was on and one line showing 
hours in which VVO was off. Graphs have been generated for residential consumers from a 
representative circuit for three months. 
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6.5.1.5 Data Collection Results 

 
Figure 129. Temperature Normalized Hourly Load with VVO Day/On and Day/Off (May 
2012)  
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Figure 130. Temperature Normalized Hourly Load with VVO Day/On and Day/Off (June 
2012) 

 
Figure 131. Temperature Normalized Hourly Load with VVO Day/On and Day/Off (Aug 
2012) 
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The preceding graphs represent the impacts of VVO on peak loading.  

6.5.1.6 Summary 
VVO provided an average of approximately 3 percent reduction in residential load for consumers 
with AMI meters during the test period. 
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6.5.2 Distribution Circuit Load (M13-VVO) 

6.5.2.1 Objective 
VVO is expected to reduce total circuit load by flattening and lowering voltage levels while 
maintaining consumer service standards. This metric examines the impact of VVO on circuit 
load. 

6.5.2.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
VVO operated using the day/on day/off sequence for extended time periods during the Project. 
Circuit load was measured as the instantaneous real power measured in kW. Power was metered 
at the station regulator for each circuit every 15 minutes for each of the three phases (A, B, and 
C). Instantaneous real power was computed as the sum of real power over all three phases. 

6.5.2.3 Calculation Approach 
The following queries and methods were used to generate results. 
 
Distribution feed load was analyzed in three steps: 
1. Determine temperature correction functions. 
2. Apply temperature corrections. 
3. Bin data into load profiles. 
 
An extract of hourly data was created to select weekday load data from all residential consumers 
on the circuit being analyzed. Each data point in this extraction consists of a time stamp, average 
residential load aggregated over the entire circuit, and a temperature value. This data extract was 
then subdivided into two sets: One set for days during which the VVO system was operated in a 
day/on day/off sequence, and a second set for days in which the VVO system was operated in a 
steady on or off state.   
 
Temperature Normalization 
Temperature normalizations were determined from the steady state data set.  First, the data set 
was grouped by hour of the day. Then, for each hour, an average load was calculated. Next, each 
record was assigned a load ratio equal to load reading divided by average load as well as a 
temperature difference equal to the temperature reading minus 65 degrees F. For each hour, 
scatter plots were generated showing temperature difference versus load ratio and fitted using 
third order polynomial curves. The resulting polynomial functions were then used as temperature 
correction factors in subsequent stages of this analysis. 
 
Temperature Correction 
All raw temperature readings from the experimental day/on day/off data set were corrected using 
third order polynomials described above. Unique correction functions were used for each hour of 
the day as well as for VVO day/on versus VVO day/off times. All load readings were normalized 
to a temperature of 65 degrees F. 
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Load Profile 
Load profile graphs were generated for each month by binning temperature corrected load values 
from the day/on day/off data set by hour of the day. Separate series were used to show readings 
when VVO was on versus readings taken when VVO was off. 

6.5.2.4 Organization of Results 
The following section presents load profile graphs for VVO circuits based on circuit load data.  
Each graph contains two lines, one showing hours in which VVO was on and one showing hours 
in which VVO was off. Graphs have been generated separately for each month. 

6.5.2.5 Data Collection Results 
The figures on the following pages quantify the impact metric for this section. 
 

 
Figure 132. Circuit 1: Circuit Load 
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Figure 133. Circuit 8: Circuit Load 
The graphs presented above represent the impacts of VVO on distribution circuit load.  

6.5.2.6 Summary 
VVO provided an average of approximately 3 percent reduction in circuit load. 
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6.5.3 Deferred Distribution Capacity Investments (M15-VVO) 

6.5.3.1 Objective 
Utility operators periodically upgrade distribution circuit equipment and systems to satisfy 
demand and take advantage of improved technology. Those upgrades require significant capital 
investment and impact the economics of operation. VVO has the potential to achieve benefits 
that reduce the need for such investments.  This impact metric provides a description of all 
distribution capacity investments that were deferred due to VVO. 

6.5.3.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
Semi-annual variance analysis of distribution capital investment plan was performed. 

6.5.3.3 Calculation Approach 
No planned or deferred distribution capacity investments occurred within the Project area.  
Therefore, a calculation approach was unnecessary. 

6.5.3.4 Organization of Results 
This metric is a study of deferred distribution capacity investments due to VVO. 

6.5.3.5 Data Collection Results 
AEP Ohio reviewed planned projects in Distribution Load Forecasting where VVO circuits 
would be involved.  

6.5.3.6 Summary 
Within the short duration of the Project, there were no planned distribution capacity investments 
within the Project area. Therefore, no projects were deferred as a result of VVO. VVO did not 
influence distribution capacity investments. 
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6.5.4 Equipment Failure Incidents (M16-VVO) 

6.5.4.1 Objective 
Frequent VVO equipment operations may result in increased equipment wear. This impact 
metric provides counts of equipment failure events within the Project and System areas in order 
to quantify these effects. 

6.5.4.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
Circuit and substation Supervisory Control and Data Acquisition (SCADA) reports, event logs, 
and direct equipment notifications/alarms recorded switching operations performed. Any such 
events that resulted in equipment failure contributed to the cumulative count total. Failures for 
the following equipment types are included in this report:  
• Capacitor Banks 

• Distribution Transformers 

• Reclosers 

• Switches 

• Voltage Regulators 

6.5.4.3 Calculation Approach 
The following queries and methods were used to generate results: 
• Equipment failure events per date, equipment type, circuit, and substation were selected by 

linking equipment compatible units to circuit equipment types. 

• Hourly outdoor temperature in degrees Fahrenheit for Port Columbus International Airport 
was collected from the National Oceanic and Atmospheric Administration. 

6.5.4.4 Organization of Results 
The following graphs report the number of equipment failure events that occurred on VVO and 
non-VVO circuits within the Project area. 
• Count of Equipment Failures by Year for VVO vs. non-VVO Circuits 

This graph shows the number of equipment failures per year for each type of equipment 
tracked. The graph is divided into two sections, one showing the 17 VVO circuits, and the 
other showing the rest of the Project area. This represents a population of approximately 80 
circuits. 

• Equipment failure rates for VVO versus non-VVO circuits 
This graph shows the number percent failure rate per year for each type of equipment 
tracked.  Failure rates were calculated as a percentage of the population of each device type 
within the VVO and non-VVO areas. The graph is divided into two sections, one showing 
the 17 VVO circuits, and the other showing the rest of the Project area. This represents a 
total population of approximately 80 circuits. 
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6.5.4.5 Data Collection Results 

 
 

Figure 134. Count of Equipment Failures by Year for VVO vs. Non-VVO Circuits 
 

 
 
Figure 135. Equipment Failure Rate by Year for VVO vs. Non-VVO Circuits 

6.5.4.6 Summary 
There are no statistically significant trends in equipment failure rate due to VVO. There was no 
evidence of either an increase or decrease in failure events attributable to VVO. 
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6.5.5 Distribution Equipment Maintenance Cost (M17-VVO) 

6.5.5.1 Objective 
Reduced consumption can result in reduced costs, deferred capital investments, extended 
equipment life, and reduced fuel consumption. Because VVO reduces consumption, the addition 
of VVO equipment has the potential to affect maintenance costs. With the intent to capture 
expected maintenance costs and/or savings associated with maintaining a VVO system compared 
to traditional distribution operations, this impact metric provides monthly cost data for 
distribution maintenance activities throughout the Project and System areas. 

6.5.5.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
Maintenance assumptions identified here are solely for the purpose of this reporting metric and 
do not follow Generally Accepted Accounting Principles (GAAP). 
• Maintenance costs in the Project area include:  

 Non-warranty asset replacement costs on capacitors, regulators, reclosers, and 
associated controls or protective devices 

 Estimated inspection costs 

 Equipment failures 

 IT infrastructure maintenance costs 

 Telecommunications infrastructure costs 

• Maintenance costs in the System area include: 
 Total asset replacement costs on capacitors, regulators, reclosers, and associated 

controls or protective devices 

 Inspection programs including repairs 

 Equipment failures 

6.5.5.3 Calculation Approach 
The following inputs were used to generate results: 
Distribution equipment maintenance labor, material, vehicle fleet, and construction overhead 
costs per circuit, substation, and work order close date were calculated by summing labor, 
material, vehicle fleet, and construction overhead costs. 
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6.5.5.4 Organization of Results 
The following section reports the maintenance related costs incurred on VVO and non-VVO 
circuits within the System area. 
• Equipment maintenance for VVO circuits 

This graph shows the cost in dollars per month within the VVO Project area for each 
maintenance cost component. This covers a population of 17 circuits. 

• Equipment maintenance costs for non-VVO circuits 
This graph shows the cost in dollars per month outside the VVO Project area but within the 
System area for each maintenance cost component. This covers a population of 
approximately 700 circuits. 

6.5.5.5 Data Collection Results  

 
Figure 136. Breakdown of Monthly Maintenance Costs for All VVO Circuits 
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Figure 137. Breakdown of Monthly Maintenance Costs for All Non-VVO circuits  

6.5.5.6 Summary 
Maintenance costs are driven by factors such as periodic schedules, replacements, and failures. 
There is no evidence of impact on maintenance costs due to the installation and operation of 
VVO. A longer term of observation would be necessary to determine definitively if VVO has a 
measurable impact on maintenance. 

234 
 



Volt VAR Optimization 
 
 

6.5.6 Distribution Capacitor Switching Operations (M20-VVO) 

6.5.6.1 Objective 
VVO controls switched capacitors to achieve targeted power factor settings, switching the 
capacitors on or off to provide reactive power support. Excessive switching operations may lead 
to increased maintenance. This impact metric examines the behavior of switched capacitor banks 
in the Project area by counting how many non-VVO and VVO switching events occurred during 
the Project period. 

6.5.6.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
Distribution capacitor switching events per circuit, substation, and day were selected by counting 
switching events on capacitors. 

6.5.6.3 Calculation Approach 
The following queries and methods were used to generate results: 
• Distribution capacitor switching events per circuit, substation, and day were selected by 

counting switching events on capacitors. 

• The average switching operations per capacitor bank were calculated by summing the total 
number of capacitor switching operations for a day then dividing by the number of 
capacitor banks that switched. If a capacitor bank did not switch, then it was not included 
as part of the average calculation for that particular day.  

6.5.6.4 Organization of Results 
The following section reports the number of capacitor switching events on VVO and non-VVO 
circuits within the Project area.  
• Average Capacitor Switching Operations per Capacitor Bank 

This graph shows per capacitor averages of switching events per day within the VVO 
Project area and also for the non-VVO portion of the Project area. The VVO plot covers a 
population of 17 circuits while the non-VVO plot covers a population of approximately 63 
circuits. 

• Total Count of Capacitor Switching Operations 
This graph shows counts of switching events per day within the VVO portion of the Project 
and for the non-VVO portion of the Project. 
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6.5.6.5 Data Collection Results  

 
      Figure 138. Average Number of Capacitor Switching Events per Capacitor Bank:  
      VVO vs. non-VVO  

 
Figure 139. Total Count of Capacitor Switching Events for VVO: All Non-VVO Circuits  
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6.5.6.6 Summary 
On average, VVO circuits had fewer capacitor switching events than non-VVO circuits in the 
Project area. Several factors may have contributed to this result, including variations across 
circuit configurations. It was also possible that non-VVO circuits were more likely to experience 
oscillatory behavior due to the distributed nature of their local control, where individual set 
points may have triggered multiple events in a short period of time. 

The figure labeled Average Number of Capacitor Switching Events per Capacitor Bank: VVO vs. 
non-VVO shows a small number of capacitors switching sufficient number of times to appear as 
spikes. Further explanations of the three days in which spikes occurred include: 
• On March 8, 2013 a single capacitor bank opened 23 times and closed 23 times resulting in 

46 operations. None of the other 48 capacitor banks on VVO circuits operated on March 8, 
2013. The average switching operations for March 8, 2013 is shown as 46 and appears as a 
spike. 

• On May 7, 2013 there were 3 capacitor banks that operated. Two of the capacitor banks 
had 32 operations each and the other capacitor bank had 34 operations. None of the other 
46 capacitor banks on VVO circuits operated on May 7, 2013. The average switching 
operations for May 7, 2013 is shown as 32.67 and appears as a spike. 

• On May 24, 2013 there was 1 capacitor that operated 20 times. None of the other 48 
capacitor banks on VVO circuits operated on May 24, 2013. The average switching 
operations for May 24, 2013 is shown as 20 and appears as a spike. 
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•  

6.5.7 Distribution Losses (M22-VVO) 

6.5.7.1 Objective 
VVO reduces circuit demand by flattening and lowering circuit voltages, primarily by using 
voltage regulators. At the same time, VVO actively controls capacitor banks to maintain circuit 
power factors near unity. 
 
Electrical loss in the circuit can be investigated using the difference between power provided by 
the circuit regulator and the total power delivered to the consumer loads. This impact metric 
presents the difference between circuit load measured at the substation via the SCADA system 
and the metered load measured through AMI. The net result is the total non-AMI metered load 
on the circuit.  Distribution losses are a component of total non-AMI metered load and are 
expected to be impacted by VVO. 

6.5.7.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
There are many elements that contribute to differences between circuit load data and the 
summation of AMI metered data for each circuit. These factors include:  
• Consumers without AMI meters (mechanical meters) 

• Unmetered load, such as street lights 

• Electricity theft 

• Circuit line losses 
 
Note: Factors that AMI does not measure are considered non-technical losses. AMI does not 
measure consumers without AMI meters, unmetered load, or electricity theft. Factors that AMI 
does measure are considered technical losses. AMI does measure circuit line losses. 

6.5.7.3 Calculation Approach 
The following queries and methods were used to generate results: 
Using concurrent measurements available on 15-minute intervals, Distribution losses were 
calculated by subtracting total real AMI power from real circuit power. This represents both 
technical and non-technical losses. Next, a comparison was made showing changes in non-AMI 
metered load associated with VVO status (on versus off). 
 
The following queries and methods were used to generate results: 
Distribution unmetered load, energy theft, and losses were calculated by subtracting the 15-
minute interval readings from AMI meters on a circuit from the circuit load measured at the 
circuit regulator.  These calculations were repeated per circuit, by VVO controller status, and by 
time. 
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6.5.7.4 Organization of Results 
• AMI meter penetration by circuit 

This graph shows the percentage of meters that are AMI meters on each VVO circuit.  
Further analysis of non-AMI metered load is conducted only for circuits that have at least 
90 percent AMI meter penetration. 

 
• Calculation of non-AMI metered power 

This graph illustrates the calculation of non-AMI metered power by showing measured 
circuit load, a summation of the AMI interval data for that circuit, and the non-AMI 
metered power for a representative distribution circuit. Non-AMI metered power is 
calculated as circuit load minus AMI summation. 

 
• Non-AMI metered load 

The following section shows the non-AMI metered load on selected VVO circuits. More 
detailed analysis is provided for times during which AEP Ohio implemented a day/on 
day/off sequence. This strategy consists of alternately enabling and disabling the VVO 
system for 24-hour periods in order to demonstrate differences in circuit load, consumer 
energy consumption, and losses. 

 
A table of statistics is provided for circuits that exhibit day/on and day/off behavior. 

6.5.7.5 Data Collection Results  

 
Figure 140. Percentage of AMI Meters for Each VVO Circuit  
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Figure 141. Circuit 1: Calculation of Non-AMI Metered Power  

 
Figure 142. Circuit 1: Non-AMI Metered Power vs. Time  
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The summary statistics for Circuit 1 are:  
 

Circuit 1 
Volt-VAR Status Avg Power % Difference 
On 171.0187 

11.0% Off 192.2625 
Outliers Removed     
On 171.0187 

6.8% Off 183.4525 
Table 24. Circuit 1 Statistics 

 
 
 

 
Figure 143. Circuit 2: Non-AMI Metered Power vs. Time (Apr-Aug)  
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Figure 144. Circuit 8: Non-AMI Metered Power vs. Time  
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Figure 145. Circuit 11: Non-AMI Metered Power vs. Time  
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Figure 146. Circuit 9: Non-AMI Metered Power vs. Time  

 

244 
 



Volt VAR Optimization 
 

 
Figure 147. Circuit 10: Non-AMI Metered Power vs. Time  
 

245 
 



Volt VAR Optimization 
 

 
Figure 148. Circuit 13: Non-AMI Metered Power vs. Time  

6.5.7.6 Summary  
For the majority of circuits, non-AMI metered load was reduced during VVO On periods. This 
reduction was associated with both losses and reductions in other non-AMI metered loads, such 
as street lights). For Circuit 1, there was approximately a 4 percent reduction in non-metered 
load. 
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6.5.8 Distribution Power Factor (M23-VVO) 

6.5.8.1 Objective 
VVO reduces circuit demand by flattening and lowering circuit voltages, primarily by using 
voltage regulators. Simultaneously, VVO actively controls capacitor banks to maintain circuit 
power factors near unity. Power factor is an indication of how efficiently the distribution system 
is delivering power. A system operating at unity power factor delivers power more efficiently 
than one operating at either a leading or lagging power factor. This impact metric presents the 
reported power factor for circuits across various time ranges. 

6.5.8.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
This measure has not been adjusted for any load, weather, or seasonal factors. 

6.5.8.3 Calculation Approach 
The following queries and methods were used to generate results: 
• Power factors per circuit, VVO controller status, and time were calculated by dividing the 

real power on the circuit by the apparent power on the circuit. 

• Hourly outdoor temperature in degrees Fahrenheit for Port Columbus International Airport 
was collected from the National Oceanic and Atmospheric Administration. 

6.5.8.4 Organization of Results 
The following section reports power factors achieved for VVO circuits when VVO was on 
versus off.  Each plot shows circuit load, power factor when lagging, and power factor when 
leading color coded by VVO status. 
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6.5.8.5 Data Collection Results  

 
Figure 149. Circuit 1: Power Factor  
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Circuit VVO On Average 
Power Factor 

VVO Off Average  
Power Factor 

Circuit 9 0.95316 0.93325 

Circuit 13 0.96541 0.9783 

Circuit 14 0.98753 0.99159 

Circuit 15 0.98468 0.98457 

Circuit 17 0.98188 0.98431 

Circuit 16 0.99479 0.98604 

Circuit 3 0.99087 0.97011 

Circuit 4 0.97623 0.98803 

Circuit 6 0.96716 0.98603 

Circuit 7 0.94318 0.95313 

Circuit 12 0.98488 0.99303 

Circuit 5 0.97937 0.97898 

Circuit 11 0.98253 0.98361 

Circuit 8 0.96501 0.97264 

Circuit 1 0.99171 0.9721 

Circuit 2 0.9929 0.99286 

Circuit 10 0.98371 0.97398 

Table 25. Average Power Factor by Circuit -2012  
 

6.5.8.6 Summary 
VVO On shifted power factors from leading toward lagging compared to VVO Off cases. The 
VAR flows were more stable with VVO On. The overall power factor across all circuits did not 
significantly deviate from unity.  
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6.5.9 CO2 Emissions - Project area (M32-VVO) 

6.5.9.1 Objective 
VVO has the potential to dynamically control voltage and power factor on circuits to reduce 
consumer energy consumption and losses. This reduced demand can result in energy 
conservation, reduced costs, deferred capital investments, extended equipment life, and reduced 
fuel consumption. The reduction in energy consumption from VVO is expected to have a direct 
impact on reduced CO2 emissions through a reduction in emissions from power generation 
plants. This impact metric presents the CO2 emissions reduction as a function of conserved 
energy in the Project area. 

6.5.9.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• The day/on day/off sequence operated over a subset of the Project. Load reductions for the 

remainder of the Project were consistent with those measured during the testing period. 

• CO2: 0.00068956 tons/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 

 

6.5.9.3 Calculation Approach 
The following queries and methods were used to generate results: 
Energy reduction due to VVO was estimated for each VVO circuit during times when the system 
was operated in a day/on day/off sequence. 
 
Because VVO was operated in a day/on day/off sequence over a subset of the year, up to 11 
percent of circuit load readings produced load reduction estimates. In order to accurately convey 
the potential energy savings associated with VVO, these load reduction values were then 
extrapolated to the full number readings in a year in order to calculate what the load reduction 
would have been if the VVO systems operated continuously during the year.  
 
CO2 avoided due to VVO was then calculated by multiplying load reduction by a typical 
generation emissions factor of 0.68956 metric tons per MWh. 

6.5.9.4 Organization of Results 
The following section provides an estimate of CO2 reduction due to the reduction in energy use 
associated with the VVO system. Positive numbers indicate a reduction in CO2 emissions. 
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6.5.9.5 Data Collection Results 
The results below quantify the impact metric for this section. 
Presentation of CO2 Avoided: 

• Total energy usage avoided during VVO day/on day/off sequence: 3,912 MWh 

• Total CO2 emissions avoided during VVO day/on day/off sequence: 2,679 Metric Tons 

• Energy avoided if VVO had been on continuously for all 17 Project area circuits 
throughout 2012 and 2013: 36,360 MWh  

• CO2 avoided if VVO had been on continuously for all 17 Project area circuits throughout 
2012 and 2013: 25,072 metric tons 

6.5.9.6 Summary 
CO2 emissions reduced due to VVO are a conversion of total energy conserved into equivalent 
CO2 reductions. This assessment indicated that during the VVO day/on day/off sequence, 2,679 
metric tons of CO2 were avoided, and that if VVO had been on continuously throughout 2012 
and 2013 for all 17 Project circuits, 25,072 metric tons of CO2 would have been avoided. 
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6.5.10 Pollutant Emissions - Project area: SOX, NOX, and PM2.5 (M33-VVO) 

6.5.10.1 Objective 
VVO has the potential to dynamically control voltage and power factor on circuits to reduce 
consumer energy consumption and losses. This reduced demand can result in energy 
conservation, reduced costs, deferred capital investments, extended equipment life, and reduced 
fuel consumption. The reduction in energy consumption from VVO is expected to have an 
impact on reduced pollutant emissions through a reduction in emissions from power generation 
plants. This impact metric presents the pollutant emissions reduction as a function of conserved 
energy in the Project area. 

6.5.10.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• The day/on day/off sequence operated over a subset of the Project. Load reductions for the 

remainder of the Project were consistent with those measured during the testing period. 

• SOx: 0.00263084 kg/kWh 

Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 
• NOx: 0.00117934 kg/kWh 

Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 
• PM2.5: 0.001 kg/kWh 

Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 
 

6.5.10.3 Calculation Approach 
The following queries and methods were used to generate results: 
Energy reduction due to VVO was estimated for each VVO circuit during times when the system 
was operated in a day/on day/off sequence. 
 
Because VVO was operated in a day/on day/off sequence over a subset of the year, up to 11 
percent of circuit load readings produced load reduction estimates. In order to accurately convey 
the potential energy savings associated with VVO, these load reduction values were then 
extrapolated to the full number readings in a year in order to calculate what the load reduction 
would have been if the VVO systems operated continuously during the year. 
 
NOX avoided due to VVO was calculated by multiplying load reduction by a typical generation 
emissions factor of 1.17934 kg per MWh. 
 
PM2.5 avoided due to VVO was calculated by multiplying load reduction by a typical generation 
emissions factor of 1.0 kg per MWh. 
 
SOX avoided due to VVO was calculated by multiplying load reduction by a typical generation 
emissions factor of 2.63084 kg per MWh. 
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6.5.10.4 Organization of Results 
The following section provides an estimate of pollutant reductions due to the reduction in energy 
use associated with the VVO system. Positive numbers indicate a reduction in pollutant 
emissions. 

6.5.10.5 Data Collection Results  
The results below quantify the impact metric for this section: 
• Total energy usage avoided during VVO day/on day/off sequence: 3,912 MWh 

• Total NOx emissions avoided during VVO day/on day/off sequence: 4,613 kg 

• Total PM2.5 emissions avoided during VVO day/on day/off sequence: 3,912 kg 

• Total SOX emissions avoided during VVO day/on day/off sequence: 10,291 kg 

• Energy avoided if VVO had been on continuously for all 17 Project area circuits 
throughout 2012 and 2013: 36,360 MWh 

• NOx avoided if VVO had been on continuously for all 17 Project area circuits throughout 
2012 and 2013: 42,881 kg 

• PM2.5 avoided if VVO had been on continuously for all 17 Project area circuits throughout 
2012 and 2013: 36,360 kg 

• SOx avoided if VVO had been on continuously for all 17 Project area circuits throughout 
2012 and 2013: 95,657 kg 

6.5.10.6 Summary 
Pollutant emissions are a direct multiplier of energy reductions. This analysis indicated that 
operating VVO full time for the Project circuits would have resulted in annual reductions of 
42,881 kg of NOX, 36,360 kg of PM2.5, and 95,657 kg of SOX during 2012 and 2013. 
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6.5.11 CO2 Emissions - System area (M34-VVO) 

6.5.11.1 Objective 
The previous two subsections examined the influence of VVO on pollutant emissions in the 
Project area. This impact metric extends that work by estimating the potential for reducing CO2 
emissions if VVO were deployed across the System area. 

6.5.11.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• The day/on day/off sequence operated over a subset of the Project. Load reductions for the 

remainder of the Project were consistent with those measured during the testing period. 

• VVO would have a similar impact on circuit load for circuits in the non-Project area. 

• CO2: 0.00068956 tons/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 

6.5.11.3 Calculation Approach 
The following queries and methods were used to generate results: 
 
Energy reduction due to VVO was estimated for each VVO circuit during times when the system 
was operated in a day on/day off sequence. This estimation is explained under M13, Distribution 
Circuit Load. 
 
Because VVO was operated in a day on/day off sequence over a subset of the year, roughly 10.9 
percent of circuit load readings produced load reduction estimates. In order to accurately convey 
the potential energy savings associated with VVO, these load reduction values were then 
extrapolated to the full number readings in a year and to the full number of circuits in the System 
area. 
 
CO2 avoided due to VVO was then calculated by multiplying extrapolated energy reduction by a 
typical generation emissions factor of 0.68956 metric tons per MWh. To determine the CO2 
reductions that would have been obtained if the entire System area had deployed VVO for all of 
2012, the Project area reductions are multiplied by a factor of 25.159, which is the ratio of total 
energy in the system to energy in the VVO circuits. 

6.5.11.4 Organization of Results 
The following section provides an estimate of potential CO2 reduction due to the reduction in 
energy use associated with the VVO system. These results are an extrapolation to the AEP Ohio 
System area based on energy reductions observed in the Project area. Positive numbers indicate a 
reduction in CO2 emissions. 

6.5.11.5 Data Collection Results 
Presentation of CO2 Avoided: 
System extrapolation of VVO energy reduction for 2012 and 2013: 882,504 MWh 
System extrapolation of VVO CO2 emissions avoided: for 2012 and 2013: 608,539 metric tons 
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6.5.11.6 Summary 
System CO2 reductions projections indicated that 608,539 metric tons of CO2 emissions would 
have been avoided if VVO operated continuously across the entire System area for all of 2012 
and 2013. 
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6.5.12 Pollutant Emissions - System area: SOX, NOX, and PM2.5 (M35-VVO) 

6.5.12.1 Objective 
The previous subsection estimated the potential for reducing CO2 emissions if VVO were 
deployed across the System area. This impact metric provides similar estimates for additional 
pollutant emissions. 
 

6.5.12.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data: 
• The day/on day/off sequence operated over a subset of the Project. Load reductions for the 

remainder of the Project were consistent with those measured during the testing period. 

• VVO would have a similar impact on circuit load for circuits in the non-Project area. 

• SOX: 0.00263084 kg/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 

• NOX: 0.00117934 kg/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West Region 

• PM2.5: 0.001 kg/kWh 

• Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West 
Region 

6.5.12.3 Calculation Approach 
The following queries and methods were used to generate results. 
 
Energy reduction due to VVO was estimated for each VVO circuit during times when the system 
was operated in a day/on /day/off sequence. This estimation is explained under M13, 
Distribution Circuit Load. 
 
Because the AEP Ohio day/on day/off sequence only operated over a subset of the year, roughly 
10.9 percent of circuit load readings produced load reduction estimates. In order to accurately 
convey the potential energy savings associated with VVO, these load reduction values were 
extrapolated to the full number of readings in a year and to the full number of circuits in the 
System area in order to calculate what the potential load reduction would be if VVO systems 
were installed System-wide and operated continuously.  
 
NOX avoided due to VVO was calculated by multiplying load reduction by a typical generation 
emissions factor of 1.17934 kg per MWh. 
 
PM2.5 avoided due to VVO was calculated by multiplying load reduction by a typical generation 
emissions factor of 1.0 kg per MWh. 
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SOX avoided due to VVO was calculated by multiplying load reduction by a typical generation 
emissions factor of 2.63084 kg per MWh.  
 
To determine the pollutant reductions that would have been obtained if the System area had 
deployed VVO for all of 2012, the Project area reductions are multiplied by a factor of 25.159, 
which is the ratio of total load in the system to load in the VVO circuits. 

6.5.12.4 Organization of Results 
The following section provides an estimate of potential pollutant reduction due to the reduction 
in energy use associated with the VVO system. These results are an extrapolation to the System 
area based on energy reductions observed in the Project area. Positive numbers indicate a 
reduction in pollutant emissions. 

6.5.12.5 Data Collection Results 
The results below quantify the impact metric for this section: 
• System extrapolation of VVO energy reduction for 2012 and 2013: 882,504 MWh 

• System extrapolation of VVO NOX emissions avoided for 2012 and 2013: 1,041,000 kg 

• System extrapolation of VVO PM2.5 emissions avoided for 2012 and 2013: 883,000 kg 

• System extrapolation of VVO SOX emissions avoided for 2012 and 2013: 2,322,000 kg 

6.5.12.6 Summary 
System pollutant reductions projections indicated that using VVO continuously for all System 
circuits would have resulted in annual reductions of 2,322,000 kg of SOX, 1,041,000 kg of NOX, 
and 883,000 kg of PM2.5 and during 2012 and 2013. 
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6.6 VVO Conclusions 
Voltage standards exist in the electric utility industry, such as ANSI C84.1, that mandate an 
acceptable voltage range at the secondary of the distribution transformer. VVO enables a 
reduction of the average voltage that each consumer on the circuit receives, thereby reducing the 
annual energy consumption of the circuit while maintaining the quality of service to the 
consumer.  
 
Based on Project results, AEP Ohio estimates that a 3 percent reduction in energy consumption 
and a 2 to 3 percent reduction in peak demand can be obtained on those circuits on which VVO 
technology is deployed. 

6.7 Lessons Learned 
During the Project, implementing VVO technology was new to AEP Ohio and there were lessons 
learned regarding implementation, operations, and the technology itself. This section shows 
those lessons learned. AEP Ohio addressed these issues during the Project and continues to use 
this experience to develop processes and guidelines for future VVO deployments. Lessons 
learned are provided for Technology, Implementation, and Operations. 

6.7.1 Technology  
• Systems engineering for new technology requires planning. 

• Smart grid technologies require a high level of team coordination during commissioning 
and engineering phases. This includes system planners, circuit engineers, 
telecommunications, security dispatch centers, distribution control engineers. 

• Work with vendors to ensure equipment interoperability. It is important for utilities and 
vendors to work together to enhance smart equipment so multiple devices become 
interoperable. Continuous updates to vendor equipment and specifications create 
challenges. Therefore, it is critical to ensure proper integration with existing systems. 

• The use of three-phase regulators is not recommended. Some technical issues were 
encountered working with three-phase regulators and other legacy components. 

• Turn data into action. The introduction of new smart grid devices and the ability to 
communicate information has created large amounts of data and log files. This includes 
system operation and equipment performance data. IT reporting and data mining 
applications need to be developed to turn this data into actionable knowledge. 

6.7.2 Implementation  
• Include performance specifications in all Requests for Proposal (RFP) to gauge market 

readiness. 

• Testing, configuring and commissioning devices and automation schemes is more time 
consuming and complicated than stand-alone devices. 

• Validate vendor system claims including acceptance testing, consumer support, and 
escalation procedures 
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• Establish compensation structures to better ensure that vendors achieve anticipated 
outcomes. 

• Deploying DACR and VVO in the same area created unforeseen challenges: 
 VVO was designed and constructed first before circuit reconfiguration in sub-optimal 

footprint. 
 Initial VVO applications required stable topology. 
 Today interoperability between DACR/VVO means VVO is turned off prior to allowing 

DACR to change topology. 

6.7.3 Operations 
Establish interoperability between DACR and VVO to enable VVO to remain on even when 
DACR changes topology. 
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7 DEMONSTRATED TECHNOLOGY – ELECTRIC VEHICLES 
7.1 Purpose 
The introduction of electric vehicles into the consumer market has raised questions around grid 
and load preparedness for mass market adoption. AEP Ohio set out to gain a better understanding 
of the charging behavior of drivers of plug-in electric vehicles (PEVs) and to explore how 
consumer programs, Electric Vehicle Supply Equipment (EVSE) locations, and supply level 
affect users’ charging behavior. AEP Ohio also examined the impact that electric vehicles may 
have on the utility system. 

7.2 Technology 
AEP Ohio deployed PEVs - nine Chevrolet Volt plug-in hybrid electric vehicles (PHEVs), one 
CODA battery electric vehicle (BEV), two Mercedes Smart Electric Drive BEVs, and one Ford 
Escape modified to be a PHEV. The Ford Escape and Mercedes Smart Electric Drives were 
withdrawn from the program due to ongoing mechanical issues.  
 
AEP Ohio deployed 36 charging stations. Level 1 (L1) EVSEs usually are provided by the 
vehicle manufacturer and use a standard 120V electrical outlet.  L1 EVSEs typically charge at a 
rate of about 1.4 kW. Thirteen 120 V outlets were installed among four workplace locations for 
L1 charging. AEP Ohio selected Ecotality’s Blink EVSE as the Level 2 (L2) charger. Level 2 
chargers were available in both wall mount and pedestal models, required installation, and 
utilized a 240 volt AC input electrical outlet. The Blink EVSEs had communications built in and 
were able to collect charging data including event times and energy provided. Twenty-three L2 
EVSEs were installed in a combination of residential, workplace, and public locations. L2 
EVSEs typically charge at a rate of about 3.3 kW or 6.6 kW depending on the vehicle. On L2, 
the Volts charge at 3.3 kW while the CODA charges at 6.6 kW. 
 
AEP Ohio collaborated with the Electric Power Research Institute (EPRI) to implement an on-
board vehicle data acquisition system to gather vehicle performance information for both 
charging and driving events, which was used on the Chevrolet Volts.  

7.3 Approach and Implementation 
AEP Ohio reviewed various vehicle manufacturers to evaluate all technologies. However, due to 
market penetration and vehicle availability, vehicle options were limited. Ten vehicles were 
selected and deployed for the majority of the project, which included nine Chevrolet Volts and 
one CODA.   
 
Participants were chosen from AEP employees who lived in the AEP Ohio gridSMART® 
Demonstration Project (Project) area. Each participant was assigned a vehicle to drive for at least 
one year. Some vehicles were then redistributed to a new set of participants. A total of sixteen 
employees were assigned vehicles during the Project. 

261 
 

 



Electric Vehicles 
 
 
AEP Ohio also explored the installation process of EVSE infrastructure. Participants with a 
range of demographics were chosen for the residential installations, including a residential 
apartment complex. AEP Ohio provided an Advanced Metering Infrastructure (AMI) meter for 
all installations to gather energy consumption data for charging the PEVs. Most of the residential 
installations were non-billing meters, but two participants received actual EVSE billing meters. 
One of the two participants had a second meter installed in parallel to the residential meter, while 
the other had the meter installed in an apartment complex.  
 
Each participant was provided with an L2 EVSE at their residence. Participants were required to 
be on a variable rate tariff to examine the effect pricing might have on their charging behavior. 
Three tariffs were available to the participants including:  
 
TOD2 – Two Tier 
Peak  1 p.m. – 7 p.m., M-F June 1 – September 30 
Off Peak  All other time 

TOD3 – Three Tier with Critical Peak Price 

High 1 p.m. – 7 p.m., M-F, June 1 – September 30 
Medium 7 a.m. – 1 p.m. & 7 p.m. – 9 p.m., M-F, June 1 – September 30 

Low  Midnight – 7 a.m. & 9 p.m. to Midnight, M-F, June 1 – September 
30 

Critical Peak Pricing (CPP) Up to 15 events/year, up to 5 hours/event  

RTPda – Price calculated at 5-minute intervals 

Table 26. Variable Rate Tariffs 
 
A combination of L1 and L2 locations were provided at four AEP work locations in central Ohio 
as follows: 
• One Riverside Plaza (1RP): 2 L2s and 5 L1s 

• 850 Tech Center Dr., Gahanna (GAH): 2 L2s and 3 L1s 

• Ohio Operations Center (OOC): 2 L2s and 3 L1s 

• Dolan Technology Center (DTC): 1L2 and 2 L1s 
 
The participants were given the option to use workplace charging for a fee of $10 per month.  If 
enrolled, they were assigned an L1 parking location with unlimited charging. The L2 EVSEs 
were not assigned but were available for use by any participant enrolled in workplace charging 
although they were requested to limit their L2 use to no more than 4 hours per day. A Blink Fleet 
card was required to use the L2 workplace EVSEs that enabled the project to track usage by 
participant. 
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Finally, five L2 EVSEs were installed for public use as follows: 
• 2 units at a Walmart/Sam’s Club location 
• 2 units at Easton Town Center 
• 1 unit at the GAH office 

 
All participants were given a Blink Public card (an identification card designed to authenticate 
the user’s charging session) that allowed them to charge at these locations and to track their 
charging events. Blink cards were provided to the proprietors allowing non-Project participants 
to use the EVSEs. Any Blink member with a card could also use these EVSEs, making the 
chargers open to the public. These public chargers allowed charging at no cost to the consumer.  
 
In all cases (residential, workplace, and public), metering and EVSE data was captured providing 
a data set of charging behavior. 

7.4 Analysis 

7.4.1 Cost of Installation 
The figure below shows the average installation cost for residential, workplace, and public 
locations.   
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Figure 150. Average Installation Costs 
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The apartment location was not included because it was significantly different from a residential 
installation. Its cost was $3,675.00 ($2,180.00 contractor cost and $1,495.00 EVSE cost). The 
DTC workplace location was not included because the labor was performed by employees. 

7.4.2 Grid Impact – Level 1 and Level 2 Charging 
A concern an electric utility may have as PEVs are adopted is the effect charging will have on 
the distribution assets’ ability to serve the increased demand.   

7.4.2.1 Objective 
AEP evaluated the impact that PEV charging may have on residential transformers. The 
participants were served from distribution transformers ranging in size from 25 kVA to 100 
kVA.   

7.4.2.2 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
Transformer load was modeled using actual 15-minute load profiles from two one-year periods: 
• Period 1 was October 1, 2011 to September 30, 2012 that included a summer with multiple 

extremely hot days. 

• Period 2 was October 1, 2012 to September 30 2013 and included a mild summer.   
 
The summer temperatures were of interest because peak summer loading could be a limiting 
factor for an asset’s ability to carry load and to achieve its desired life expectancy. 

7.4.2.3 Calculation Approach 
An average annual vehicle profile at 15-minute intervals was calculated based on the residential 
charging profiles from Project vehicles. 

The method used to determine a calculated transformer life in years was to add the average 
annual vehicle load profile to a given transformer’s load profile for the designated period. This 
calculation was performed for zero to ten PEVs, simulating the effect of no PEVs on the 
transformer up to ten to determine if the transformer life would fall below AEP’s guideline of 30 
years. This was done for both periods and for each of the 16 transformers considered.   

7.4.2.4 Results 
According to the simulation, 14 of the transformers could accommodate at least 10 PEVs for 
both periods. One 25 kVA transformer was limited to 9 PEVs for Period 1. Another 25 kVA 
transformer was limited to 4 PEVs during Period 1 and 8 PEVs during Period 2. The table below 
shows the impact of PEV charging on transformer life expectancy. The red cells indicate life 
expectancy less than AEP’s guideline of 30 years. 
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0 1 2 3 4 5 6 7 8 9 10
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)
Year 1 (10/1/11-9/30/12)
Year 2 (10/1/12-9/30/13)

14 50

15 50

16 75

11 75

12 50

13 25

8 25

9 37.5

10 50

5 37.5

6 50

7 25

2 50

3 25

4 100

Xfmr # kVA
Rating

Period Number of PEVs Simulated on the Transformer

1 50

 
Table 27. The Impact of PEV Charging on Transformer Life Expectancy 
The participants had the option to enroll in workplace charging for a $10 monthly fee. Nine 
participants enrolled in workplace charging for the entire time they had a vehicle while three 
participants did so for part of the time they had a vehicle. Four participants chose not to enroll in 
workplace charging. Average charging profiles were created based on a participant’s workplace 
charging enrollment status. 

Figure 151 through Figure 156 represent average residential and workplace charging profiles for 
the groups of participants with and without workplace charging. The plots include bars showing 
the first standard deviation. The general shape of the demand profiles for both groups during 
weekday and weekend charging is similar. The group without workplace charging experienced 
an average peak demand of 1.0 kW at 8:00 p.m. while the group with workplace charging 
experienced an average peak demand of 0.7 kW at the same time.   

A significant standard deviation during charging periods indicated a high variability of actual 
charging demand. 
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Figure 151. Average Residential Weekday Profile of Group without Workplace Charging 
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Figure 152. Average Residential Weekday Profile of Group with Workplace Charging 
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Figure 153. Average Workplace Weekday Profile of Group with Workplace Charging 
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Figure 154. Average Combined Residential and Workplace Weekday Profile of Group with 
Workplace Charging 
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Figure 155. Average Residential Weekend Profile of Group without Workplace Charging 
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Figure 156. Average Residential Weekend Profile of Group with Workplace Charging 
 

268 
 

 



Electric Vehicles 
 

The figure below represents the average annual energy consumption by location type. The 
residential locations were divided into two groups of those with and without workplace charging. 
The group without workplace charging received more energy at home than the group with 
workplace charging. The Level 2 workplace units were used to deliver an average of 1161 kWh 
annually compared to 325 kWh for the Level 1 locations. The public Level 2 units delivered an 
average of 1497 kWh. 

 
 

Figure 157. Average Annual Energy Consumption by Location 
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7.4.3 Grid Impact – Level 1 Only Charging 

7.4.3.1 Objective 
AEP Ohio evaluated the effect of replacing Level 2 with Level 1 charging based on the amount 
of energy delivered during a charge event.   

7.4.3.2 Calculation Approach 
The following queries and methods were used to generate results. 
AEP Ohio determined how much energy was delivered for each Level 2 charging event and then 
how much energy would have been delivered during the same connection time using a Level 1 
charging rate. The approximate Level 2 charge rate for the Volt is 3.3 kW and for the Coda was 
6.6 kW, compared to an approximate Level 1 charge rate of 1.44 kW for the Volt and 1.47 kW 
for the Coda.  This comparison was performed separately for the Coda and the Volt due to the 
different Level 2 charge rates. It was also performed separately for residential, workplace, and 
public charging since the typical connection times one might spend at each type of location may 
differ. 

7.4.3.3 Results 
The figures below represent the probability that a given percentage of a Level 2 charge could 
have been obtained using Level 1 charging at residential locations. For the Volt, 40 percent of an 
L2 charge would have been obtained about 18 percent of the time, while 100 percent of the L2 
charge would have been obtained 70 percent of the time. For the Coda, 100 percent of the L2 
charge would have been obtained 58 percent of the time. 
 
 

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Volt Percent of Level 2 Charge with Level 1 Residential Charging

Pr
ob

ab
ili

ty
 o

f O
cc

ur
re

nc
e 

(%
)

% of Level 2 Charge Possible with Level 1
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100
Coda Percent of Level 2 Charge with Level 1 Residential Charging

Pr
ob

ab
ili

ty
 o

f O
cc

ur
re

nc
e 

(%
)

% of Level 2 Charge Possible with Level 1  
Figure 158. Residential Percent of Level 2 Charge Possible with Level 1 Charging on Two 
Vehicle Models 
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The following figures represent the probability that a given percentage of a Level 2 charge could 
have been obtained using Level 1 charging at a workplace location. For the Volt, 100 percent of 
an L2 charge would have been obtained about 54 percent. For the Coda, 100 percent of the L2 
charge would have been obtained 66 percent of the time. 
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Figure 159. Workplace Percent of Level 2 Charge Possible with Level 1 Charging on Two 
Vehicle Models 
 
The figures below represent the probability that a given percentage of a Level 2 charge could 
have been obtained using Level 1 charging at a public location. For the Volt, 50 percent of an L2 
charge would have been obtained 60 percent of the time, while 100 percent of the L2 charge 
would have been obtained 23 percent of the time. For the Coda, 30 percent of the L2 charge 
would have been obtained 67 percent of the time. 
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Figure 160. Public Percent of Level 2 Charge Possible with Level 1 Charging on Two 
Vehicle Models 
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7.4.4 Grid Impact – Public Locations 

7.4.4.1 Assumptions 
This section contains assumptions made when collecting, analyzing, and presenting the data. 
 
Level 1 charging is sufficient for the home and workplace locations since the time generally 
spent there is long enough to obtain a full charge while locations of shorter stays, like those at 
public locations, would benefit from Level 2 charging. 

7.4.4.2 Objectives 
AEP looked at what impact the charging of PEVs might have on public Level 2 charger 
locations. 

7.4.4.3 Results 
The figure below represents the total energy used to charge vehicles by public locations by 
month in kWh. There was a significant difference in the amount of energy used between these 
two locations even though they were located in close proximity to one another.  The location 
could be a key to EVSE usage especially during the early adoption period of PEVs. 
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Figure 161. Energy Consumed by Month at Public EVSE Locations 
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The following figure shows the number of charging events at each of the public locations by 
month. There was a significant increase in the number of charge events per month over the 
course of the Project at the Easton location, while the Walmart location experienced a lower 
utilization. 
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Figure 162. Number of Charging Events by Month at Public EVSE Locations 
 

7.4.5 Consumer Behavior by Participant 

7.4.5.1 Objective 
To examine the effect pricing might have on charging behavior, each participant was required to 
be on one of three variable price tariffs: TOD2, TOD3, or RTPda as described at the beginning of 
this section. 

7.4.5.2 Calculation Approach 
The peak demand during the elevated price time was compared to the peak demand of the entire 
profile to determine if the participant was predominantly charging the vehicle during the low cost 
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period. This ratio (R) was used to classify the participant’s tendency to charge during the low 
price times as follows: 
• Strong: R < 0.2 - Participant predominantly charged during low price times. 

• Moderate: 0.2 <= R <= 0.4 - Participant generally charged during low price times. 

• Mild: R > 0.4 - Participant would regularly charge during higher price times. 

• None - If the peak demand occurred during a higher price time. 

7.4.5.3 Results 
The 14 graphs in the following figure represent the average weekday load profile for each 
participant during the June 1 through September 30 2012 and June 1 through September 30 2013 
periods when they had a vehicle and were on one of the time-of-day tariffs. Also plotted is the 
average weekday tariff during that period. This makes it easy to see if a participant was 
predominantly charging their vehicle during the low cost period.   
 
Of the 16 participants, one participated in the real time pricing tariff which wasn’t quantified in 
the terms described above. Another participant did not have the vehicle during the June through 
September period and was not quantified as well.   
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Figure 163. Participant Profiles During Time of Day Pricing 
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The following table shows the tendency of the participants to charge during the low price period. 
Overall 72 percent of participants demonstrated a Strong or Moderate tendency to charge during 
the low price period. Of those on the Two Tier tariff, 91 percent showed a Strong or Moderate 
tendency to charge during the low price period. None of the participants on the Three Tier tariff 
showed a Strong or Moderate tendency to charge during the low price period. This may be due to 
the fact that the price difference between low and higher periods is greater for the two tier-tariff 
than for the three-tier tariff. 
 
 Overall Two Tier Time of Day Three Tier Time of Day 
Tendency 
to Charge 

at Low 
Price 

Number of 
Participants Percentage Number of 

Participants Percentage Number of 
Participants Percentage 

Strong 4 29% 4 36% 0 0% 
Moderate 6 43% 6 55% 0 0% 

Mild 2 14% 1 9% 1 33% 
None 2 14% 0 0% 2 67% 
Total 14  11  3  

Table 28. Participants Tendency to Charge during Low Price Periods 

7.4.6 Consumer Behavior by Location 
Participants were given the option to use workplace charging for a fee of $10 per month. Participants’ 
workplace charging was metered so that the total energy consumed by each participant is known.   

7.4.6.1 Objective 
AEP determined energy usage of each participant at home and at work. 

7.4.6.2 Calculation Approach 
The average cost of energy ($/kWh) for workplace charging by participant was calculated. Twelve of the 
participants used workplace charging.   
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7.4.6.3 Results 
The following figure shows the average cost of energy for each participant to charge their vehicle at 
home and work. The average cost of all charging energy is also shown.  Eight participants paid a higher 
effective rate for workplace charging than they did at home and seven of these were significantly higher.  
Four participants paid a lower effective rate to charge at work. Participant 15 was on the RTPda tariff so 
their average rate was not calculated. In addition, they did not use workplace charging.  
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Figure 164. Average Cost of Energy to Charge PEVs at Home and Work by Participant 
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The figure below shows the average cost of energy to charge PEVs at home, work, and the 
overall average for participants who used workplace charging. On average, the group paid about 
$0.11/kWh to charge at home compared to $0.21/kWh to charge at work.  If the PEV gets about 
2.8 miles/kWh and that a similar gasoline vehicle would get 26.3 mpg, then $0.21/kWh works 
out to an equivalent $1.97/gallon of gasoline. An employee would need to consume 
approximately 91 kWh per month at work to achieve the same rate of $0.11/kWh at home.  A 
driver would need to consume an average of 4.55 kWh/day at work, assuming 20 work days per 
month. 
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Figure 165. Average Cost of Energy to Charge PEVs at Home, Work, and Overall Average 
for Participants with Workplace Charging 
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The figure below represents the number of charging events by location (Residential, Workplace, 
and Public) for each participant.   
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Figure 166. Number of Charging Events by Location for Each Participant 
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The figure below represents the total kWh consumed by location for each participant.  The 
majority of events and energy consumed for every participant occurred at their residence. 
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Figure 167. Amount of Energy Consumed by Location for Each Participant 
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7.4.7 Vehicle Statistics 

7.4.7.1 Objective 
AEP Ohio analyzed ten of the PEVs used in this Project. 

7.4.7.2 Results 
Ten vehicles were driven for a total of 271,415 miles of which 67 percent or 182,286 were 
electric miles and 33 percent or 89,129 were gasoline miles. These vehicles averaged 112 mpg. 
Driving on battery saved 7,781 gallons of gasoline. The following table provides a summary. 

 
Vehicle Information Summary 

Total Miles 271,415 
Electric Miles 182,286 
Gas Miles 89,129 
MPG (Average) 112 
Gallons of Gas Consumed 2,434 
Gallons of Gas Saved 7,781 

Table 29. Vehicle Statistics Summary  
 
The following figure shows the number of total, electric, and gas miles driven for each vehicle. 
In all cases the number of electric miles exceeded the number of gas miles. 
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Figure 168. Total, Electric, and Gas Miles Traveled by Vehicle 
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This figure shows the average mpg for each vehicle excluding the Coda since it was all-electric.  
The vehicles ranged from an average of 76 mpg to over 250 mpg with the overall average for 
these vehicles being 112 mpg. 
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Figure 169. Average MPG by Vehicle 
 
The figure below shows the number of gallons of gasoline consumed and saved by each vehicle. 
The number of gallons saved exceeded those consumed in all cases. The gasoline saved ranged 
from 352 gallons to 1379 gallons and averaged 778 gallons per vehicle. 

 -

 200

 400

 600

 800

 1,000

 1,200

 1,400

Volt 1 Volt 2 Volt 3 Volt 4 Volt 5 Volt 6 Volt 7 Volt 8 Volt 9 CODA

G
al

lo
ns

 o
f G

as
ol

in
e

Vehicle

Gallons of Gasoline Consumed and Saved by Vehicle
Gallons Consumed Gallons Saved

 
Figure 170. Gallons of Gasoline Consumed and Saved by Vehicle 
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7.4.8 Vehicle Performance 
One of the Volts participated in an EPRI project whereby certain vehicle performance data was 
collected and shared on an aggregate basis. This vehicle was assigned to a single participant for 
the duration of the Project. The following figure shows the average miles driven per kWh by 
month for this vehicle, which ranged from a low of about 2 miles/kWh in February 2013 to a 
high of 3.7 miles/kWh in August 2013. The miles per kWh for the vehicle were generally lower 
during the winter and higher during moderate and warmer months. 
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Figure 171. Average Miles Driven per kWh by Month 
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7.4.9 Consumer Experience 
Each participant was asked to fill out a survey related to their overall experience with the 
vehicles and the project.  The overall experience was positive. Four of the questions related to 
electric vehicles could be quantified and are shown in the following figures. 
 
The figure below shows the majority of participants were more interested in the range of the 
vehicle than its affordability or comfort. Participants generally tried to drive on electric as much 
as possible to minimize their fuel expense. 
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Figure 172. Range or Comfort Preference 
 
The figure below shows the participants were willing to consider an electric vehicle for use as 
their personal vehicle.  The majority of these participants cited the cost of electric vehicles as a 
barrier to their purchase. 
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Figure 173. Consider Purchasing an EV 
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The following figure indicates that for 39 percent of the participants, the availability of Level 3 
charging would have some influence on their decision to purchase an electric vehicle 
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Figure 174. Level 3 Charging Effect on Purchasing an EV 
 
The figure below indicates that the participants have a strong preference toward making their 
next vehicle purchase an electric vehicle of some sort. Sixty-four percent favor a PHEV and 14 
percent a hybrid electric vehicle (HEV), resulting in 78 percent favoring an electric vehicle of 
some sort. 
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Figure 175. Next Vehicle Purchase Type Preference 

286 
 

 



Electric Vehicles 
 
 

7.5 Electric Vehicles Conclusions 
Initial adoption of PEVs did not appear to have a significant impact on transformer loading. As 
adoption rates increase, the rate (kW demand) at which PEVs charge increases. Increased 
adoption rates as well as increased PEV charge rates (kW demand) are ongoing considerations 
for the utility. 
 
The analysis showed that Level 1 charging may be sufficient for most adopters at home and the 
workplace, especially if the vehicle was a PHEV instead of a BEV. Level 2 charging would be 
more beneficial at locations where shorter charge times would be experienced, but this would 
only be necessary in some cases for a BEV. 
 
There was a correlation between electric rates and charging behavior when the price difference 
was significant as was the case with the two-tier tariff. In this case, 91 percent of the participants 
demonstrated a strong or moderate tendency to charge during the low price time periods. In the 
three-tier tariff where the price difference was less significant between the electric rates, the 
participants showed little to no tendency to charge during low price periods. 
 
Workplace charging was used by 12 of the 16 participants.  Eight of these participants paid a 
higher rate at work than they did at home.  Five participants paid rates for workplace charging 
that were higher than what they would have paid to use gasoline instead of the electricity they 
received at work. It was unclear to what extent participants might have been aware of the 
effective cost ($/kWh) they were paying for workplace charging, since they paid a flat monthly 
fee of $10. At least one participant would have preferred an option to pay per charge at work.  
 
Ten vehicles were driven for a total of 271,415 miles of which 67 percent or 182,286 were 
electric miles and 33 percent or 89,129 were gasoline miles. These vehicles averaged 112 mpg. 
Driving on battery saved 7,781 gallons of gasoline. 
 
The majority of the participants indicated that they would prefer their next vehicle purchase be 
an electric vehicle of some type. 

7.6 Lessons Learned 
This section describes lessons learned for PEV technology.  
• Initial adoption of PEVs did not appear to have significant impact on residential 

transformer loading. 

• A thorough analysis should be completed before public chargers are sited, as PEV usage 
tends to be location-specific. 

• Level 1 charging may be sufficient in most cases (residential and workplace) as parking 
duration is long enough for full charge. 
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8 DEMONSTRATED TECHNOLOGY – CYBER SECURITY 
8.1 Purpose 
AEP Ohio endeavored to build a secure, interoperable, and integrated smart grid infrastructure in 
northeast central Ohio. The deployed technologies required comprehensive cyber security 
capabilities for both new and legacy systems. The AEP Ohio gridSMART® Demonstration 
Project cyber security team integrated into all areas of the Project to ensure device and threat 
monitoring and sharing. 

8.1.1 Device Security 
The smart grid used various techniques and technologies to provide a more reliable and stable 
power grid. Many of the technologies used were new, redesigned, or re-provisioned from a 
previous purpose. Both types introduced new risks to critical infrastructure components. The role 
of the cyber security technology was to ensure the security of all new and existing devices and 
networks.  
 
The Cyber Security plan, as approved by the U.S. Department of Energy (DOE), required each 
technology implementation to provide clear documentation demonstrating its proposed approach 
to cyber security. This approach would prevent broad-based systemic failures in the electric grid 
should a cyber security breach occur. 
 
The cyber security team worked closely with the technology teams and vendor participants to 
meet the cyber security requirements by implementing security assessment processes, 
procedures, standards, and policies for all technology areas. Upon determining cyber security 
risk types and levels, AEP Ohio established acceptable risk levels for each technology area, and 
designed, tested, and implemented strategies and mitigations. 

8.1.2 Cyber Threat Monitoring and Sharing 
The interconnectedness of the smart grid opened opportunities for cyber security threats to utility 
networks, which could be difficult to pinpoint and address. Tools, processes, and concepts were 
used to deter and detect a variety of these threats, including: 
• Location 

• Investigation 

• Minimization of  impact  

• Mitigation  
 
Additionally the cyber security team was continually learning and adapting to attackers’ 
techniques, tactics, and procedures. 
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8.2 Technology 

8.2.1 Device Security 
AEP is committed to ensuring a reduction of risk to the lowest acceptable level, not only for 
AEP, but also for its consumers and the grid. This required extensive testing of all technologies. 
The following commercially available technologies were subjected to intensive cyber security 
testing: 
• General Electric (GE) i210+c Meter – Primary residential AMI meter deployed in the 

Project area. 

• GE KV2C – Primary commercial AMI meter deployed in the Project area. 

• Silver Spring Networks (SSN) UtilityIQ® – AMI head-end system for meter management 
and monitoring. 

• SSN Demand Response Manager (DRM) – SSN’s head-end software application in the 
UIQ application suite. DRM’s web-based interface allowed utility operators to manage 
HAN devices, create, monitor and manage demand response events, and obtain analytics 
about load shed and customer participation.  

• Home Energy Manager (HEM) – Provided an interface to consumers participating in the 
Real Time Pricing with Double Auction (RTPda) program. This device served as the 
communication agent among the Enhanced Programmable Communicating Thermostat 
(ePCT), the AMI meter, and the Smart Grid Dispatch system. 

8.2.2 Cyber Threat Monitoring and Sharing 
The Project acquired a suite of cyber security capabilities and services that provided advanced 
network protection and a multi-pronged approach to advance threat detection and management.  

8.3 Approach and Implementation  

8.3.1 Device Security 
The Project implemented a comprehensive cyber security plan that included a complete battery 
of vulnerability and penetration tests starting with the meter, through the network, to the head-
end system.  The comprehensive testing strategy for the Project involved a series of steps 
strategically placed throughout the development and deployment cycle of the Project.  The steps 
were as follows: 

Step 1 – Technology Review 
Step 2 – Risk Assessment 
Step 3 – Vulnerability Assessment 
Step 4 – Penetration Testing 

 
In Step 1, the review entailed researching all of the capabilities of the product and identifying the 
potential points of attack. 
 
In Step 2, AEP conducted formal risk assessments on all technology components.   
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In Step 3, AEP evaluated applications and hardware to determine if there were potential 
vulnerabilities in the product.   
 
Step 4 consisted of penetration testing for all technology areas.   
 
During Steps 3 and 4, AEP developed final reports that outlined the severity of the vulnerabilities 
identified and the recommended actions for remediation.  If the determined risk was greater than 
the acceptable level, a remediation plan was developed and implemented. 
 
AEP Ohio subjected all technology components of the Project to this complete battery of tests, 
including penetration testing.   

8.3.2 Cyber Threat Monitoring and Sharing 
Lockheed Martin collaborated with AEP Ohio to develop the Palisade™ suite of tools based on 
the intelligence management approach. Palisade enabled cyber security analysts to manage alerts, 
detections, mitigations, and courses of action in a single application. This centralization of 
investigative activities greatly reduced the amount of time analysts needed to filter through noise. 
These tools allowed analysts to focus their time on extracting actionable intelligence and using 
this intelligence to detect active threats on the network.   

 
The threat and information sharing portal was launched to foster a secure environment allowing 
cyber threat intelligence to be shared among the utility industry, and included approximately 15 
large utility adopters as of summer 2013. Building an extensive cyber security threat database 
was extremely important to utilities seeking advanced computer network defense capabilities. 
Other industries, including oil and gas and healthcare, have also adopted the collaboration and 
intelligence sharing benefits of the Threat and Information Sharing portal. 

 
Advanced Persistent Threats (APT) Sensors integrated into existing corporate security 
environments to provide ongoing and focused network visibility. The sensors provided 
detection and alerts on covert malicious command and control challenges, network anomalies, 
and detection of advanced file exploits.  

8.4 Cyber Security Conclusions 

8.4.1 Device Security 
Several vulnerabilities were discovered in Step 1 shown in paragraph 8.3.1. The first 
vulnerability was fixed with a change in physical production of a device while the second one 
required updated software 
 
Step 2 issuers of data being transferred from AEP systems to third-party systems in an unsecure 
manner were resolved by changing to Secure File Transfer Protocol (FTP). Secure FTP has now 
been made the standard method of data transfer between AEP systems and third-party systems. 
 
Step 4 penetration test issues were resolved through the reconfiguration of network security 
devices. 
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Further issues were resolved with updated meter management software. The cyber security team 
determined that there was a need for a recurring assessment of network security due to the 
continually evolving environment with the addition of new devices, updated firmware, and 
updated software. 

8.4.2 Cyber Threat Monitoring and Sharing 
Through Palisade and in collaboration with sources including the Department of Homeland 
Security (DHC), the threat and information sharing portal, and the North American Electric 
Reliability Corporation (NERC), the cyber security team  reviewed and discussed intelligence 
reports of known issues that affected the electric industry and those potentially aimed at AEP. 
The gridSMART cyber security team is now a member of several threat information sharing 
teams networks, products, and devices. 
 
AEP developed the Cyber Security Operations Center (CSOC). It was designed to provide highly 
customizable threat management and response that was implemented on top of AEP’s existing 
security framework. The CSOC included:  
• The Palisade suite of tools that provided single-source threat detection management.  

• Advanced Persistent Threat (APT) sensors that delivered a wide visibility of IT assets and 
critical network infrastructure. 

• Threat and information sharing that included a secure portal to share vital threat 
information practices among participating utility partners. 

292 
 

 



Interoperability 
 

9 DEMONSTRATED TECHNOLOGY – INTEROPERABILITY 
9.1 Purpose 
Interoperability (IOP) is the ability of systems and/or components to provide and receive services 
and information in a predictable way without significant user intervention. The exchange of 
information and interfaces was based on openly available standards and integrated, commercially 
available products, new technologies, and new consumer products and services within a single, 
secure, two-way communication network between the utility and consumers. The primary focus 
of IOP was to identify gaps in the current and proposed standards. 

9.2 Technology 
Interoperability is not a technology to be implemented, but rather a goal to be accomplished.  
The Interoperability Plan was outlined to accomplish two goals. The first goal was to develop a 
plan to use to ensure interoperability among all systems, devices, and data sources. The second 
goal was to document the extent to which the first goal was accomplished. 
 
For the interoperability of the back office, the primary goal was to implement systems in such a 
way to protect against cascading failures. To accomplish this, the team implemented a 
communication standard and drove compliance to that standard. AEP Ohio engaged Electric 
Power Research Institute (EPRI) to assist in creating the Interoperability Plan. For this exercise, 
the team defined an interface as a pairing of systems or actors. This resulted in the creation of 
multiple use cases and multiple interfaces. 

9.3 Approach and Implementation 
The IOP test plan was organized by topic, such as Demand Response, Distribution Grid 
Management, and AMI. Each topic contained a set of use cases analyzed to discover the number 
and purpose of interfaces involved with each topic. Each interface was assessed to determine 
whether a relevant standard existed, with particular emphasis being placed on the standards 
enumerated in National Institute of Standards and Technology (NIST) Special Publication 1108, 
NIST Framework and Roadmap for Smart Grid Interoperability Standards. The interfaces were 
then assessed to determine if relevant standards were implemented by AEP Ohio and/or by its 
vendors in a manner that could be tested for standards compliance. 
 
Interoperability’s two-phase testing approach combined lab and field testing to obtain a complete 
Project evaluation. The first phase involved extensive lab testing of technologies by exercising 
their full range of functions. The second phase involved field tests with a limited base of 
consumers. This approach determined the functionality, reliability, security and overall system 
interoperability.  
 
Because IOP affected several different technologies, there was not a single approach for the 
cumulative group. Each Project technology area had a unique approach for implementing 
interoperability. However, some common themes prevailed through most of the Project area, 
such as Common Information Model (CIM) messaging. 
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9.3.1 Common Information Model Compliant Messaging 
Common Information Model compliant messages were implemented across several topic areas 
as a means of communication between systems. By implementing CIM-compliant messaging, a 
standard message format was created to exchange information between new and legacy systems, 
allowing for interoperability beyond AEP systems. This was part of the back-office strategy for 
interoperability. 

9.3.2 IntelliGrid 
EPRI’s IntelliGrid methodology provided a conceptual architecture that was implemented within 
platform-independent solutions. This methodology promoted open, interoperable systems and 
standards; provided tracking and analysis of smart grid technologies; and captured best practices. 
The Project Interoperability Plan was derived from the IntelliGrid methodology with specific 
roadmaps for smart grid development and deployment.  
 
The IOP test plan started with a conceptual architecture and then moved to development of a 
platform-independent architecture that provided a basis for integrating applications. The primary 
goal was to develop an architecture with vendor-specific aspects, but with the ability to plug in 
many different vendor applications as a result of industry interface standards. Legacy systems 
and technology were integrated using appropriate gateways and translators. 

9.4 Use Cases 
Twenty-seven use cases were developed, in cooperation with EPRI, to test the interoperability of 
the Project components. These components included: back-office systems, communication 
network, Home Area Network (HAN), and AMI. These use cases were grouped in five 
categories: 
• Demand Response – nine use cases 

• Distribution Grid Management – two use cases 

• Electric Transport – one use case 

• Advanced Metering Infrastructure – twelve use cases 

• Work Management System – three use cases 
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9.5 Use Case Analysis 
There were eight interface types: 
• CIM or ANSI standards 

• Future CIM or ANSI standards 

• Vendor Proprietary 

• AEP Proprietary 

• Open – applying for CIM or ANSI standard 

• None – no standard applies 

• Proprietary LAN 

• Custom 
 
AEP identified these standards within the five categories of use cases: 
 
Demand Response had nine use cases using twenty-eight interfaces 
• Standard – seventeen 

• Vendor Proprietary – two 

• Open – five 

• None – four 
 
Distribution Grid Management had two use cases using thirteen interfaces 
• Vendor Proprietary – three 

• AEP Proprietary – three 

• Proprietary LAN – seven 
 
Electric Transport had one use cases using five interfaces 
• Standard – one 

• Vendor Proprietary – three 

• None – one 
 
AMI had twelve use cases using nineteen interfaces 
• Standard – thirteen 

• Vendor Proprietary – four 

• None – two 
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Work Management System had three use cases using twenty-one interfaces 
• Standard – seven 

• Future Standard – five 

• Vendor Proprietary – two 

• Custom – seven 

9.6 Interoperability Conclusions 
The barriers to interoperable implementation of smart grid technologies consisted of the varying 
maturity of vendor products. The majority of Project interfaces were CIM and ANSI standards 
compliant. Application for CIM standardization for some interfaces was submitted.   
 
Overall, the integration of devices into AEP Ohio systems proved to be interoperable. Although 
the integration processes were manual and required significant effort and end-to-end verification 
of every data point from the field to the back office, they were successfully implemented. AEP 
Ohio mitigated resource requirements by using a single communications protocol, limiting 
device types, and creating internal data exchange standards. 
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10 DEMONSTRATED TECHNOLOGY – MODELING AND 
SIMULATION 

10.1 Purpose  
In the AEP Ohio gridSMART® Demonstration Project (Project) area smart grid technologies 
were deployed to 80 distribution circuits. It was important to assess potential impact if the 
technology deployments were extended to the remaining 1,700 distribution circuits in AEP 
Ohio's service territory. The Modeling and Simulation (M&S) project developed a simulation 
engine and applied it to evaluate the effects of new technologies in a variety of circuit 
configurations. In addition to simulating the types of technologies that were field deployed as 
part of the Project, photovoltaic, sodium sulfur batteries, and community energy storage were 
also simulated. The technologies that were studied to determine their effects on circuit behavior 
included: 
• 25kW Community Energy Storage (CES) 

• 1MW Sodium Sulfur Battery (NaS) 

• Photovoltaic (PV) 

• Plug-in Hybrid Electric Vehicle (PHEV) and Plug-in Electric Vehicle (PEV) charger 

• Volt VAR Optimization (VVO) 

• Fixed Price Tariff 

• Load Control Switch (LCS) used for Direct Load Control (DLC)  

• Time of Day (TOD) Tariff 

• TOD Critical Peak Pricing (TOD/CPP) Tariff 

• Real Time Pricing Double Auction (RTPda) Tariff 
 
M&S modeled a representative subset of the 1,700 distribution circuits in AEP Ohio. Modeling a 
representative subset of circuits could allow technology impacts to be scaled up to all circuits in 
AEP Ohio. Models were representative of AEP circuits and indicate what may happen in 
practice. There are multiple variables that may impact simulations as well as field deployment 
results.  

All results provided in this section are from simulations incorporating the above technologies. 

10.2 Technology 
The M&S team used GridLAB-D™, an open source code developed by Pacific Northwest 
National Laboratory (PNNL) to model the circuits. Additional proprietary modifications were 
made to GridLAB-D to simulate the new technologies for the Project. GridLAB-D simulated the 
distribution circuit from the substation to the individual premises along with their appliances, 
outlet and lighting loads, air conditioning, water heater, and the home insulation characteristics. 
Voltage, power, switch operations, and other dynamic variables at any location on the circuit 
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model were provided at discrete time intervals for conditions specified by a simulation. 
Performance metrics such as maximum peak power demand and energy consumption were 
estimated by analysis of the GridLAB-D outputs. 
 

Building each circuit model required the following data: 
• Graphical Information System (GIS) information describing the circuit configuration 

• County Auditor information describing the premises’ age, size, and location 

• Premises and the associated distribution transformer  

• Conductor information describing the house to distribution transformer connection 

• Premises’ characteristics  
 Number of occupants 

 Gas versus electric heat 

 AC versus no AC 

 Existing demand response model 

 Additional technologies  

• Climate data  

• Consumer electrical usage behavior based on their demand response 
 
Information was gathered from existing AEP databases and other sources. The Project identified 
data sources and provided a centralized location to store the data. 
 
A software tool was developed to facilitate the frequent building and modification of circuit 
models and assist in manipulating and analyzing GridLAB-D models. The new tool, 
GridCommand™ Distribution (GCD), is now commercially available. Highlighted features of 
GCD include the ability to: 
• Create GridLAB-D model file from CymDist model files 

• Import existing GridLAB-D files 

• Export to GridLAB-D file format 

• Display the circuit graphically based on latitude/longitude 

• Add or delete new items from the circuit model using the console or graphical interfaces 

• Support user scripts to modify the circuit model 

• Display a tree view of every object in the model organized by type 

• Support parametric analysis 
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10.3 Approach and Implementation 
M&S was implemented using a sequence of four interrelated tasks: 
• Stakeholder question analysis 

• Baseline circuit model development 

• Parametric analysis 

• Reporting 
 
Stakeholder question analysis defined project goals, identified questions that needed to be asked 
to achieve these goals, and developed metrics for the modeling process. As a result of this task, a 
set of goals, questions, and metrics (GQMs) was derived. A matrix of circuit simulations and 
experimental design was created using this set of GQMs. 

Baseline circuit model development required identifying which circuits would be modeled and 
then developing accurate GridLAB-D models for each circuit. To select representative circuits, 
data regarding characteristics of all 1,700 circuits in the AEP Ohio distribution territory was 
collected. Circuits were then grouped into clusters based on these characteristics. This cluster 
analysis categorized the 1,700 circuits into 25 circuit types and identified 12 circuits that 
represented 94 percent of AEP Ohio distribution circuits. A total of 32 circuits were modeled that 
incorporated these 12 circuit types.  
 
Baseline circuit models were developed and validated against Supervisory Control and Data 
Acquisition (SCADA) data for each circuit using GridLAB-D. A year-long GridLAB-D 
simulation was created for each of the circuits using a typical meteorological year (TMY) as the 
reference weather data. These models were validated against SCADA data from 2010 by 
comparing the simulated outputs against the SCADA records.  
 
Parametric analysis included 1,247 year-long simulations, counting both baseline configurations 
and the technologies that were modeled. This task considered variations on technology 
penetration levels within a single circuit along with combinations of technologies within the 
same circuit.  
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10.4 Technology Model Descriptions 
Modules for many of these technologies existed in GridLAB-D prior to starting the project, 
including PV, PHEV/PEV, DLC, ToD, ToD/CPP, VVO, and RTPda. However, the CES, and 
NaS modules did not exist and were added to GridLAB-D as part of this Project. Technology 
specification documents were generated for each of the technologies, and the existing modules 
were evaluated to determine if they were sufficient to support the proposed numerical analysis. 
Additionally, a proprietary VVO module was used for circuits that had at least one line regulator. 
A short description of each technology follows. 

Community Energy Storage (CES) units were evaluated on a set of 12 baseline circuit models. 
CES was evaluated in three major modes of operation: islanding, peak shaving, and VAR 
support. In islanding mode, CES was examined to determine its ability to island customers 
during an outage. The effects of CES islanding support on System Average Interruption Duration 
Index (SAIDI) were reviewed. In peak shaving mode, CES was operated using both scheduled 
and load following charge/discharge methods. Finally, CES’s ability to provide VAR support 
was also considered. The effects of CES were evaluated as a function of penetration density for 
each circuit, where penetration density was computed as the fraction of total connected kVA for 
a given circuit. CES units were then added to each circuit model for a range of densities, and 
with varied control parameters at each density. In each model, all of the CES units were operated 
as a fleet using a central control with all units operating identically. 
 
Sodium Sulfur batteries (NaS) were evaluated on a set of 12 baseline circuit models. NaS was 
evaluated in three major modes of operation: islanding, peak shaving, and VAR support. In 
islanding mode, NaS was examined to determine its ability to island customers during an outage. 
The effects of NaS islanding support on SAIDI were reviewed. In peak shaving mode, NaS 
operated using scheduled and load following charge/discharge methods. Finally, NaS’s ability to 
provide VAR support was also considered. The effects of NaS were evaluated as a function of 
penetration density (battery size) for each circuit, where penetration density was computed as the 
fraction of total connected kVA for a given circuit. A single NaS unit of the appropriate size was 
then added to each circuit model for a range of densities with varied control parameters at each 
density. 

Photovoltaics (PV) were evaluated on a set of 12 baseline circuit models. The ability of PV 
arrays to reduce circuit demand and energy was evaluated. This included an examination of how 
well PV complements peak shaving when a CES fleet is added to the circuit. Circuit voltage 
profile with PV arrays was examined including the arrays’ effect on voltage regulation when 
transient events occur (i.e., cloud cover). Circuit demand and energy were evaluated under 
several PV array configurations. Each PV array configuration specified both total PV generation 
capacity and PV array locations along the circuit. Total PV generation capacity was specified as 
a fraction of total circuit connected kVA, calculated as the sum over transformer nameplate 
ratings. Location of PV arrays along the circuits included both evenly distributed and 
intentionally clustered cases. 

Plugin Hybrid Electric Vehicle/Plugin Electric Vehicle (PHEV/PEV) was evaluated on a set of 
12 baseline circuit models. The impact of PHEV/PEV on circuit behavior was evaluated in three 
major areas: equipment, overloads, circuit demand, and energy usage. Additional models 
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evaluated the interaction of PHEV/PEV with CES batteries. In the combined technology (CES 
and PHEV/PEV) simulations, CES was operated using load following peak shaving method. The 
effects of the combined technologies were examined for individual distribution transformers. The 
effect of the PHEV/PEV on circuit demand and energy usage was evaluated, along with the 
possibility of equipment overloads. This included an examination of how circuit demand could 
be affected by the combination of PHEV/PEV demand and CES peak shaving and charging 
demands. PHEV/PEV was added to each circuit using a range of densities. 
 

Volt VAR Optimization (VVO) technology was evaluated on a set of 32 baseline circuit models. 
The impact of VVO on circuit behavior was evaluated in three major areas – real and reactive 
circuit demand, real and reactive energy, and voltage profile management. The ability of VVO to 
reduce circuit demand and energy consumption was evaluated as well as its influence on circuit 
voltage profiles. For VVO operating alone, different combinations of end-of-line voltage and 
circuit power factor target settings were used. Additionally, VVO combined with PV, and VVO 
combined with fleets of CES batteries were evaluated. The combination of these technologies 
was evaluated to determine whether or not they operated synergistically together. Density level 
of other circuit components such as capacitors and regulators was examined. 

 

The five tariff programs were evaluated on three baseline circuit models. Simulating consumer 
response to tariffs required trying to predict human response to pricing changes. Unlike other 
technologies such as PV or EV, there was no simulation object that can predict exactly how 
humans will respond. Because of this consumer response uncertainty, the tariff results in this 
simulation were meant to show a range of potential responses. This is why the tariff analysis was 
limited to three circuits. The ability of tariffs to reduce peak circuit demand and energy 
consumption was evaluated. Circuit demand and energy were evaluated under each tariff at 
varying consumer response levels. When possible, consumer responses to tariffs were based on 
available data from existing tariff programs. If no data was available, high and low response 
levels were simulated to demonstrate a range of potential consumer responses. 
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10.5 Summary of Simulation Results 
Results from the simulations for each of the technologies are summarized in the following 
paragraphs.  

10.5.1 CES 
Community Energy Storage was analyzed as a fleet of CES units across 12 different circuits. 
Each of these circuits represents a single cluster of circuit types. Each CES unit includes a 
battery with a 23.4 kilowatt (kW) rated power output, 23.4 kVAR reactive power support, and 
23.4 kilowatt-hours (kWh) of energy available when fully charged. The CES control managed 
the activities of the individual CES units in the fleet. CES was evaluated for its islanding, peak 
shaving, and reactive power support capabilities. For each of these operating modes a Goals, 
Questions and Metrics (GQM) was identified to determine the effectiveness of that mode. 

CES Islanding  
The ability for CES to provide islanding support was evaluated by reviewing the average fleet 
state charge using both the load following and scheduled peak shaving methods. The 12 circuits 
modeled in this analysis experienced an average of approximately 1.7 outages per year, with an 
average outage duration of approximately 2.3 hours. The results showed that on average there 
was sufficient battery capacity to sustain consumers for the 2.3 hour outage average. Islanding 
provided by CES was found to improve SAIDI. The percent change in SAIDI from the baseline 
was shown to be directly proportional to the number of houses on the circuit connected to CES. 

CES Peak Shaving 
The CES was operated using two peak shaving control methods, load following and scheduled. 
For the load following control method, discharge and charge set-points were chosen based on 
circuit load to determine when CES should start discharging and start charging. In the 
scheduled control method, a set discharge and charge daily time schedule was determined for 
each circuit. 

The first figure that follows shows CES peak shaving using scheduled discharge for one of the 
12 circuits during a two-day period, The second figure that follows shows the same result using 
load following Peak Demand Reduction. 
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Figure 176. The Circuit Scheduled Peak Demand Reduction -- June 26 -27  

 
Figure 177. The Circuit Load Following Peak Demand Reduction -- June 26 - 27  
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For each of these control methods, the amount of peak demand shaved, energy reduction, and the 
number of active versus successful peak shaving days were evaluated. The results showed, on 
average, scheduled shaved less peak demand than the load following control method. The 
average over all circuits and densities was 1.75 percent for scheduled and 3.27 percent for load 
following. Often the scheduled discharge missed the peak event and produced a much smaller 
difference between the circuit peak and the CES peak.  
 
The load following analysis also showed that CES peak shaving worked best on circuits that had 
a high level of residential consumers, low commercial, and low levels of industrial consumers. 
These circuits had a large connected kVA, which resulted in more CES units being deployed on 
those circuits (simulation based on residential connected kVA). On average, the load following 
peak shaving events had both a larger peak reduction and larger percentage peak reduction 
compared to the scheduled events.  
 
The ratio of successful to unsuccessful peak shaving days was higher in load following method 
compared to the scheduled method because the load following method had better set-points 
compared to the scheduled peak shaving method. Increasing CES density and reducing the 
reserve island capacity gives the greatest peak shaving and overall energy reduction. The results 
also show that for the load following case, it was extremely important to have load balanced 
among the phases on the circuit. Despite careful analysis to determine the best discharge and 
charge set-points, it could result in models that do not discharge/charge correctly. This implies 
that using static settings for the entire year may not work. These settings may need to be 
periodically reviewed and adjusted to better meet the objectives. 
 
CES VAR Support 
CES was evaluated in reactive power support mode. For the circuits modeled in this analysis, 
CES was effective at driving the average power factor to unity for most of the circuits. Those 
circuits that did not reach unity achieved an average power factor of 0.98. In general CES was 
able to reduce the yearly average in each circuit. There were a few exceptions to this in the load 
following peak shaving control method. Despite these exceptions, load following performed 
much better in general compared to scheduled discharge. 
 
However, considering all circuits and all densities together, on average the kVARh reduction 
was 3.45 × 106 for scheduled and 3.26 × 106 for load following. This was due to several cases in 
the load following method where the kVARh savings were negative, compared to the scheduled 
results, which only had one instance. These negative values occur for the higher densities in one 
circuit and for lower densities in another. Negative values also occur for one circuit, but only at 
the highest density level for the load following control method. Load following, unlike 
scheduled, only discharged on a few days of the year for most circuits, and it only did so during a 
peak event.  
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Thus, any reactive power support that occurred during these events was subject to available 
battery capacity not used for real power peak shaving. The scheduled results showed that on 
average, the amount of reactive power was always reduced. This was because scheduled 
discharges occurred every day, even on days when demand was small, so there was more power 
available for reactive power support. For some circuits, the power factor of the baseline model 
was very close to unity, which indicated that they had sufficient VAR support from capacitor 
banks. This meant that when CES was actively providing VAR support, an excess number of 
VARs was generated. Increasing the CES density was more effective at reducing kVARh. 
However, for most of the circuits, the kVARh reduction saturated because the power factor 
reached unity.  
 
Overall, CES for both load following and scheduled methods provided significant reactive power 
support. No direct correlation was found between the CES reactive power support capability and 
the circuit characteristics. 
 
CES Control Strategy  
The simulated control strategy analysis indicated that load following control resulted in the best 
method to support peak shaving and reactive power support based on the circuits modeled. Load 
following also provided the most benefit to islanding because the low number of active peak 
shaving days resulted in an average annual battery state of charge that was close to 100 percent. 
Given the size of the CES deployed in the models, there was sufficient battery capacity to 
eliminate the average service interruptions for consumers connected to CES on the circuits that 
were studied. 

10.5.2 NaS 
A single NaS battery was deployed on each of the 12 baseline circuits. The NaS battery size 
varied based on the density being modeled for a given circuit. The battery could provide both 
real and reactive power support. Like CES, the NaS control managed the activities of the NaS 
battery. NaS was evaluated for its islanding, peak shaving, and reactive power support 
capabilities. For each of these operating modes, a GQM was identified to determine the 
effectiveness of that mode. 

NaS Peak Shaving  
The NaS battery was operated with two peak shaving methods – load following and scheduled. 
For the load following control method, discharge and charge set-points were chosen to determine 
when the battery should start discharging and start charging. In the scheduled control method, a 
set discharge and charge schedule was determined for each circuit. 

The following figure shows NaS peak shaving using scheduled discharge for one of the 12 
circuits during a two-day period. The next figure shows the same result using load following. 

NaS Islanding   
The simulated control strategy analysis indicated that load following control was the best method 
to support peak shaving and reactive power support based on the circuits modeled. Load 
following also provided the most benefit to islanding because the low number of active peak 
shaving days resulted in an average annual battery state of charge (SOC) that is close to 100 
percent. The results also showed that in the types of outage events where NaS islanding would be 
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effective (outages affecting the entire circuit), the NaS batteries were capable of providing 
islanding support to a limited number of consumers on the circuit, positively affecting the system 
reliability indices for these circuits. These gains were limited by the fact that NaS islanding 
applied to only a small subset of the outages experienced on a circuit, and that in most cases, 
only a fraction of the consumers on a circuit could be supported during an outage due to the 
location of high demand consumers. For this reason, circuit layout and battery placement should 
be considered in order to optimize islanding benefits. 

 
Figure 178. The Circuit Scheduled NAS Peak Demand Reduction -- June 26 -27 
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Figure 179. The Circuit Load Following NAS Peak Demand Reduction -- June 26 - 27 
For each of these control methods, the amount of peak shaved, energy reduction, and the number 
of active versus successful peak shaving days were evaluated. The results showed the scheduled 
method shaved more peak energy than the load following control method. Scheduled was active 
every day of the year, and load following was active a fewer number of days. This was due to the 
fact that load following charges/discharges were based on set-points and was independent of the 
time of day when the peak occurred. Scheduled was directly dependent on the time of day when 
the peak occurred. Often the scheduled discharge missed the peak event and produced a much 
smaller difference between the circuit peak and the NaS peak. The load following analysis also 
showed that NaS peak shaving worked best on circuits that had a high level of residential 
consumers, low commercial, and low levels of industrial consumers. These circuits had a large 
connected kVA, which resulted in a larger NaS battery being deployed on those circuits. 
 
On average, the load following peak shaving events had both a larger peak reduction and 
percentage peak reduction compared to the scheduled events. The ratio of successful to 
unsuccessful peak shaving days was higher in the load following method compared to the 
scheduled method. This was because the load following method had better set-points compared 
to the scheduled peak shaving method. This was due to the fact that load following 
charges/discharges based on set-points and thus was independent of the time of day when the 
peak occurred. The scheduled method was directly dependent on the time of day when the peak 
occurred. In many cases the annual peak was reduced with the addition of NaS. This showed 
how NaS peak shaving could be used as an alternative to traditional capacity improvement 
technologies to mitigate distribution system overloads. 
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NaS VAR Support  
NaS was evaluated in reactive power support mode as well. For the circuits modeled in this 
analysis, NaS was effective at driving the average power factor to unity for all of the circuits. In 
general, NaS was able to reduce the yearly average kVARh in each circuit. Increasing the NaS 
density was more effective at reducing kVARh; however, for most of the circuits, the kVARh 
reduction saturated because the power factor reached unity. Overall, the NaS battery using both 
load following and scheduled methods provided significant reactive power support. No direct 
correlation was found between the battery’s reactive power support capability and the circuit 
characteristics. 

10.5.3 PV 
PV was analyzed across the same 12 representative circuits used for CES and NaS. Each PV 
array had a 5 kilowatt (kW) rated power output. The impact of PV arrays on circuit behavior was 
evaluated in three major areas – circuit demand, energy usage, and the voltage profile of the 
circuit. Effects caused by sudden cloud cover were also studied. For each of these effects, a 
GQM was identified to determine the effectiveness of PV in each area. 
 
PV Impact Evaluation  
One of the potential benefits of PV was its ability to shave peak demand. PV output could 
provide energy during peak times to effectively offset circuit demand. Since PV output relied 
solely on the amount of sunlight, optimum peak shaving occurred when the solar irradiance level 
was high at the time of peak loading. 
 
The following figure shows the demand reduction generated using PV for one of the 12 circuits. 

 
Figure 180. The Circuit PV Peak Demand Reduction -- June 30 - July 1 
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The examination of the effectiveness of PV peak shaving for the 12 circuits showed there was 
good synchronization between PV output and the annual maximum peak load. On nine of the 
twelve circuits, the annual maximum circuit peak load was effectively shaved. Higher PV 
penetration densities achieved larger amounts of peak shaving on the highest annual peaks. The 
amount of load shaved ranged from less than 1 percent to just below 12 percent of the maximum 
peaks. In only three simulation cases, the maximum annual peak circuit load was not shaved by 
the PV output. These three circuits were night peaking and did not benefit from PV during the 
highest peak times. The analysis showed that at least 40 percent of the time PV would shave 
some of the daily baseline peak. Based on annual averages, daily peak shaving was not strongly 
influenced by PV deployment density.  
 
The amount of energy produced by the simulated PV deployments and its effect on circuit 
energy consumption was also examined. The annual energy produced by a single PV array was 
7,887 kWH. The peak output in the winter months was approximately 50 percent of the peak 
output during the period from late spring through early fall. The highest power output of a single 
array during the year was 4.78 kW. PV deployed on a circuit provided substantial savings in 
annual circuit energy. For PV with penetration density of 30 percent, the reduction in average 
annual energy ranged from 1.14 percent to 8.65 percent. For PV with density of 10 percent, the 
average annual reduction ranged from 0.484 percent to 3.08 percent. Increasing the PV density 
increased the amount of peak shaved and energy reduction for the circuits modeled. The results 
showed that circuits with larger PV densities installed had the most peak reduction. 
 
Reduced energy consumption resulting from PV was significant for all circuit types and the 
amount of energy saved was linearly dependent upon PV penetration density with higher 
densities providing increased energy savings. The largest energy savings occurred from late 
spring through early fall when the PV output was greatest. Distributed and clustered PV 
deployments had essentially the same amount of annual energy savings.  
 
The impact of PV deployment on circuit voltage was examined. Deployment of PV could 
improve system voltage, but it also had the potential to create voltage problems. The impact on 
the voltage profile from clustering groups of PV arrays on the circuit and the impact from 
distributing PV arrays more uniformly along the circuit were compared. 
 
The deployment of PV on the 12 circuits did not create voltage problems on the circuits even 
when PV arrays were clustered and the PV density was 30 percent. The PV deployment did not 
appreciably change the average voltage profile of the circuit. On some circuits there was a slight 
increase (0.1 to 0.2 volts) in average voltage with the PV deployed. Voltage regulators did not 
experience a substantial increase in the number of tap changes over the course of the year. The 
investigation into the impact of PV on the voltage profile revealed no significant issues from 
increased voltage excursions outside the prescribed limits of 117 to 126 volts at end-of-line 
(EOL) monitoring points or circuit regulators, and regulator tap changes were nearly unaffected. 
 
The impact of a large and rapid change in PV output was examined. Rapid changes in the solar 
irradiance that may occur during cloud cover events translate into rapid changes in PV output, 
and hence, the circuit load, potentially affecting voltage on the circuit. An extreme cloud event 
was simulated on each of the 12 circuits. Large and rapid changes in the circuit load caused by 
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PV output power swings from the simulated cloud cover event did not create issues with voltage-
level excursions at the circuit regulator. At EOL locations, voltage could potentially swing up to 
4 volts during cloud cover events on long circuits with large PV installations. In 11 out of 12 
cases, the cloud event did not create any voltage issues at the EOL locations. The longest circuit 
modeled saw the largest voltage swing, but even its EOL voltage excursions remained within 
established flicker limits.  
 
Combination of PV with CES  
In addition to deploying PV arrays, simulations were conducted that combined PV and CES. The 
CES control managed the activities of the individual CES units in the fleet. The combination of 
CES and PV was examined to quantify the peak shaving benefits. Both technologies were 
deployed at a density of 20 percent for this analysis. A probability analysis previously mentioned 
above to quantify the effectiveness of PV peak shaving for daily demand was repeated for the 
CES and PV combination. This showed that at least 60 percent of the time CES and PV would 
have shaved some of the daily peak compared to baseline, an improvement over the 40 percent 
result found for PV alone. Results for individual circuits based on maximum annual peaks were 
varied depending on whether comparisons were done using synchronized or unsynchronized 
peaks. The discrete nature of the simulation results, with results recorded on 15-minute intervals, 
may indicate the need to average the annual maximum results, such as occurred in the probability 
analysis. Median synchronized annual peak reduction for the 12 circuits was 4.5 percent for CES 
and PV, and 2.5 percent for PV alone. Using unsynchronized annual peaks, the median reduction 
was 2.1 percent for CES and PV, and for PV alone. By adding CES to the circuits with PV both 
the maximum annual and daily peak shaves are likely to improve. 
 
The simulation results show that PV provided benefits in all three major areas – circuit demand, 
energy, and the voltage profile of the circuit. Daily demand peaks were shaved at least 40 percent 
of the time, and the highest daily peak during the year was shaved on all daytime peaking 
circuits. PV also significantly reduced energy consumption for all circuit types with higher PV 
densities giving increased reductions. The deployment of PV did not create voltage problems on 
the circuits. 

10.5.4 PHEV/PEV 
The deployment of PHEV/PEV charging stations was analyzed across the same 12 representative 
circuits. The impact of PHEV/PEV charging stations on circuit behavior was evaluated in four 
major areas – circuit demand, voltage excursions, density effects and energy consumption. For 
each of these effects, a GQM was identified to determine the effects of PHEV/PEV charging 
stations in each area. 
 
PHEV/PEV Charger Impact Evaluation  
On a circuit level, PHEV/PEV chargers could shift the circuit peak demand if the additional load 
created was large enough relative to the overall circuit load, and the PHEV/PEV charging time 
frame occurred later than the peak time without PHEV/PEV installed. The following figure 
illustrates this shift for one of the 12 circuits. 
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Figure 181. The Circuit Peak Demand Shift Due to PHEV/PEV -- August 29 - 31 
This shift in peak demand was highly dependent on the circuit characteristics and loading profile. 
  
The load from the PHEV/PEV chargers increased the daily circuit peak almost every day of the 
year on each circuit. The maximum daily circuit peak load increase due to the PHEV/PEV 
charger load as a percentage of the daily peak ranged from: 
• 3.2 percent to 19.5 percent for PHEV density at 10 percent (average 10.3 percent) 

• 5.1 percent to 29.8 percent for PHEV density at 20 percent (average 15.8 percent) 

• 9.3 percent to 44.9 percent for PHEV density at 30 percent (average 23.0 percent) 
 
The maximum increase in the daily circuit peak from the PHEV/PEV chargers did not occur on 
the same day that the maximum circuit peak for the year occurred. These were often shifted to 
completely different days of the year. The peak demand from PHEV/PEV chargers was not 
influenced by weather conditions like the annual peak day. With PHEV/PEV chargers, the daily 
peak often did not occur at the same time as the base case. The peak typically shifted to a later 
time in the day.  
 
The PHEV charger load made up a larger portion of the daily peak load in the off peak seasons, 
such as the months of January and October, than in the peak season of June. For PHEV/PEV 
densities of 10 percent, 20 percent, and 30 percent, the average annual energy increase per circuit 
was 4.72 percent, 9.51 percent, and 14.7 percent respectively. Because consumption varied 
linearly with PHEV/PEV density, the data could be used to extrapolate the effects of a higher or 
lower density of PHEV/PEV chargers on the circuit. 
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Considering the total number of PHEV/PEV chargers installed on each circuit, very few line 
transformers over 25 kVA in size were overloaded with the addition of charger load even at the 
highest density. On some rural circuits with predominantly smaller (less than 25 kVA) 
transformers installed, the addition of one to two larger PHEV/PEV chargers could be enough to 
create overload conditions. 
 
Regarding low voltage conditions, as more PHEV/PEV chargers were installed; more voltage 
drops below the acceptable 115v were observed. Because 114v must be maintained at the 
consumer’s service entrance, 115v was chosen as the voltage excursion point to allow for a 1-
volt drop on the secondary service equipment between the transformer and the consumer meter. 
Due to low service voltage, more line transformer, secondary conductor and service lateral 
upgrades will be required as additional PHEV/PEV chargers are added. 
 
Based on results from the voltage excursion and transformer overload analysis, maintaining 
secondary service voltage within acceptable limits is more likely to be an issue than the 
overloading of line transformers. 
 
Combination of PHEV/PEV with CES 
In addition to deploying PHEV/PEV charging stations, simulations were conducted that 
combined PHEV/PEV charging stations and CES. The CES control managed the activities of the 
individual units in the CES fleet. For this analysis, the combination of CES and PHEV/PEV load 
profile was evaluated. CES was previously shown to be an effective technology for reducing 
daily peak load on circuits. The addition of PHEV/PEV chargers largely did not disrupt the 
ability of CES to shave loads. Generally, there was little evidence of synergy between the CES 
and PHEV/PEV charging schedules, and CES may temper the peak loads caused by PHEV/PEV 
chargers. 

Simulation demonstrated that widespread deployment of PHEV/PEV charging stations can have 
substantial impacts on circuit behavior. These impacts could result in equipment upgrades of 
service transformers as well as secondary side service laterals. PHEV/PEV charging stations not 
only resulted in overload situations, they also affected the time of day when the peak demand 
occurred. This shift in peak is potentially harmful to service equipment because the power 
consumption remains high for longer periods during the day, which increases wear on 
equipment. This data shows that PHEV/PEV charging station effects scale linearly with density, 
which gives greater ability to assess the impact of these technologies on a circuit. 

10.5.5 VVO 
This section describes results from a parametric study of Volt VAR Optimization (VVO) on a set 
of 32 baseline circuit models. The impact of VVO on circuit behavior was evaluated in three 
major areas – circuit demand, energy usage, and the voltage profile of the circuit. The impact of 
VVO on circuit behavior was also evaluated for each of the 32 circuits with three modifications – 
added circuit components (voltage regulators and capacitors), added CES, and added PV. For 
each of these effects a GQM was identified to determine the effectiveness of VVO in each area.  
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In the original experimental design, 32 circuits were planned to be simulated with VVO. 
However, circuits with multiple regulators could not be simulated using the built-in GridLAB-D 
VVO module. A proprietary module was used for these circuits which had mixed results. There 
are 6 circuits out of the 32 that have multiple regulators. As a result for the VVO only sections, 
results are shown for 26 circuits. 

VVO Technology Impact 
VVO was effective in reducing synchronized and absolute annual demand peaks and in reducing 
energy consumption. With VVO targeted for 117V EOL voltage and 0.98 leading power factor 
(PF), the median annual peak kW demand reduction for the 26 circuits studied was 2.43 percent 
for synchronized peaks and absolute peaks. The median daily average peak demand reduction 
was 3.68 percent with VVO set for 117V EOL voltage and 0.98 leading PF. With the same VVO 
target settings, the annual energy savings averaged 4.05 percent (median = 4.24 percent) relative 
to the baseline cases.  

On average EOL target voltage played a more significant role than did target PF in determining 
the amount of peak demand reduction and energy savings. Based on the median percentage 
annual energy reduction, the 117V target setting provided the best energy savings compared to 
118V and 119V settings at a target PF of 0.98 leading. Four of the five circuits that benefited 
most from VVO for daily peak demand reduction also benefited most for reducing energy 
consumption. Defining circuit characteristics such as miles, line number of residential 
consumers, or primary circuit voltage were not common among these high performing circuits. 

The VVO results were affected by the use of two different VVO modules. An open source VVO 
controller was used for simulations if the circuit did not have a line voltage regulator. A 
proprietary VVO controller was used for simulations of circuits that had line voltage regulators. 
The open source controller was unbiased and treated the voltage set point as its target allowing 
the EOL voltage to be below the target at times. The proprietary controller treated the voltage set 
point target as a minimum and biased the EOL voltage to be above this target most of the time. 
Because of the differences in the way each controller responded to the EOL voltage target, the 
results produced by these different controllers were significantly different.  
 
These differences affected comparisons between the results for circuits with a line regulator and 
the results for circuits without a line regulator. Regardless of the target voltage and power factor, 
the median VVO annual peak demand reduction percentage was significantly lower than the 
median VVO daily average peak demand reduction percentage. This difference was indicative of 
the inability of the circuit voltage regulators and line voltage regulators to lower the voltage 
profile on most circuits as much during peak demand periods as they could during periods of 
lighter load. During peak periods, the higher load on the circuit caused increased voltage drop, 
and the voltage regulators had to maintain a higher voltage level in order to keep the EOL 
voltages within acceptable limits. The following two figures illustrate the voltage profiles for one 
of the modeled circuits during off peak and peak demand respectively. 
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Figure 182. The Circuit Off Peak Voltage Profile Drop Due to VVO 

 
Figure 183. The Peak Voltage Profile Drop Due to VVO 
 
VVO was less effective in reducing reactive demand peaks than it was in reducing kW demand 
peaks. Individual circuit results were highly variable, but median annual reactive demand 
reductions ranged from 0.92 percent to 1.79 percent for both synchronized and absolute peaks.  
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For 117V, 118V and 119V target EOL voltage, VVO improved the annual average PF on 15, 15, 
and 16 of the 26 circuits respectively. For the remaining circuits the same target EOL and PF 
values produced a slight decrease in annual average PF. For target PF values of 0.98 leading, 
0.98 lagging, and 0.96 leading with a 117V target EOL voltage, VVO improved the annual 
average PF on 14, 15, and 15 of 26 circuits, respectively. Changes in target power factor settings 
had more effect on reactive demand peak reduction than the changes in EOL target voltage. 
 
For reactive energy consumption, VVO provided mixed results with large variations in reduction 
from circuit to circuit. With varying EOL voltage target and a constant target PF of 0.98 leading, 
the annual reactive energy savings ranged from a savings of 81.26 percent to an increase in 
consumption of 181.47 percent. Changes in target power factor settings had more effect on 
reactive energy reduction than did changes in EOL target voltage. The varying results in 
reduction may be due to: 
• Constant power loads dominating peak conditions 

• Different control logic, control points and control measures used to control the capacitors2 
 
Adding a line regulator, a capacitor or both a line regulator and a capacitor on circuits with VVO 
did not consistently improve VVO peak demand reduction performance. This lack of consistent 
peak demand reduction was because added components were not able to flatten circuit voltage 
profiles much better than the flattening provided by the VVO before additional components were 
added. Additionally, the proprietary VVO object used in the simulations maintained higher 
voltage profiles compared to the open source GridLAB-D VVO object, which was also used. 
 
The small improvement in annual and average daily energy savings and demand reduction from 
circuit components added to a circuit with VVO could be attributed primarily to the fact that the 
implementation of VVO without added circuit components harvests most of the potential energy 
savings and demand reduction from lowering the circuit voltage. Because the circuit demand was 
near its peak for only a small percentage of time during the year, the implementation of VVO 
allowed the existing regulators and capacitors on the circuit to lower the voltage profile 
significantly for most of the year.  
 
The addition of a supplemental line voltage regulator or capacitor may allow the voltage on 
portions of the circuit to be lowered further, but the amount of further reduction would be very 
limited. The VVO had already greatly flattened the circuit voltage profile using the existing 
voltage regulators and capacitors on the circuit. Also, the voltage reduction from the added 
regulator or capacitor would have affected a small portion of the load on the circuit further 
limiting the amount of reduction. Because the circuit voltage profile was higher during times 
when the circuit load was high, an added voltage regulator or capacitor would be most effective 

2 In the baseline case, each capacitor was switched using kVAR on and kVAR off set-points to 
switch the capacitor on and off using kVAR measurements from only one of the three phases at 
the capacitor location. In the VVO case, the capacitors were switched based upon the total three 
phase kVAR measured at the circuit regulator.  
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at reducing the voltage during those times. However, the amount of time the demand was high 
was relatively short, and the amount of further voltage reduction was still very limited.  
The addition of a capacitor provides less potential for an improvement in VVO demand 
reduction and energy. 
 
Compared to the baseline, VVO set for 117V EOL target voltage and 0.98 leading PF decreased 
the median number of annual regulator tap operations by 0.2 percent. However, individual circuit 
results varied widely. For target voltage of 117V, 118V, and 119V simulated with a target power 
factor of 0.98 leading, 13, 13, and 12 of 26 circuits respectively showed a decrease in the annual 
number of regulator tap operations, and the remaining circuits showed an increase. Similarly for 
all three target power factors simulated with a target EOL voltage of 117V, 13 of 26 circuits 
showed a decrease in the annual number of regulator tap operations and the remaining circuits 
showed an increase. 
 
Voltage excursions outside the 116.5V - 126.5V range were examined as indicators of potential 
voltage issues from VVO operation. With EOL target voltages of 117V, 118V and 119V and a 
target PF of 0.98 leading, the number of annual voltage excursions above 126.5V either stayed 
the same or decreased on 23 of the 26 circuits. However, the number of voltage excursions above 
126.5V increased on 3 of the 26 circuits.  
 
With VVO set for 117V and the three target PF (0.98 leading, 0.96 leading, and 0.98 lagging), 
the 0.96 leading PF setting produced the best results with only 5 of the 26 circuits experiencing 
an increase in the number of voltage excursions above 126.5V. 
 
With VVO target settings of 117V and 0.98 leading PF, 23 of 26 circuits experienced an increase 
in the number of voltage excursions below 116.5V. With target voltage settings of 118V and 
119V with 0.98 leading PF, fewer circuits experienced an increase in the number of voltage 
excursions below 116.5V and the amount of increase was generally smaller than the amount of 
increase with the 117V setting. 
 
For voltage excursions below 116.5V, with VVO set for 117V and the three target PFs 
simulated, the 0.96 leading PF setting produced the best results with only 5 of the 26 circuits 
experiencing an increase in the number of voltage excursions. With VVO set for 117V the 
majority of circuits experienced a large increase in the number of voltage excursions below 
116.5V at each of the three VVO PF settings. 
 
If a VVO target voltage setting of 117V is selected, the circuit may need to be monitored to 
insure voltage levels remain above the lower limit. Improved voltage excursion results may be 
possible by modifying VVO control settings such as time delays and dead band settings. 
 
Evaluate Combination of VVO with PV 
In general the addition of PV did not have a significant impact on the number of voltage 
excursions experienced on the 26 circuits. Based on this result, the addition of PV should not 
create out-of-limits voltage conditions. 
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For many circuits either clustered or distributed, PV combined with VVO improved the annual 
maximum kW peak shaving performance compared to the performance of VVO operating alone.  
On several circuits the maximum PV output on the day of the maximum annual peak demand did 
not coincide with the annual maximum peak demand. For these circuits, this difference in timing 
resulted in little or no peak shaving contribution from the PV. 
 
Because most of the 25 circuits were summer peaking and the daily maximum PV output 
coincided more closely with the summer peak than at other times of the year, VVO combined 
with PV was more effective in reducing the annual maximum peak demand than reducing the 
daily average peak demand. 
 
A comparison was made between the annual peak shaving results for VVO combined with PV to 
the sum of the annual peak shaving results for VVO operating alone and the annual peak shaving 
results for PV operating alone. The objective was to see if the interaction of VVO and PV 
operating together produced a greater sum than the sum of their individual effects when 
operating alone. The result of this comparison suggests that very little synergy existed between 
the two technologies. 
 
At the circuit level the addition of PV to VVO universally improved the savings in annual energy 
usage over the savings provided by VVO operating alone. The energy consumption reduction 
results of VVO plus PV compared to the sum of PV and VVO reduction results revealed very 
little synergy between the technologies when VVO was combined with PV. 
 
Based upon median results, VVO combined with PV did a better job of reducing synchronous 
reactive peak demand than VVO operating alone. This result reflects the reduced PF caused by 
the real power output of the PV and by the limitations placed upon the VVO by the number and 
size of switched capacitors on the circuit.  
 
Some circuits were not affected by the PV because their reactive demand peak occurred while 
there was no PV output. For circuits that were affected by the PV output, the VVO did not fully 
compensate for the circuit reactive demand peak on some of them. For other circuits affected by 
the PV, the VVO overcompensated as it tried to maintain the target power factor. As a result, 
some circuits decreased peak reactive demand and some circuits increased peak reactive demand 
when VVO was combined with PV compared to VVO alone. 
 
In addition, negative values in peak reactive demand reduction may be attributable to slight 
timing effects. The circuit load composition on some circuits being predominated by loads with 
ZIP fractions model increased reactive loading when the circuit voltage was lowered by the 
VVO. In addition, the average PF under baseline conditions was higher than the VVO target PF 
of 0.98. Under these conditions, the reactive demand with VVO or with VVO combined with PV 
would be expected to be somewhat greater at times than the baseline reactive demand. 
 
Even though PV did not provide VAR support, VVO combined with PV produced additional 
reduction in annual reactive consumption for many circuits compared to the baseline case. The 
median improvement in annual reactive consumption reduction considering all 25 circuits was 
only 0.01 percent for all PV densities for both distributed and clustered configurations, 

317 
 

 



Modeling and Simulation 

comparing the annual reactive energy consumption reduction for VVO combined with PV 
compared to the annual reactive energy consumption reduction for VVO operating alone. 
The combination of VVO with PV significantly increased the number of voltage excursions 
above 126.5V on most of the 25 circuits as compared to the number of excursions on circuits 
with VVO only. Compared to the baseline case, VVO operating alone with target EOL voltage at 
117V and target PF of 0.98 leading generally increased the number of voltage excursions below 
116.5V. For nearly all of the circuits, PV deployment with the VVO operational increased the 
number of excursions below 116.5V. The number of voltage excursions was independent of the 
PV density for both clustered and distributed configurations. 
 
Circuits with VVO and clustered PV had more voltage excursions below 116.5V than circuits 
with VVO and distributed PV. On some circuits, the power output from clustered PV and higher 
density PV appears to have raised the EOL voltage at some locations causing the VVO to lower 
voltage regulator output voltage too much at times. Customizing VVO control settings such as 
time delay and voltage bandwidth to reflect the unique conditions on a particular circuit may be 
advisable to reduce the number of voltage excursions. 
 
When PV density or clustering of PV concentrates in one area on a circuit with VVO, relocation 
of an existing EOL monitoring point or the placement of a new EOL monitoring point may be 
necessary to maintain voltage within the acceptable voltage range. On circuits with higher 
concentrations of PV where VVO implementation is being planned, studies should be made that 
take PV into account when locating the VVO EOL voltage monitoring points.  
 

Evaluate Combination of VVO and CES 
VVO and CES produced poor results in terms of additional annual peak demand reduction 
compared to VVO operating alone. Just over half the circuits with data showed some additional 
annual demand reduction with CES added. However, the amount of reduction was less than 1 
percent on most of the circuits which had additional demand reduction. Slightly better results 
were produced for additional daily peak demand reduction, but the VVO and CES improved the 
median average daily peak demand reduction by less than 1 percent considering both clustered 
and distributed CES configurations. Adjustment of the CES control set-point would have 
improved peak demand reduction performance. 
 
With the addition of CES, the charging energy for the CES units decreased the annual and daily 
energy savings compared to VVO operating alone. However, the average daily energy savings 
for VVO and CES was positive for all circuits with available data. 
 
The additional VAR support provided by CES resulted in an additional reduction in reactive 
demand on most circuits compared to VVO operating alone. VVO and CES clustered improved 
the annual reactive demand reduction on twenty-four of the twenty-four circuits and improved 
the daily average reactive demand reduction on twenty-four of the twenty-four circuits. 
 
The VAR support from CES complemented the VAR support provided by the VVO by further 
reducing the reactive energy requirements on the circuits. The VVO and CES significantly 
reduced the annual reactive energy usage compared to the VVO operating alone. Compared to 
VVO operating alone, VVO and CES (distributed and clustered) reduced the annual reactive 
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energy usage on all circuits with available data. The average daily reactive energy results did not 
reflect significant VAR contribution from CES. 
 
All circuits with available data except four experienced an increased number of tap operations 
with VVO and CES compared to VVO acting alone. For several circuits, the increase was 
significant with the number of tap operations more than doubled by adding a large density of 
CES. Overall the combination of VVO and CES had a beneficial effect by reducing voltage 
excursions compared to VVO operating alone on most circuits, but VVO significantly increased 
the number of regulator tap operations. For 21 of the 24 circuits, the number of annual voltage 
excursions below 116.5V either stayed the same or decreased for VVO and CES clustered 
compared to VVO operating alone. The results for distributed CES showed the number of 
voltage excursions above 126.5V were similar to the results for clustered CES. However, 
distributed CES had fewer excursions. 
 
For voltage excursions below 116.5V, the number of voltage excursions either stayed the same 
or decreased for 21 of the 24 circuits comparing VVO and CES clustered with VVO operating 
alone. For VVO and CES distributed, the annual number of excursions below 116.5V was 
slightly better than VVO with clustered CES. 
 

CVRfEnergy is a metric used to measure the average responsiveness of a circuit’s energy 
consumption to voltage reductions. CVRfEnergy factors for 25 circuits with VVO were 
calculated. The CVRfEnergy varied from circuit to circuit and ranged from a high of 2.52 to a 
low of 0.51. CVRfEnergy closely correlated to the Average CVRfDemand. For a given circuit 
the CVRfEnergy varied over a very small range as the VVO voltage and PF settings were 
changed. The median of the CVRfEnergy factors for these circuits varied slightly from a low of 
0.76 to a high of 0.77 for the five VVO settings simulated. The relationship between the circuit 
energy consumption and voltage level was nonlinear, that is a given percentage voltage change at 
a higher voltage level produced more energy consumption change than the same percentage 
voltage change at a lower voltage level. None of the defining circuit characteristics had 
significant correlation with CVRfEnergy. 

 
The simulation results show that VVO provided benefits in all three major areas: circuit demand, 
energy usage, and the voltage profile of the circuit. Adding conventional circuit components 
such as voltage regulators or capacitor banks was compatible with VVO operation and 
marginally improved VVO performance. Adding more recently introduced technologies such as 
photovoltaic arrays or CES was compatible and complementary to VVO performance. 

10.5.6 Project Tariffs and Riders 
This section analyzes the deployment of multiple types of Project tariffs and riders (Tariff) on 
three circuits from AEP Ohio. Only three circuits were chosen because consumer response to 
Tariffs is not dependent on circuit characteristics. Each Tariff was deployed at 100 percent 
penetration for the simulations. The results of the simulation should therefore be scaled to 
expected penetration levels. Circuit demand and energy were evaluated under each Tariff at 
varying consumer response levels. When possible, the range of consumer responses to Tariffs 
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were based on available data from existing Tariff programs. This data was used to set high and 
low response levels.  
If no data was available, high and low response levels were estimated to demonstrate a range of 
potential consumer responses. For each of these effects, a GQM was identified to determine the 
effectiveness of Tariffs in each area. 
 
Tariff Impact  
One of the potential benefits of Tariffs is the ability to shave peak demand. Tariffs offer an 
incentive for consumers to reduce electricity usage during peak demand times. For DLC, some 
circuits showed peak reductions ranging from 0.2 percent to 0.3 percent for both high and low 
response cases. Sample circuit A showed a 33.9 percent peak reduction for the low response 
case, and 39.4 percent for the high response case. The success of the peak demand reduction 
depended largely on whether or not the maximum 4-hour load control event was timed correctly 
with the circuit peak. The load control event was timed correctly for sample circuit A, but missed 
the peak time on sample circuits B and C. The DLC event time periods were chosen by selecting 
the typical peak hours on the hottest days of the year. Given the 4-hour event time limit, 
initiating the event too early may result in an absolute peak that occurs after the event has ended. 
Initiating the event too late may mean that the opportunity to reduce the absolute peak has 
passed. 
 
Simulation results show the ideal time period for a DLC event, but it is more difficult to set the 
ideal event time period without knowing exactly when the absolute peak will occur. In an actual 
DLC event, there obviously would not be a way to know exactly when the absolute peak will 
occur. The TOD tariff reduced peak demand in the range of 23.26 percent to 34.83 percent for 
the low-response cases across all three circuits. The peak was reduced in the range of 24.93 
percent to 35.79 percent for the high-response circuits. TOD/CPP peak reduction ranged from 
31.03 percent to 44.88 percent for low-response cases, and 37.61 percent to 69.06 percent for 
high-response cases, with critical peak events proving to be very effective at reducing demand. 
RTPda peak demand reduction ranged from 2.51 percent to 10.17 percent for low-response cases 
and 1.53 percent to 9.89 percent for high-response cases. These results should be scaled to 
expected penetration levels. For each tariff, a common byproduct of the peak reduction was a 
sharp increase in demand immediately after the peak pricing period. This demand rebound often 
went higher than the original peak. Because the demand rebound is expected to scale linearly 
with penetration levels, this effect would be significantly lessened at penetration levels less than 
100 percent. 
 
Another potential benefit of Tariffs is a reduction in energy consumption. Each Tariff showed a 
net energy reduction despite the high demand rebound after peak periods. The DLC had average 
daily energy savings ranging from 0.39 percent to 0.67 percent for low-response cases, and 0.46 
percent to 0.79 percent for high-response cases. The TOD tariff had an average daily energy 
reduction ranging from 4.79 percent to 9.17 percent for low-response cases, and 4.73 percent to 
9.35 percent for high-response cases. The TOD/CPP tariff low-response cases ranged from 8.62 
percent to15.69 percent and 8.78 percent to 15.73 percent for high response cases. For the RTPda 
tariff, average daily energy reduction ranged from 5.60 percent to 9.53 percent for low-response 
cases and 6.96 percent to 12.00 percent for high-response cases. Like the peak demand reduction 
results, these results should be scaled to expected Tariff penetration levels. 
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Tariff simulations for DLC, TOD, TOD/CPP, and RTPda showed that each Tariff can be effective 
at reducing peak demand and energy usage. Each Tariff also showed a demand rebound 
immediately after the peak pricing period. Because these simulations were run at 100 percent 
Tariff penetration, the peak demand reductions should be scaled to expected Tariff penetration 
levels. The demand rebound effect would also be significantly lessened at penetration levels less 
than 100 percent. 

10.6 Modeling and Simulation Conclusions 
The overarching conclusions of the Modeling and Simulation effort show the effects of adding 
smart technologies to the grid. A benefit of using modeling for this type of analysis is that it 
provides the ability to predict the effects of smart grid technologies before capital investments 
are incurred. Synergies among multiple smart technologies and potential negative combinations 
of others can be identified. Modeling and Simulation provides beneficial analysis to invest in a 
stronger, more robust electric grid for the future.  
 
Details and conclusions regarding the simulation results of individual technologies as well as 
combinations of technologies are more fully described in the section labeled Summary of 
Simulation Results. 

10.7 Lessons Learned 
• Open source distribution circuit simulation tools allow sophisticated and detailed 

simulations for many aspects of the distribution circuit from the substation down to the 
individual houses and their appliances, outlet and lighting loads, air conditioning, water 
heater, and the home insulation characteristics.  

• User interfaces and analysis tools such as GridCommand Distribution provide speed and 
efficiency for developing and evaluating GridLAB-D models and simulations. 

• Smart Grid Technologies are developing, and due to the interplay between simulation and 
implementation, the technology simulation tools are also developing. 

• Open source modules for several distributed generation technologies are currently full-
featured and provide valuable tools for simulations of both individual and combined 
technologies. 

• Open source simulation modules for VVO are adequate for many simulations, but their 
current versions have limited ability to deal with complex circuits containing multiple line 
regulators connected in series configurations. 

• The section labeled Summary of Simulation Results provides information regarding how 
combinations of technologies might work together. These combinations include PV and 
CES, PEV and CES, VVO and CES, and VVO and PV. 
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11 COMMERCIALIZATION 
11.1 Background 
AEP Ohio and Battelle partnered on the AEP Ohio gridSMART® Demonstration Project to build 
a secure, interoperable, and integrated smart grid that demonstrates the ability to improve grid 
reliability, efficiency, and cost through the effective evaluation, integration, and deployment of 
innovative energy technologies in central Ohio. Part of the overall project involved actively 
attracting, educating, enlisting, and retaining consumers using innovative business models that 
provide tools and information to reduce costs, consumption, and peak demand, as well as 
providing the Department of Energy (DOE) with optimal information to evaluate technology and 
preferred business models.  In addition, the project assessed the commercialization opportunities 
for a number of technologies that were demonstrated in partnership with participating 
companies, including the market readiness of emerging technologies and the economic impact of 
these commercial activities.  
 
As part of the Project, commercialization opportunities were assessed for a number of 
technologies demonstrated in partnership with participating companies, which included the 
market readiness of emerging technologies, the economic impact of such commercial activities, 
and lessons learned. A wide variety of commercial partners committed to collaborate and assist 
AEP Ohio in evaluating and advancing promising technologies. The Commercialization 
Working Group (CWG) included AEP Service Corporation, AEP Ohio, Battelle, and The Ohio 
State University’s (OSU) Fisher College of Business. The CWG provided a forum for sharing 
information necessary to complete outcome‐oriented business plans that create and evolve 
market‐ready, smart grid products by considering existing markets, manufacturing capabilities, 
and distribution channels.  
 
The CWG’s goal was to track commercial progress of smart grid technologies, report to the DOE 
how the AEP Ohio gridSMART Demonstration Project accelerated commercialization of smart 
grid technologies, and develop a comprehensive collection of market intelligence, tactical 
guidance, and cost‐benefit analyses for commercial partners.  
 
During the course of the Project, the utility market in Ohio moved from a regulated utility market 
to a competitive retail electric service (CRES) market. As of March 1, 2012, there were 14 CRES 
providers actively serving consumers in AEP Ohio’s service territory, which meant they were 
potentially within the project area as well. 
 
The Project was designed to successfully accelerate the commercialization of smart grid 
technologies through multiple stages of testing and guidance from the commercial partners. A 
wide variety of commercial partners committed to help in evaluating and advancing promising 
technologies. The proposed process included three segments:  
• Extensive equipment laboratory testing 

• Equipment field deployments  

• Assessment by the AEP Ohio gridSMART® Demonstration Project CWG  
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The overall structure is shown in the figure below. 
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Figure 184. Integrated Project Team  
 
Equipment testing was conducted by the commercial partners, Battelle, and AEP Ohio at AEP’s 
Dolan Technology Center (DTC). Equipment field deployments provided performance data for 
both the individual products as well as integrated, optimized solutions. AEP Ohio used 
GridLAB-D, a simulation software package, to appropriately identify the best scenarios for 
component integration without costly trial-and-error approaches. The CWG provided a forum for 
sharing information necessary to complete outcome-oriented business plans that evolve and 
create market-ready smart grid products. 
 
Vendor risk was reduced through rigorous testing, and key commercialization insight was 
provided by the CWG’s processes. This strategy included field deployment experience through a 
commercialization process agreed upon by the CWG and the commercial partners. It considered 
existing markets, distribution channels, and manufacturing capabilities.  
 
AEP Ohio and Battelle agreed to engage OSU’s Fisher College of Business Technology and 
Entrepreneurship Center (TEC) to provide an evaluation framework for use by the CWG.  
 

11.2 Purpose  
This document details AEP Ohio’s gridSMART® Commercialization Plan that contains a process 
and framework developed by TEC and the CWG. This plan enabled AEP Ohio and Battelle to 
track commercial progress of smart grid technologies and report to the DOE how the Project has 
accelerated commercialization of smart grid technologies.  
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TEC and the CWG evaluated the commercial progress of selected technologies being developed 
within the Project and summarized key results and successes achieved by those commercial 
partners’ technologies. In addition to technical and commercial progress, TEC and the CWG 
considered important societal benefits, including economic impact, job creation, and local 
benefits. TEC and the CWG provided an overview of the acceleration of commercialization 
achieved through the Project.  
 
The CWG also created reports containing lessons learned, including best practices for 
commercialization, and elaborated on how lessons learned in the Project can benefit future 
technology development and energy product vendors. The aggregated evaluations from the 
various technologies developed a comprehensive set of market intelligence, tactical guidance, 
and a cost-benefit analysis for commercial partners based on a regulated utility market.  
 

11.3 Roles and Responsibilities 
This project was performed by three key groups: AEP Ohio, CWG, TEC, and the individual 
commercial partners.  
 
The role of the CWG was to provide critical industry-wide insight into utility industry needs, 
trends, and other industry attributes to support the commercial evaluations and reporting. The 
CWG was ultimately responsible for gaining commercial partner approval to provide 
demonstration data to be delivered to the DOE as well as partner-specific insights into the 
technical and commercial opportunity for each commercial partner. They also shared market and 
technical data as well as conclusions based on laboratory and field testing to assess the 
commercialization progress. AEP provided resources to the CWG and made initial contacts to 
potential commercial partners to gain their support and involvement in the commercialization 
plan. Battelle provided data and resources to the CWG as required. 
 
Technology Entrepreneurship and Commercialization Center (TEC) provided expertise in early-
stage commercial evaluations as well as in evaluating a breadth of technologies and products in 
the context of a customized commercial framework. This evaluation was designed to fit the 
specific stage of product development or technologies of each commercial partner. Evaluations 
were used to assist in developing reports demonstrating progress of commercial partners related 
to the Project. TEC was responsible for gathering data from the CWG and commercial partners 
as well as performing secondary market research to support these efforts. TEC used multiple data 
sources to support preparation of reports describing the progress of the commercial partners and 
to communicate TEC’s findings to the three key groups and the individual commercial partners.  
 
The role of each commercial partner was to provide data necessary for the Project’s reporting 
and the commercial progress evaluations. Individual commercial partners were responsible for 
providing data on the start-of-project, end-of-project, and periodic status updates describing 
technical and market development. 
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11.4 Methodology  
The broad objective underlying commercialization was to drive innovation and technology-based 
economic development through advanced grid technologies. TEC worked closely with the CWG 
to develop a customized commercialization framework to assess and accelerate the commercial 
advancement of each commercial partners’ technologies and products. This framework was used 
in parallel with the commercialization framework supported by the CWG to provide valuable 
market intelligence to commercial partners and establish and measure the societal benefits of the 
Project. 

11.5 Commercialization Framework 
The State of Ohio adopted a comprehensive framework for assessing the stage of commercial 
development for new technologies. Because of its relevance to economic development in Ohio 
and the degree to which the broader economic development community was familiar with this 
framework, TEC and the CWG decided to use the Commercialization Framework (see figure 
below) for the following purposes: 
• To assess the progress of the overall Project for moving energy technologies closer to 

commercialization.   

• To understand the specific opportunities and challenges each commercial partner faced 
along the commercialization path. 

• To identify the key transitional resources that have enabled the commercial partners to have 
an economic impact. 

 

 
Figure 185. Commercialization Framework 
 
An important benefit was the ability to track the progress of individual technologies and products 
as well as the overall evolution of the collection of technologies and products over time. The 
framework accommodated the layers of resources, activities, and engagements to capture the 
progression through various stages of commercialization.  
 
The innovation process for the market introduction of new products and services involved a great 
deal of uncertainty. In order to understand how the participating companies progressed under 
these conditions, TEC and the CWG used the Inside Innovation framework to assess the unique 
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factors, opportunities, and challenges each company managed during the Project. The Inside 
Innovation framework tracked progress on and iteration between three factors critical to 
innovation: Technology, Market, and Implementation3 as defined below. 

 
Figure 186. Inside Innovation Framework 
 
Technology: Technical factors that are objectively verifiable by scientific methods.    
Market: Individuals and organizations that actually use the proposed innovation, 

what value they perceive in the innovation, and what specific benefits they 
realize from its use. 

Implementation: The processes and transactional experiences that must occur to make the 
innovation functional in the designated market. 

 

3 Fitzgerald, E., Wankerl, A. and Schramm, C., Inside Real Innovation, World Scientific Publishing Co., Singapore, 
2011. 
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TEC integrated and modified these models so that:  
• They were uniquely effective at assessing the degree of innovation traction and economic 

impact in the gridSMART® Demonstration Project. 

• They were useful for communicating the position and progress of each commercial partner 
and for the Project as a whole to the DOE. 

11.6 Segments 
Technical validation was performed through a three-segment process supported by AEP Ohio, 
Battelle, and utility industry members. The three segments included the following.  
• Extensive laboratory testing  

• Equipment field deployments  

• Assessment by the commercial partner and the CWG  
 
Equipment testing was performed by the commercial partners as well as at AEP’s DTC facility. 
Field deployments and software simulation and modeling provided critical data for integration. 
Finally, the CWG met with commercial partners to review testing and field evaluation, to review 
performance against expected metrics, and to develop / refine business cases.  

11.7 Factors 
The CWG developed business cases that included a review of the core intellectual property and 
its readiness for commercialization, the viability of the commercial partner, estimated utility 
and/or consumer adoption of each technology, and the estimated market potential for the 
technology.  The overall business case included the following.  
• Potential revenues 

• Utility, consumer, and societal costs and benefits 

• Full consideration of the regulatory framework for recovery of costs and sharing of benefits 

11.8 Impact on Technology Commercialization 
TEC and the CWG performed detailed characterization of the commercialization progress for 
technologies and products listed in the Commercialization Opportunities table in this section. 
When necessitated by the gridSMART products budget, the technologies and products were 
selected and prioritized based on factors such as business alignment, stage of commercialization, 
probability for success, magnitude of projected benefit, and the commercial partner’s willingness 
to engage in the process.    
 
• For selected technologies at the imagining and incubation stages, TEC evaluated each 

technology according to TEC’s Capabilities, Methods, Outcomes (CMO) methodology. 
CMOs provide a structure by which competitors’ complementary technologies can be 
identified and compared. In addition, TEC provided basic market information such as 
market size or trends predicted for each selected technology, as well as an estimated break-
even price to achieve market entry success. 
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• For innovations at the incubation and demonstration stages, TEC made available its 
Structured Concept Testing process, by which key features were articulated, key market 
targets were identified, features were validated with relevant market players, and an 
estimated breakdown price to achieve market entry success was determined.  

• For products in the demonstration and market entry stages, TEC developed and assessed 
innovative business models, including assessing the industry value system, supply chain, 
pricing strategy, decisions about partnering/outsourcing,  a cost-benefit model, core assets, 
and infrastructure costs.  

 
For the selected technologies, three common dimensions of benefit were considered:  
 
• Benefit to Utility – For all technologies, TEC assessed the market impact or prospective 

market impact of the innovation. The core of this assessment is a cost-benefit analysis that 
may be used to address regulatory considerations. Together, these considerations were 
aggregated into overall industry value drivers. In addition, TEC assessed the impact 
innovations have on competition, competitive behavior, and how markets operate. 

• Benefit to Consumer – In addition to directly quantifiable benefits related to energy 
savings as a result of controlling time of use or direct rate impacts, TEC considered non-
utility consumer benefits such as the impact of improved efficiency or reliability as 
identified by commercial partners or the CWG. 

• Broader Societal Impacts – Beyond direct benefits to the utilities and consumers, TEC 
also considered the broader societal impacts of AEP Ohio’s gridSMART Project with a 
specific focus on the efforts of its technologies and commercial products, such as 
educational benefits, workforce development, economic development, and diversity. 
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Suite/Product Technology/ Product Start-of-

Project  Status End-of-Project Status 

Distribution 
Automation 

Distribution Management 
System and SSI Interface Incubating Market Entry 

 Volt VAR Optimization Incubating Market Entry 
 Volt VAR Optimization Incubating Market Entry 
 Circuit Reconfiguration Demonstrating Growth & Sustainability 
Cyber Security 
and Operations 
Center 

 Imagining Demonstrating 

Smart 
Appliances  Demonstrating Growth and Sustainability 

AMI Meters Smart Meter Demonstrating Growth & Sustainability 
AMI 
Communications Communication to meter Demonstrating Growth & Sustainability 

 Utility IQ Demonstrating Growth & Sustainability 
Automobile Electric Vehicles Demonstrating Growth and Sustainability 
 Charging Stations Incubating Market Entry 
Demand 
Reduction and 
Management 

Grid Router / Home Energy 
Manager (HEM)  Imagining Demonstrating 

 
enhanced Programmable 
Control Thermostat (ePCT) 
(COTS) 

Market Entry Market Entry 

 Centralized Distribution 
Management  System Control Imagining Incubating 

 
enhanced Programmable 
Control Thermostat (ePCT) 
(AEP Standard) 

Imagining Demonstrating 

 
enhanced Programmable 
Control Thermostat (ePCT) 
(Real-time Pricing - Battelle) 

Imagining Demonstrating 

 SmartGrid Dispatch Engine Imagining Demonstrating 

 In-Home Energy Display 
(Standard) Imagining Demonstrating 

 In-Home Energy Display 
(real-time pricing) Imagining Incubating 

Modeling, 
Analytical, and 
Simulation Tools 

Grid Lab-D Incubating Demonstrating 

 
Integration of Grid Lab-D 
Open DSS and Near-real-time 
Power flow modeling 

Imagining Imagining 

Consumer 
Programs AEP Billing Engine (ABE)   

 Customer Engagement/ 
Characterization N/A Incubation 

 Consumer Web Portals Incubating Demonstrating 

Table 30. Commercialization Opportunities 
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11.9 Engaging Commercial Partners 
Initially, AEP reached out to each commercial partner to introduce the technology 
Commercialization Plan and communicate the high-level benefits to the partners. The CWG then 
interviewed selected commercial partners in order to understand the specific inventions, 
products, business models, and other technical and commercial information.  
 
TEC also worked closely with AEP Ohio to understand AEP Ohio’s requirements and objectives.   
The CWG shared its perspective on market features, trends, and regulatory considerations. TEC 
performed primary and secondary market research and combined this data with the insights 
provided by the commercial partners and the internal gridSMART assessment team data. The 
value of TEC’s evaluations depended directly on the engagement with the commercial partners 
and the quality of information shared. Participation by the commercial partners in the Project 
was voluntary, and TEC and the CWG appropriately safeguarded any confidential information. 

11.10  Benefits to Commercial Partners 
The selected commercial partners received valuable market intelligence, including opportunity 
size, industry trends, and value system analyses that augmented existing market intelligence. 
This information can be prohibitively expensive when purchased from traditional research 
organizations. In particular, commercial partners were able to improve product features and 
refine development plans based on customized assessments of competing technologies produced 
from public sources and insights into emerging technologies.  
 
The market intelligence developed was tailored for the stage of development of each commercial 
partner. The independent economic and competitive analysis performed on behalf of the 
commercial partners could be used to confirm and validate internal business plans.  However, the 
extent to which these analyses were performed was dependent on the amount of information 
obtained from public marketing materials.  
 
The CWG also performed an economic assessment of the technology/product that was developed 
in the Project. In addition to topline market size, penetration estimates, and revenue potential, the 
CWG considered costs and benefits to the utility, consumer, and society as related to the subject 
innovation. These benefits were considered within a regulatory framework for recovery of costs 
and sharing of benefits. 
 
Cooperation from each commercial partner ensured that the CWG and TEC were able to bring 
the highest quality data and analysis to bear on accelerating and guiding commercialization of 
each commercial partners’ product or technology. 
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11.11   Commercial Partner Reports 
Progress/status reports were provided to the Project team at regular intervals. These reports 
characterized the partner’s stage of commercialization, their partners, resources, cost-benefit 
analysis, and other factors that governed the characterization and were the basis for commercial 
adoption. These reports also described the work performed and the results of that work to 
characterize the commercial partners as detailed in the Methodology section above.  
 
Based on the interests of the commercial partners, alignment with Project goals, and budgets, 
commercial partner projects were selected and prioritized as necessary. Aggregating individual 
status reports helped to capture the path to commercialization taken by the commercial partner.  

11.12 Project Report 
The status reports and summary reports for commercial partners were used to prepare Project 
status reports that tracked the overall evolution of the portfolio of technologies and commercial 
products. The report highlighted commercialization trends, lessons learned, and best practices 
based on the evolution of the individual participants and a summary of overall Project 
effectiveness.  

11.13 Commercialization Conclusions 
Engaging vendor participants in the Commercialization effort allowed for assessment of 
commercialization opportunities including the market readiness of the emerging technologies 
and the economic impact of these commercial activities. While AEP provided the utility 
perspective, Battelle and TEC provided valuable analysis and insights regarding the product 
development. The Project successfully accelerated the commercialization of smart grid 
technologies through multiple stages of testing and guidance from the commercial partners. 

11.13.1 Overarching Observations 
The primary lesson learned from the Project was that external DOE funding was particularly 
effective at advancing technologies over regulatory or technical demonstration barriers. Products 
and technologies where DOE funding was especially meaningful include: 
• Those that faced regulatory considerations, including rate structure limitations; 

• Technologies that were in an early stage of technical development; and 

• Products that addressed a need where the solution benefits from close collaboration among 
utilities. 
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In contrast, those technologies facing consumer adoption barriers benefited less substantially 
from DOE funding. Technologies which commercial advancement was more significantly 
supported by the DOE funding are Cyber Security, GridLAB-D, and Smart Grid Dispatch 
Engine (SGDE).  
 
• Cyber Security was recognized by utilities as a priority prior to the Project. The Project 

adopted the Palisade suite of tools. More importantly, cyber security collaboration among 
utilities was a direct outcome of DOE funding. The collaboration between AEP Ohio and 
Lockheed Martin supported by the DOE funding has led to a more secure utility grid.  

• Development of the Grid Command™ Distribution  tool, used with GridLAB-D, 
accelerated development of the simulation environment up to the critical point of becoming 
practical to use by utility engineers and not solely by researchers. Enhanced simulation 
environments are enabling more rapid development and deployment of new grid 
capabilities. DOE funding was able to kick-start creation of this capability to a point where 
industry and academia is able to continue its refinement. 

• For SGDE, the dearth of utility markets that allow demand-based residential pricing clearly 
discourages commercial enterprises from developing such a system. With DOE funding, 
the demonstration system was developed and possible. Policy makers can now use this 
information to evaluate if free-market pricing for residential electricity is desirable. 
Without DOE funding for this demonstration project, such decision would lack market 
pricing efficacy data in the electric utility domain.  

 
End-user focused technologies that were not significantly impacted include the ePCT and GE 
Smart Appliances.  
 
• In the case of ePCT, the initial product form was a thermostat with a programmable 

interface. While this feature was valuable for demonstration projects, the ePCT technology 
itself was already commercially viable, and so did not advance in the framework during the 
Project. The fact that the ePCT could be adapted to the real-time-pricing application was a 
strong endorsement of the flexibility of this device in the marketplace. 

• The GE Smart Appliances also did not significantly advance in the framework. Because no 
national standard for communications between residences and utilities is imminent, this 
product was a weak fit for the Program. GE has since modified its approach with this 
technology toward a more appropriate business model focused on consumer connectivity 
and convenience.  

 
The most significant impact of DOE funding can be seen in areas where DOE investment 
broadly impacted the industry, as opposed to a single utility or commercial partner. Cyber 
Security is the clearest example of such an impact as it is a pervasive concern throughout the 
utility industry. Cyber Security centers are now at each utility where DOE funding had a large 
impact.  
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Demonstration of the Home Energy Manager (HEM) had comparatively less impact given the 
level of investment. Each demonstration involved individual consumers, education, and buy-in. 
While long-term impact may be substantial, the impact-to-cost ratio for a technology like HEM 
was less than that for Cyber Security.  
 
Another successful technology demonstration is Volt VAR Optimization (VVO). Because of the 
technical nature of the system and investment in engineering and sensors, the cost was 
significant. The potential improvement in grid performance and long term return clearly 
supported this demonstration. 
 

11.13.2 Other Observations 

11.13.2.1 Need for Technology-Stimulating Policy Considerations 
Due to the dynamics of the regulatory environment, the Smart Grid Dispatch Engine (SGDE) 
faced a “chicken and egg” challenge. The current regulatory landscape does not widely support 
variable pricing and, therefore companies are unwilling to fund projects to develop technology 
that enables or streamlines variable (market-based) pricing. Potential vendors of technologies 
like SGDE seek clear signs from regulators that tariff structures might change.  
 
The regulators are cautious in advancing variable pricing models absent clear demonstration that 
this type of system is viable. The developer of SGDE, Battelle, believes that the DOE funding 
helped move the technology ahead of the market. The Project demonstrated the viability of 
market-based pricing for residential utility consumers, and in a sense is “pushing the market” 
toward being able to consider such pricing schemes.  
 
Recognizing a general societal preference for market choice, and a move toward choice in the 
electrical utility industry, it is reasonable to conclude that technology that enables true supply-
demand market pricing fits with a broad underlying trend within the society.  

11.13.2.2 Financing/Accounting/Investment Considerations 
Traditionally, amortization periods for utility equipment are controlled in accordance with 
investments that must remain in place for many years. However, today’s smart grid technologies 
often have lifecycle dynamics more similar to computer and information technology than 
transmission infrastructure.  
 
This resulted in recognition that even if a new technology proved to be effective in today’s 
environment, required amortization schedules would require carrying the asset on a utility’s 
books long beyond the end of its useful life. This accounting dynamic has direct implications on 
the adoption of emerging smart grid technologies.   
 
The accounting practices of the utility industry were not a specific focus of the Project. The topic 
was recognized during discussions with commercial partners and utility professionals. 
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11.13.2.3 Results 
DOE funding for the Project provided impetus and risk management for critical smart grid 
technologies. The complex nature of the smart grid is impacted by: 
• Ratepayer preferences and preconceptions 

• Current Electric utility practices and installed infrastructure 

• Regulatory precedence and political considerations 
 
DOE funding for the Project helped reduce hesitation in exploring new technologies and allowed 
participants to experiment with approaches and technologies that might have otherwise been 
considered too risky. This increased innovation accelerated learning and encouraged 
collaborations and, for some technologies, advanced their commercialization potential.  
 
The technologies that advanced most with DOE funding were those that are more utility-centric, 
such as, Cyber Security, VVO, and GridLab-D. Those technologies that focused on ratepayers 
saw progress, but the greater number of individuals involved with ratepayer decision-making 
dampened the impact of DOE funding for those technologies. 
 
A clear exception to this observation is SGDE, which bridges utility and ratepayer. For SGDE, 
DOE funding was essential, since a working model of a market-driven pricing for electric power 
is unlikely to be developed and implemented without external support. SGDE is important also 
because it provides early evidence supporting free-market based pricing for electricity, 
supporting general trends toward markets, and choice in the utility industry today. 
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12 WORKFORCE PLANNING 
12.1  Purpose 
The purpose of the workforce plan is to provide a summary outlining the composition of the 
workforce required to support the AEP Ohio gridSMART® Demonstration Project 
implementation. 
 
The workforce plan enables AEP Ohio to understand what workforce requirements are needed to 
successfully design, operate, and maintain the technologies and provides valuable information 
for future smart grid deployments. 

12.2  Background 
The emerging technologies of the Project required specialized skill sets to carry out their 
deployment. The legacy organizational structure and job descriptions did not easily 
accommodate the needed skill sets. As the Project progressed, the roles and responsibilities 
necessary to be effective were established. Resources were identified across the company, and 
those resources stepped up to contribute their talents to the Project. This staffing exercise further 
provided insight to workforce planning requirements for future smart grid implementations 
across the industry. 

12.3  Challenges 
It was critical to identify the resource requirements and existing gaps as part of the planning, 
implementation, and operation of gridSMART technologies. Challenges that affected the 
resource identification were: 
• The traditional organizational structure is vertical in nature with the various functional 

areas established in silos. This structure posed a challenge for communication across 
impacted functional areas 

• New technologies required skills from multiple resources across the organization. 

• The project goals eliminated the need for certain positions, so it was necessary to identify 
ways to re-train and re-deploy existing resources. 

12.4  Cross Functionality 
The technologies implemented for the Project were more sophisticated than existing technologies 
and included multiple organizational disciplines. For example, Information Technology (IT) was 
a key resource for each of the technologies. IT’s role included the need for such proficiencies as 
software support/ monitoring and data management/ analysis. These skills were needed to 
effectively implement and operate all facets of the Project technologies – engineering, 
equipment, operations, and consumer support. Existing job descriptions did not accommodate 
any single job that had a combination of the needed attributes.  
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Impacted functional areas identified as a result of the Project were: 
• Information Technology (IT) 

• Cyber Security 

• Interoperability 

• Information Privacy 

• Telecommunications and Network Services 

• Engineering 

• Equipment Installation and Maintenance 

• Operations 

• Customer Service/ Call Center 
 
Resources were identified for the purposes of the Project; however, future implementations of 
the technologies will require: 
• Job descriptions/roles that blend proficiencies from multiple functional areas to achieve 

effective results. 

• Re-training resources that are displaced due to the implementation of smart grid 
technologies. For example, meter readers that are displaced with AMI technology could be 
re-trained to support the technology in place of the previously required physical meter 
readings. 

• Cross training of skill sets enables the transfer of knowledge and effective support across 
functional areas. This approach ensures day-to-day coverage and manages employee 
attrition more seamlessly. 

12.5  Customer Service 
A critical goal of the Project was managing customer satisfaction as they were introduced to new 
technologies and programs. More advanced skills in customer support were needed to be able to 
respond to inquiries and resolve issues because of the complexity of the technologies.  
 
For future deployments of smart technologies, customer service representatives (CSR) will need 
to be trained in depth on all facets of a technology – the equipment, the technology system, the 
back office systems, and IT troubleshooting. This approach equips the CSRs with a 
comprehensive understanding of the technologies to be able to effectively troubleshoot and 
resolve issues. 
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12.6  Observations 
The following information is the result of the experience and feedback from the different 
technology teams that participated in the Project as it pertains to workforce concerns. 
• Provide additional employee resources to manage data as a result of the implementation of 

new software applications and the resulting data influx. 

• Include sufficient time and resources to perform employee training. Identify key resources 
to train and cross train in specialized areas when implementing new and complex 
technology and processes. Keep up-to-date documentation and a knowledge database for 
specific roles to ensure continuity and ease of learning to mitigate employee turnover 
during the Project. 

• Train customer service groups and representatives to support consumer inquiries 
immediately upon installation of new equipment and programs. 

• Co-locate IT resources from both the utility/operations area and the research/development 
entity for better communication, more effective collaboration, and more efficient decision 
making.  

• Leverage existing talent from within the company before bringing in external consultants. 
Provide specialized training to enhance the internal resources’ value to the project. 

• Build the technology team with key resources from both the utility and the R&D provider 
and co-locate them for better collaboration and a more efficient development process. 

• Gain efficiencies with the expertise throughout the organization. Currently the expertise is 
within organizational silos.  

• Provide the opportunity for employees to acquire new skill sets such as data analysis and 
network expertise. AEP’s workforce developed knowledge of alarms and systems 
monitoring, which resulted in actionable work for field personnel.  

• Ensure that experienced testers are available for system testing. 

• Improve project manager continuity and technical support. 

• Clarify and document essential roles and responsibilities. 

• Implement a tiered technical support staff to install and maintain grid management systems.  

• Create opportunities for existing engineers to add new competencies and expertise. 

12.7 Industry Changes 
As smart grid technologies become more prevalent across the industry and job descriptions 
change, it will be important to prepare the incoming work force: 
• Redefine college curriculum to accommodate the new smart grid technologies associated 

with their power and telecommunications courses. 

• Mentor and train incoming resources, so they are equipped to take on the new and blended 
roles as the currently aging work force retires. 
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• Utility companies will need to upgrade existing job descriptions and redefine new roles that 
include the blended skill sets. 

• The organizational structure will need to adapt to support cross-cutting technologies. 

12.8  Workforce Planning Conclusions 
As a result of the Project, AEP Ohio recognized the inherent challenges associated with the 
existing workforce as effective resources for the Project and for smart grid technologies in 
general. As smart grid technologies emerge, one of the most critical concerns for effective 
implementation and ongoing operations will be newly defined job skills and the necessary 
training. Utilities must become more nimble to adjust workforce management policies and 
develop cross-functional work processes and training programs to facilitate the implementation 
of smart grid technology and ensure qualified personnel are retained.  
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13 LESSONS LEARNED 
This section describes lessons learned for all demonstrated technologies. Others may find 
benefit from issues and solutions that AEP encountered, mitigated or resolved. Lessons Learned 
are provided for Technology, Implementation, and Operations. 

13.1 Technology 
• Smart grid technologies require a high level of interdepartmental coordination. 

• Ensure communication network is designed and operational before field equipment is 
installed. Network optimization is essential to facilitate efficient operations.  

• Develop robust test cases to ensure functionality of the systems.  

• Monitor network equipment and components for performance and downtime. 

• Perform a gap analysis on reporting tools and systems. Develop or purchase new tools 
where in-house technology does not exist. 

• Align software development goals with ongoing operational systems. 

• Identify project key personnel and conduct thorough training that includes hands-on access 
to the equipment they will be supporting. 

• Allow sufficient time in the project plan to ensure the technology and processes are tested 
and ready for implementation to save time and costs and preserve positive consumer 
perceptions. 

• Maintain a consumer-centric focus to help socialize new technologies and processes, grow 
positive consumer perception of the utility, and successfully participate in a competitive 
market. 

• When developing and implementing smart grid technology, provide in-depth 
communication and training to regulators providing a better understanding of the tariffs and 
riders being requested. 

• Perform thorough testing of all equipment and software in collaboration with vendor 
suppliers to ensure its readiness for implementation with consumers. 

• Assess data management based on system and equipment potential for data volume. 
Estimate data storage requirements and plan/build data warehouse accordingly. Ensure all 
data is available for complete analysis and reporting. 

• IT reporting and data mining applications need to be developed to turn the large amount of 
data into knowledge and identify which items the utility needs to take proactive action on. 

• Work with vendors to ensure equipment interoperability. It is important for utilities and 
vendors to work together to enhance smart grid equipment resulting in interoperable 
devices, ensuring successful integration with existing systems. 
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13.2 Implementation 
• When deploying multiple technologies, synchronize deployment to maximize efficiencies 

and reduce rework.  

• Stringent processes are needed to gauge and mitigate interdependencies when new 
technologies are implemented.  

• Vendor-managed and vendor- hosted technology implementation is the most cost effective 
strategy. 

• Clarification and documentation of roles and responsibilities are essential in project 
planning.  

• When technological issues arise, a root cause analysis must be performed to gain 
understanding and make improvements.  

• Engage other utilities and industry experience to develop best practices in consumer 
outreach and education.  

• A phased rollout approach allows for effective consumer communications. Consumers 
were engaged through letters, phone calls, door hangers, and mail communications pieces, 
emphasizing consumer benefits of the technology.  

• Contract terms with vendors and  service providers must address: 
 Documentation and key deliverables  

 Enumeration of roles and responsibilities 

 Service level expectations 

 User acceptance testing requirements  

 System acceptance testing requirements 

 Software/firmware licensing and support 

• Customer service groups and representatives must be fully trained and ready to support 
consumer inquiries immediately upon installation of new equipment and implementation of 
programs.  

• Allow sufficient implementation time to manage potential technology issues that may be 
identified following installation. 

• Conduct focus groups and use surveys to gain a better understanding of the consumers’ 
perceived benefits, enabling the team to better direct both the consumer education and the 
technology to the targeted consumers. 

• Schedule time-sensitive pieces of the proposed tariffs and riders to ensure coordinated 
timing with the actual rollout of technology and equipment to consumers. 

• Develop an integrated marketing and consumer outreach strategy for more effective 
coordination of schedules and operational controls to ensure cost and time savings. 
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• Testing, configuring and commissioning devices and automation schemes is more time 
consuming and complicated than stand-alone devices. 

13.3 Operations 
• Keep consumer messages simple, concise, and benefit-driven. 

• Provide an education process for internal resources to enable them to act as ambassadors of 
the technology that strengthen consumer acceptance. 

• Leverage internal resources and expertise whenever possible to ensure more control and 
involvement in decision making, development, and implementation. 

• When selecting vendors, service providers, or partners, have more closely aligned goals 
that accommodate effective collaboration and consistent outcomes and deliverables. 

• When a vendor performs updates to a user interface, application, or device, the 
documentation must also be updated accordingly. This documentation enhances consumer 
support as well as back office operations. 

• Integrate AMI ping/poll functionality into major storm restoration efforts to reduce time 
and effort and maximize employee efficiency.  

• Implement a sleep timer for meter power up messages to reduce communication losses for 
distribution automation operations. These messages will transmit at a predetermined time 
(set at five minutes). The five-minute delay would allow the DA commands and status 
indications to pass without competing with meter messages for communication resources.   

• Align regulatory requirements to maximize impact of technology capabilities to 
operations.For example, eliminate connect/disconnect site visit requirements to efficiently 
use remote capabilities. 
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14 PROJECT CONCLUSIONS 
14.1 Introduction 
The AEP Ohio gridSMART® Demonstration Project was designed to evaluate a broad scope of 
potential smart grid technologies in order to guide subsequent deployment plans. AEP Ohio has 
not only gained valuable experience in the performance of these technologies, but also in the 
operation of communication interfaces and how to optimize the processes to deliver the benefits 
envisioned. This experience prepares AEP Ohio for a more efficient and effective 
implementation as it deploys select technology and process improvements across the AEP Ohio 
service territory. 
 
The following benefits have been achieved as a result of the Project: 
• Improved safety for AEP Ohio employees  

• Operational efficiencies through real-time information and remote operations 

• Improved access to meter reading data  

• Fewer number of consumer outage events 

• Reduced number of consumers experiencing sustained (>5 minutes) outages  

• Faster restoration times for sustained outages (>5 minutes)  

• Demand reduction through new tariff offerings and the education of consumers regarding 
energy costs and use of technology  

• Improved energy efficiency and demand reduction  

• Improved customer satisfaction 
 
The DOE funding was instrumental in advancing smart grid technologies and ensuring Project 
success. DOE funding was especially meaningful for the following areas: 
• Regulatory considerations, including rate structure limitations 

• Technologies that were in an early stage of  commercial development  

• Products that addressed a need where the solution benefits from close collaboration among 
utilities 

• Best technologies for moving from an integrated utility to one functioning in a deregulated 
market 

• Information sharing to promote a secure and interoperable system 

14.2 AMI  
The Project demonstrated several operational benefits. For instance, by installing AMI meters, 
AEP Ohio eliminated 100 percent of the meter reading routes (187 routes) in the area where AMI 
was deployed. AMI also enabled AEP Ohio to reduce costs associated with meter operations 
activities.  
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For example, through the use of remote service switch capabilities that enable secure connection 
and disconnection of electric service to customer premises from the utility back office, AEP 
Ohio reduced field visits associated with standard move in/move out orders. The combined meter 
reading and meter operations savings totaled approximately $859,100 ($7.81 per meter per year). 
 

Category Project area result 
AMI Meters 110,000 
Meter Reading and Meter Operations 
Savings (annual) 

$859,100 
($7.81/meter) 

Table 31. AMI Meter Benefits 
Credit, collections and revenue enhancements through earlier theft detection, lowered 
consumption on inactive meters and greater billing accuracy led to additional savings and 
benefits.   
 
AMI offered a host of important benefits, including:  
• Improved data for billing 

• Better customer service and satisfaction 

• Reduced outages 

• Improved crew and meter reader safety  

• Reduced environmental impact 
 
Note: The above benefits have not been monetarily quantified. 
 
With automated meter reads, AMI nearly eliminated estimated bills, improving billing accuracy. 
AMI yielded a typical monthly read rate of 99.9 percent, leading to greater billing accuracy and 
improved customer satisfaction.   
 
AMI led to better customer service. For instance, when a consumer wanted to terminate service, 
the AMI meter could be read remotely and a final bill sent without delays caused by manual 
reads. Similarly, AMI meters equipped with a remote service switch enable power to be turned 
on or off remotely. As a result, a consumer moving in could have service turned on in minutes, 
rather than waiting days.   
 
AMI provided consumers with the ability to view their energy consumption on a more granular 
level; typically multiple data points per day were provided. This data provided consumers a 
better understanding of their consumption behavior. The availability of this data also enabled 
consumers to participate in consumer programs. These programs were designed to reduce peak 
demand, thereby allowing consumers to benefit through savings.  
 
AMI also provided billing and customer service efficiencies that enabled AEP Ohio to quickly 
address inquiries. Consumers experienced fewer billing issues from continual meter reads and 
the elimination of estimated meter reads through AMI. Company representatives had near real-
time access to meter data that helped them discuss actual usage information with consumers. 
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When a consumer called about power loss, the near real-time access also enabled the company to 
determine whether the power loss was due to an outage or to an issue on the consumer side of the 
meter, such as a blown house breaker fuse. 
 
From a reliability perspective, when an AMI meter detected a loss of voltage, a message was sent 
indicating the consumer had lost power.  Messages that successfully reached AEP Ohio's internal 
systems were used in conjunction with consumer telephone calls to predict the extent of the 
outage. Also, meters were queried (pinged/polled) to get an indication of whether a consumer 
had power. This indication was useful to troubleshoot consumer issues and to verify restoration 
following an outage. 
 
From a safety perspective, because crews could remotely determine whether a meter had power, 
crew exposure and safety were improved. Also, due to AMI, fewer meter readers were required 
in the field, which reduced physical meter reading efforts and, thus, reduced safety issues.  
 
With remote capabilities, the number of miles driven by metering and service personnel was 
reduced. In addition, there were environmental benefits associated with reduced vehicle 
emissions as a result of reduced vehicle miles traveled.  

14.3 Consumer Programs  
AEP Ohio offered consumer programs as part of the AEP Ohio gridSMART Demonstration 
Project. AMI provided consumers with the ability to view their energy consumption on a more 
granular level, which provided a better understanding of consumption behavior. Consumer 
programs were designed to reduce peak demand, thereby allowing consumers to benefit through 
savings.  
 
Consumer programs provided significant net benefit to consumers. These programs were: 
• SMART ShiftSM two-tier time-of-day tariff 

• SMART Shift PlusSM three-tier Time-of-Day with Critical Peak Pricing 

• SMART CoolingSM direct load control (DLC) program 

• SMART Cooling PlusSM  DLC program 

• SMART ChoiceSM real time pricing with double auction  

• eViewSM consumer usage feedback device 
 
Additionally, Home Area Network (HAN) devices were used by consumers to better use data 
and pricing signals to control their consumption activity. 
 
The consumer programs proved to be a technical success and were accepted by consumers.  
Consumers who participated in AMI-enabled consumer programs rated their overall satisfaction 
with AEP Ohio higher than did AEP Ohio consumers overall.  
 
The Project engaged in a public outreach and education plan which played a key role in the 
successful implementation of consumer programs. A multi-pronged communications approach 
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engaged key community thought leaders, consumers, and other targeted audiences by providing 
timely and thorough information regarding the overall Project, timeline, rollout and benefits of 
the technologies. The plan clearly communicated with communities and consumers to ensure 
acceptance, which ultimately led to higher customer satisfaction and retention rates. 
 
The proposed AEP Ohio gridSMART Phase 2 will deploy AMI meters with communication 
modules to enable in-home communication from the meter. This communication facilitates 
consumer program offerings. AEP Ohio views its role as a provider of the metering 
infrastructure that enables the offering of these programs by market participants. AEP Ohio 
envisions that Competitive Retail Electric Service (CRES) providers will take the lead role in 
these enhanced customer program offerings.   

14.4 Real Time Pricing with Double Auction 
AEP Ohio was able to successfully demonstrate an experimental tariff that allowed consumers to 
take advantage of fluctuating energy pricing. The Project demonstrated that the approximately 
250 participating consumers were able to shift their energy consumption and paid less for energy 
by using RTPda technology. The experimental program worked as designed resulting in net 
benefits to the consumers and the utility.  
 
Challenges would need to be addressed before considering future deployments. AEP Ohio was 
often required to make multiple trips to consumers’ homes to install, commission, and ensure 
functionality of RTPda equipment. Once installed, there were reliability issues; some with the 
equipment itself as well as with the communications between the various devices and the back-
office systems. Cellular service was not available in all parts of the Project area, which did not 
allow those consumers to participate in the program. The combined cost of equipment and 
communications was significant and, when compared to other consumer programs, the RTPda 
program provided less financial value to consumer and utility. 

14.5 DACR  
The Project, through the deployment of DACR on 70 circuits, was able to reduce Customer 
Minutes of Interruption (CMI), improving reliability. While weather conditions are the primary 
driver for changes in SAIFI and CAIDI, AEP Ohio attributed some improvements of these 
indices from the DACR deployment. All consumers on the 70 DACR circuits experienced 
improved SAIFI and SAIDI.  
 
In addition to the reliability benefits described above, the systems also enabled crew labor 
savings, up to 2 hours per event, and in some instances avoided service calls entirely. Both of 
these situations provided opportunities for AEP Ohio to perform additional proactive work on 
circuits in need of service, further enhancing reliability. 
 
Improved system reliability has significant impact on economic output too.  Based on the Cost of 
Power Interruptions to Electricity Consumers in the United States, Ernest Orlando Lawrence 
Berkeley National Laboratory (2006), AEP Ohio, if expanded to an additional 250 circuits, 
estimates that DACR could reduce societal costs by approximately $71 million per year through 
the reduction of outages experienced by consumers.  
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14.6 VVO  
The Project VVO demonstration was designed to realize a reduction in energy consumption and 
a reduction in peak demand on circuits where VVO was deployed. 
 
Voltage standards exist in the electric utility industry, such as ANSI C84.1, that mandate an 
acceptable voltage range at the secondary of the distribution transformer. VVO enabled a 
reduction of the average voltage that each customer on the circuit received, thereby reducing the 
annual energy consumption of the circuit while maintaining the quality of service to the end-use 
consumer.  Based on results obtained through field demonstrations, AEP Ohio estimates that a 3 
percent reduction in energy consumption and a 2 to 3 percent reduction in peak demand can be 
obtained on those circuits on which the technology is deployed. 
 
Along with the efficiency benefits, the technology associated with VVO also provided VAR 
support, offsetting the need for Generation and Transmission resources to provide VARs. The 
technology required for VVO augmented other technologies to improve visibility into system 
performance and circuit automation.  

14.7 Security and Interoperability 
The Project implemented innovative advancements in the cyber security and interoperability 
arena. The Project was able to validate secure two-way communications from AEP systems 
through consumer premises. The Project engaged in penetration and interface testing to facilitate 
this validation. 
 
The Project developed and implemented a state of the art Cyber Security Operations Center 
(CSOC). The CSOC continuously provided advanced security checks, monitored the network, 
and identified vulnerabilities and threats to ensure grid security. The CSOC, with its industry 
threat sharing integration functionality, continuously gathered and shared threat information with 
peer utilities and government agencies. 
 
AEP Ohio treated consumer consumption data collected through the smart grid with a high level 
of protection. Consumers were assured that the safety and security of their information were 
protected by extensive and dedicated resources.  
 
The Project cyber security and interoperability efforts have led the development of industry 
standards. AEP Ohio will continue to strive to improve interoperability, security, and consumer 
protection. AEP Ohio will continue to use the CSOC and dedicated security and privacy experts 
to review smart grid technologies and equipment to ensure strict standards are met. AEP Ohio 
will continue to place emphasis on building interoperability, security, and privacy into future 
deployments.   
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14.8  Next Steps 
The AEP Ohio gridSMART Demonstration Project successfully demonstrated the deployed 
technologies. AEP Ohio submits that a gridSMART expansion enables a fundamental change in 
the way the company operates, serving as the necessary foundation upon which AEP Ohio will 
provide more reliable service and greater efficiency opportunities for consumers. AEP Ohio has 
filed the AEP Ohio gridSMART Phase 2 (Phase 2) plan with the Public Utilities Commission of 
Ohio to extend elements of gridSMART throughout AEP Ohio’s service territory.  
 
Phase 2 builds upon the Project’s success. It includes Advanced Metering Infrastructure (AMI) 
for approximately 894,000 customers across urban and suburban areas; Distribution Automation 
Circuit Reconfiguration (DACR) for approximately 250 circuits; and Volt VAR Optimization 
(VVO) for approximately 80 circuits. AEP Ohio is targeting a deployment timeline of 
approximately four years for all three technologies as proposed. In addition to extending the 
benefits of AMI, DACR, and VVO achieved by the Project to a larger base of consumers, it is 
envisioned that Phase 2 also will provide the following benefits: 
• Support for a more robust consumer choice market by enabling consumer access to 

information, improved data for market settlement, and potential for time-differentiated rate 
design offerings. 

• Reduced uncollectible revenue, theft and consumption on inactive meters through 
automated remote disconnect and continuous usage data availability. 

• Enhanced customer service and satisfaction (for example, through faster, remote service 
connection). 

• Better information to consumers concerning their electricity usage, enabling them to 
conserve energy, save money, and help to protect the environment. 

 
Phase 2 is built upon proven technologies and solutions that have been implemented in the 
Project and broadly deployed in the market. Phase 2 will extend the benefits demonstrated in the 
Project and deliver additional benefits to a broader set of consumers. Through Phase 2, the 
company expects to: 
• Drive significant financial benefits.  

• Positively impact customer service and customer satisfaction. 

• Improve safety performance.  

• Improve regional economic output.  

• Reduce environmental impacts.  

• Enable CRES providers to offer valuable consumer programs.  

• Improve CMI where DACR is deployed. 

• Avoid millions of dollars of potential lost economic productivity annually.  

• Generate significant efficiencies that translate to consumer savings.  
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GLOSSARY OF TERMS 
 

Word/Phrase Definition 
Access Points Access Points – Devices that connect the radio frequency 

mesh network linking all intelligent endpoints to the utility’s 
backhaul or wide area network links. 

Active Load In the RTPda program, the amount of responsive load that 
cleared to run in the market period – participation in an 
auction. 

American Electric Power American Electric Power is one of the largest electric utilities 
in the United States, delivering electricity to more than 5 
million customers in 11 states. AEP ranks among the nation’s 
largest generators of electricity, owning nearly 38,000 
megawatts of generating capacity in the U.S. AEP also owns 
the nation’s largest electricity transmission system, a nearly 
39,000-mile network that includes more 765 kilovolt extra-
high voltage transmission lines than all other U.S. 
transmission systems combined. AEP’s transmission system 
directly or indirectly serves about 10 percent of the 
electricity demand in the Eastern Interconnection, the 
interconnected transmission system that covers 38 eastern 
and central U.S. states and eastern Canada, and 
approximately 11 percent of the electricity demand in 
ERCOT, the transmission system that covers much of Texas. 
AEP’s utility units operate as AEP Ohio, AEP Texas, 
Appalachian Power (in Virginia and West Virginia), AEP 
Appalachian Power (in Tennessee), Indiana Michigan Power, 
Kentucky Power, Public Service Company of Oklahoma, and 
Southwestern Electric Power Company (in Arkansas, 
Louisiana and east and north Texas). AEP’s headquarters are 
in Columbus, Ohio. 

AEP Ohio Ohio Power Company is a unit of the American Electric 
Power System and does business as AEP Ohio. It is the 
surviving entity of the merger with Columbus Southern 
Power Company.  It is the electric utility distributing 
electricity to portions of Ohio and West Virginia and is the 
award recipient.   

AEP Ohio gridSMART® 
Demonstration Project 

One of the sixteen (16) ARRA- funded Smart Grid 
Demonstration Projects (SGDP) awarded by DOE to AEP 
Ohio.  

Bridge Device used to create a connection between two separate 
computer networks or to divide one network into two. 
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Word/Phrase Definition 
Customer Average 
Interruption Duration 
Index (CAIDI) 

The average outage duration that any given customer would 
experience in a sustained outage. This index is calculated by 
dividing the total consumer minutes of interruption by the 
number customers interrupted. 

Circuit The wired power grid infrastructure distributing electricity 
from an electric utility  

Check Read An on-demand meter reading 
Columbus Southern 
Power (CSP) 

Columbus Southern Power is the original award recipient, 
and was merged out of existence with Ohio Power Company.   

Distribution Automation 
Circuit Reconfiguration 
(DACR) 

Automatic circuit configuration for recovery from electric 
faults. 

Direct Load Control 
(DLC) Event 

To respond to a period of high energy demand, the utility 
sends signals to Home Area Network (HAN) devices in the 
consumer residence to reduce usage. 

Direct Load Control 
(DLC) Rider 

The mechanism by which participation in the DLC program 
is reimbursed for participation. A credit is applied to the 
monthly bill. 

Double Auction A process of buying and selling where competitive buyer 
bids (demand bids) are matched with competitive seller 
offers (supply bids). Potential consumers submit their bids 
for energy based on the smart appliances’ needs and the 
electric utility simultaneously compiles an asking price 
related to the quantity of energy supplied.  The system 
combines the received consumer bids for energy and 
compares this cumulative bid curve with the electric utility’s 
cumulative generation and purchase cost curve to determine 
the market cost for energy to be consumed.  The intersection 
of the cumulative demand bid curve with the energy supply 
cost curve is the resulting market value or the clearing price 
of energy for the present time increment.  The clearing price 
is the actual price paid for energy by the consumer but limits 
and adjustments, such as cost correction factors, may be 
applied before the clearing price is determined. 

Circuit The wired power grid infrastructure distributing electricity 
from an electric utility. 

Feeder  See Circuit. 
Grid The wired infrastructure, above and below ground, which 

distributes electricity from the electric utility to the 
consumer. 

gridSMART®  The AEP registered trademark for implementation of smart 
grid technology. 
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Word/Phrase Definition 
Inactive Load In the RTPda program, the amount of responsive load that did 

not clear to run in the market period – nonparticipation in an 
auction. 

Last Gasp (outage) 
message 

The alarm message sent by the AMI meter that power has 
gone out. A capacitor in the meter discharges to send a signal 
over the communications network prior to losing power. 

Momentary Average 
Interruption Frequency 
Index (MAIFI) 

The average number of momentary interruptions that a 
consumer would experience. This is calculated as the total 
number of consumer momentary (<=five minutes) 
interruptions divided by the total number of consumers 
served. 

Must-Run State During an RTPda auction when the observed temperature 
exceeds the offset set temperature, the HEM increases the bid 
price to the maximum and no further temperature 
adjustments to the ePCT are made. 

Ohio Power Company The unit of the American Electric Power System that 
distributes and sells electricity in Ohio and West Virginia, 
the surviving company of the merger with Columbus 
Southern Power Company.  It is also known as AEP Ohio, 
the name used throughout this report.  

Outage Response Time In this report, the time between notification of an outage and 
when AEP Ohio declares an outage and dispatches a crew. 

Peak Load The maximum amount of power that is used or produced by 
consumers over a defined period of time. 

Peak Load and Mix The analysis of peak load at a point in time and the different 
types of consumers contributing to that peak (residential, 
commercial, and industrial). Consumers are on different 
tariffs and in different demographics.  

Ping/Poll A process that determines the availability of a network 
devices or interfaces by using an echo request. 

PJM Interconnection 
LLC (PJM) 

A Regional Transmission Organization (RTO) in the United 
States. 

Project AEP Ohio gridSMART Demonstration Project, awarded to 
Ohio Power Company by U.S. DOE (award number DE-
OE0000193). 

Project area The Project area is located in the northeast quadrant of 
Central Ohio.  

Rate The cost of electricity per unit of measure.   
Residential Peak Day The peak load consumed by residential consumers on a week 

day. 
Rebate A credit applied to consumers’ electricity bill for their 

participation in certain types of programs.  
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Word/Phrase Definition 
Relay  A device that extends the radio frequency signal in places 

where meters are not located and an Access Point is out of 
reach. A relay can be deployed on pole tops or building 
floors and can efficiently augment and retransmit the radio 
frequency signal. 

Responsive Load The sum of all the RTPda HVAC loads on the circuit. 
Rider  A rate mechanism that collects or refunds costs for specific 

projects or services. 
System Average 
Interruption Duration 
Index (SAIDI) 

The average outage duration that any given customer would 
experience in a sustained outage. This index is calculated by 
dividing the total customer minutes of interruption by the 
number of customers served. 

System Average 
Interruption Frequency 
Index (SAIFI) 

The average number of sustained interruptions that a 
customer would experience. This index is calculated as the 
total number of consumer sustained interruptions (>five 
minutes) divided by the total number of consumers served. 

Smart Grid A suite of existing and emerging concepts, technologies, 
tools, techniques, and system configurations that can be 
innovatively applied and integrated to improve technical, 
operational, efficiency, reliability, safety, and environmental 
impact of electricity consumption. 

Smart Grid 
Demonstration Program 
(SGDP) 

The 16 U.S. Department of Energy projects demonstrating 
new and more cost-effective smart grid technologies can be 
applied and integrated to significantly improve technical, 
operational, and business-model feasibility. 
See www.smartgrid.gov. 

eViewSM 
SMART ShiftSM 
SMART Shift PlusSM 
SMART CoolingSM 
SMART Cooling PlusSM 
SMART ChoiceSM 

The AEP Ohio branded Consumer Programs demonstrated 
by this Project. 

Smart Meter A utility meter capable of two-way communication with the 
utility company. 

System area The System area is the area served by Columbus Southern 
Power in 2009; approximately 750,000 electricity consumers. 
This was established at the beginning of the Project. CSP 
merged with Ohio Power Company and is known as AEP 
Ohio. 

System Peak Day The peak load of a combination of circuits that constitute the 
utility company footprint on a given day. 

Tariff A Public Utilities Commission of Ohio (PUCO) approved 
algorithm for the electricity utility to use in charging and 
billing consumers for the use of electricity.  
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Word/Phrase Definition 
Unity Refers to a power factor of 1.0 that is obtained when current 

and voltage are in phase. 
Unresponsive Load In the RTPda program, the total circuit load minus the 

responsive load during the market period on the circuit. 
VAR  Volt-ampere reactive, a component of electricity on the grid. 
Volt VAR Optimization 
(VVO) 

A demand-side management program that reduces energy 
consumption and demand without consumer interaction or 
participation 
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LIST OF ACRONYMS/ABBREVIATIONS 
Acronym Definition 

AC Alternating Current 
ACE AEP Cost Engine 
AMI Advanced Metering Infrastructure 
ANSI American National Standards Institute 
ARRA American Recovery and Reinvestment Act of 2009 
BEV Battery Electric Vehicle 
CARB California Air Resources Board  
CAIDI Customer Average Interruption Duration Index 
CES Community Energy Storage 
CIM Common Information Model 
CMI Customer Minutes Interrupted 
CO2 Carbon Dioxide 
CP Consumer Programs 
CPP Critical Peak Pricing/Price 
CRES Competitive Retail Electric Service 
CSOC Cyber Security Operations Center 
CVVC Coordinated Volt VAR Control  
CWG Commercialization Working Group 
DA Distribution Automation 
DAC Distribution Automation Controller  
DACR Distribution Automation Circuit Reconfiguration 
DLC Direct Load Control 
DMS Distribution Management System 
DNP Distributed Network Protocol/Disconnection for Nonpayment 
DOE U. S. Department of Energy 
EOL End-of-line 
EPA Environmental Protection Agency 
ePCT Enhanced Programmable Communicating Thermostat 
EVSE Electric Vehicle Supply Equipment 
FRO Field Revenue Operations 
FTP File Transfer Protocol 
GQM Goals, Questions, and Metrics 
GridLAB-D Smart Grid Simulator Utility 
HAN Home Area Network 
HEM Home Energy Manager 
HVAC Heating, Ventilation, and Air Conditioning 
ID Identifier 
IEC International Electrotechnical Commission 
IHD In-home Display 
IMU Interface Management Unit 
IT Information Technology 
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Acronym Definition 
kVARh kiloVolt-Amp-reactive-hour 
LCS Load Control Switch 
LMP Locational Marginal Price 
MAIFI Momentary Average Interruption Frequency Index 
MDM Meter Data Management 
MFR Multi-Feeder Reconnection 
MRO Meter Revenue Operations 
NIST National Institute of Standards and Technology 
NOX Nitrogen Oxides 
OMS Outage Management System 
PCT Programmable Communicating Thermostat 
PEV Plug-in Electric Vehicle 
PHEV Plug-in Hybrid Electric Vehicle 
PJM PJM Interconnection LLC 
PUCO Public Utilities Commission of Ohio 
PV Photovoltaics 
RF Radio Frequency 
RTPda Real Time Pricing with Double Auction 
RTPi Real Time Pricing Integration Layer 
SAIDI System Average Interruption Duration Index 
SAIFI System Average Interruption Frequency Index 
SCADA Supervisory Control and Data Acquisition  
SGD Smart Grid Dispatch 
SO2 Sulfur Dioxide 
SOX Sulfur Oxides 
TERS Trouble Entry Reporting System 
TOD Time-of-Day 
TOD/CPP Time-of-Day with Critical Peak Price 
UIQ UtilityIQ® 
VAR Volt-Ampere Reactive 
VOT Virtual Operations Test 
VVO Volt VAR Optimization  
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APPENDIX A – ENVIRONMENTAL REFERENCES 
This Appendix contains a list of conversion constants used in the calculations associated with the 
Impact Metric analysis. These factors were either provided by AEP to Battelle when they were 
specific to utility operations or by Battelle for standardized engineering calculations.  
 
AEP-Authored Conversion Factors 
 
[CF-AEP-01] Meter event labor cost for truck roll avoided ................................................... $20.00  

This factor provides a dollar value representing the amount of labor saved for 
each truck roll avoided due to AMI. 

 
[CF-AEP-02] Meter event labor cost truck roll added .................................................$50.00  

This factor provides a dollar value representing the amount of additional labor 
required for each new truck roll required due to AMI. 

 
[CF-AEP-03] Short truck roll avoided vehicle cost - switching event ...........................$7.50  

This factor provides a dollar value representing the vehicle related savings for 
each short truck roll avoided due to circuit reconfiguration DA. 

 
[CF-AEP-04]  Standard truck roll avoided Vehicle Cost - switching event.................$45.25  

This factor provides a dollar value representing the vehicle related savings for 
each standard truck roll avoided due to circuit reconfiguration DA. 
 

[CF-AEP-05] Short truck roll avoided Labor Cost - switching Event .........................$15.75  
This factor provides a dollar value representing the labor savings for each short 
truck roll avoided due to circuit reconfiguration Distribution Automation. 

 
[CF-AEP-06] Standard truck roll avoided Labor Cost - switching Event ....................$94.00  

This factor provides a dollar value representing the labor savings for each 
standard truck roll avoided due to circuit reconfiguration Distribution 
Automation. 

 
[CF-AEP-08] $/CMI .....................................................................................................$0.052  

This factor provides a dollar value representing the savings associated with 
avoiding one customer minute of interruption. 
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Battelle-Authored Conversion Factors 
 
AMI  
CO2: 8.8kg/gal gasoline; 10.1 kg/gal diesel 

Source: United States EPA Office of Transportation and Air Quality Emissions Facts 
(EPA420-F-05-001) 
 

SOx: 0.165 g/gal gasoline; 0.0963 g/gal diesel 
Calculated from: sulfur content of gasoline = 30 ppm 

Source: U.S. EPA 40 CFR parts 80, 85, and 86 AMS–FRL–6516–2 
Sulfur content of ULSD diesel fuel = 15 ppm 

Source: U.S. EPA Office of Transportation and Air Quality Emissions Facts (EPA420-F-
00-057) 

Molecular weight of SO2 = 64 g/mole 
Density of gasoline = 2.75 kg/gallon 
Density of diesel fuel = 3.21 kg/gallon 
 

NOx: 0.05 g/mi 
Source: United States EPA 40 CFR part 86 Subpart S Tier 2 Bin 5 Emissions limits at 
50,000 mi 

 
PM2.5: 0.01 g/mi 

Source: United States EPA 40 CFR part 86 Subpart S Tier 2 Bin 5 Emissions limits at 
100,000 mi 
 

Consumer Programs  
CO2: 0.00068956 tons/kWh 

Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC West 
Region 

SOx: 0.00263084 kg/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC 
West Region 

NOx: 0.00117934 kg/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC 
West Region 

PM2.5: 0.001 kg/kWh 
Source: U.S. EPA eGRID2012 Version 1.0 Year 2009 Summary Tables for RFC 
West Region 

DACR and VVO 
Note that DACR conversion factors are the same as that for AMI and that VVO conversion 
factors are the same as that for CP. 
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Summary 

This report contributes initial findings from an analysis of significant aspects of the American Electric 
Power, Ohio (AEP Ohio) gridSMART® Real-Time Pricing – Double Auction (RTPda) demonstration 
project (the Project).  Over the course of four years, Pacific Northwest National Laboratory (PNNL) 
worked with Ohio Power Company (the surviving company of a merger with Columbus Southern Power 
Company), doing business as AEP Ohio, and Battelle Memorial Institute to design, build, and operate an 
innovative system to engage residential consumers and their end-use resources in a participatory approach 
to electric system operations, an incentive-based approach that has the promise of providing greater 
efficiency under normal operating conditions and greater flexibility to react under situations of system 
stress.  The material contained in this report supplements the findings documented by AEP Ohio in the 
main body of the gridSMART report.  It delves into three main areas:  impacts on system operations, 
impacts on households, and observations about the sensitivity of load to price changes. 

The RTPda system operated from December 2011 through the fall of 2013.  An adequate population of 
households for system experiments was achieved in the late spring of 2013.  As air conditioning 
equipment was the only type of load under RTPda control, and as the great majority of this equipment only 
operated in cooling mode, the period of analysis was set from June 1 to September 30, 2013.  The system 
was designed to collect a large amount of operational data, including the status of the enhanced 
programmable communicating thermostat (ePCT) parameters, indoor temperature, household energy 
consumption, and the RTPda market data (such as household and supply price and quantity bids, market 
cleared price, and total distribution feeder1 load).  This was supplemented by data from the meter data 
management system, the billing system, weather data, and demographic data about the households (such 
as square footage and type of construction). 

As with any operating system, the data are incomplete and testing behavior can pose challenges.  
Gaps in data from communications errors, equipment failures, and the like offered challenges to the 
analysis and add a level of uncertainty to the findings.  In addition, the investigation found that the 
Project’s plans to frequently exercise the RTPda system with congestion events imposed on the households 
to observe their response under different circumstances (for example, days of week, times of day, and 
temperature conditions).  A congestion event occurs when the load level of a distribution circuit 
(otherwise known as a feeder) exceeds the capacity limit of the feeder.  Operators can impose a 
congestion event by setting the capacity limit below the present load level.  This causes the market 
clearing process to drive prices higher.  The investigation found that by frequently imposing congestion 
events, the resulting high prices desensitized the response of the equipment to normal market fluctuations 
when not in a congestion event.  Once problems such as these were uncovered, the analysis attempted to 
compensate for their impacts, and thus come closer to a more accurate picture for addressing the 
questions under investigation.  Simulations of the RTPda system were also performed to help address 
some of these challenges and to scale the household resources to a size that allows for the investigation of 
system impacts. 

                                                      
1 The term “distribution feeder” refers to the electric line that feeds a community of houses and terminates in a 
distribution substation.  This is also known as a distribution circuit, as used elsewhere in the AEP Ohio gridSMART 
Demonstration Project Report.  For the sake of brevity it is referred to simply as a feeder in this document. 
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The findings confirm the basic premise correlating reduction of short-term energy use with price 
increases and conversely, increase in energy use with price decreases.  From a system impact point of 
view, simulations show that with a 35% penetration of RTPda households, a load reduction of about 5% 
can be obtained for a 3.5-hour system peak event.  For a 2-hour local, feeder peak event, a nearly 8% load 
reduction can be obtained.  Regarding the impact on 5-minute wholesale energy purchases, the field data 
analysis indicates that, if there were no congestion events, overall energy consumption by the average 
RTPda household could be reduced by over 5% and wholesale costs could similarly be reduced by 5% 
compared with the average non-responsive control group household.  Simulations of the same wholesale 
impacts report an average of 1.2% reduction in energy consumption per household and 2.5% reduction in 
wholesale energy costs. 

Consumer impacts studied include household bills, their thermostat statistics, and the actual energy 
use of the air conditioning equipment.  When the RTPda households’ bills are computed using the RTPda 
tariff versus the standard tariff, the study shows that there is good dispersion of relatively minor increases 
and decreases across all household energy use levels.  Average monthly bills decrease slightly using the 
RTPda tariff, thanks largely to the incentive savings.  When investigating the average RTPda bill compared 
to a calculation of the average bill of the non-responsive control group on the standard tariff, the analysis 
indicates about 5% reduction in the average RTPda household bill, with a slight increase in overall energy 
usage.  The components that appear to contribute to the average bill reduction are the incentive payments 
from the frequent congestion events and the flexibility to alter energy use in response to market price 
fluctuations.  The energy usage is not reduced as reported in the wholesale energy purchases above 
because the congestion events are not excluded in this analysis as they were for the wholesale purchases 
analysis.  Simulations indicate a roughly 4% savings in RTPda bills versus the same households on the 
standard tariff that are not responding to price signals and incentives. 

A study of thermostat settings shows a wide variety of settings by consumers with some indications 
of clusters, such as those who prefer more comfort and those who balanced comfort and economy more.  
To study consumer learning patterns, their behavior would need to be monitored for a longer period of 
time that included multiple seasons.  The congestion events indicate that only 4% of the consumers 
overrode their thermostat setting at some point during the 2-hour events, whereas 10% of the consumers 
overrode their thermostat setting at some point during the 4-hour events.  This provides some verification 
of consumer fatigue that would need careful attention in operating such programs.  Lastly, the amount of 
energy bid in the market for the air conditioning units appears to have been underestimated from the 
observed energy draw on these units.  The amount of energy bid into the real-time market should be more 
accurate in a full-scale deployment. 

To analyze the sensitivity of load to price changes, the energy data measured at 5-minute intervals for 
each household was correlated with the corresponding 5-minute wholesale market information.  Though 
the distribution of individual household responses is quite scattered, a filtering of the information 
corroborates the expectation that energy use decreases when price increases.  This is particularly 
pronounced during hot periods when there is a great deal of air conditioning load operating in the 
presence of high, but fluctuating, energy prices.  In addition, an analysis of the RTPda household response 
to congestion events (resulting in high market prices) shows a strong dependence on outside temperature 
and the timing of the events (for example, peak versus off-peak periods).  These factors affect the amount 
of energy curtailment initially available from the population of RTPda resources, as well as the subsequent 
response of these resources to maintain, degrade, or enhance curtailment levels over the duration of the 
event.  The findings contained in this report are termed initial because they only begin to address some of 
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the questions about the operation of the RTPda system.  Due to the complex nature of interactions between 
consumers and the electricity system, and the complexity of electric system operations in general, many 
more questions arise about the performance and potential benefits of this approach.  The data gathered as 
a result of this project will be of significant value for further research. 
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Acronyms and Abbreviations 

AEP Ohio American Electric Power, Ohio 
CAISO California Independent System Operator 
CPP critical peak pricing 
DOE U.S. Department of Energy 
ePCT enhanced programmable communicating thermostat 
ERCOT Electric Reliability Council of Texas 
HEM home energy manager 
HVAC heating, ventilation, and air conditioning 
kW kilowatt(s) 
kWh kilowatt-hour(s) 
LMP locational marginal price 
MDM meter data management 
MSE mean-squared error 
MWH megawatt-hours 
Pbase base price of the supply curve 
Pcap price cap 
Pclear cleared price 
PDF probability distribution function 
PJM PJM Interconnection, LLC, AEP Ohio’s Regional Transmission Organization 
PNNL Pacific Northwest National Laboratory 
Qclear cleared load/quantity 
RTP real-time pricing, also used as a shortened version of RTPda 
RTPda real-time pricing, double auction 
SMART Shift PlusSM a form of critical peak pricing implemented in the GridSMART Project 
SRMCP synchronized reserve market cleared price 
Tdesired desired temperature 
Tmax maximum temperature 
Tmin minimum temperature 
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1.0 Introduction 

The gridSMART® Real-Time Pricing– Double Auction (RTPda) Demonstration Project (the Project) is 
a part of the consumer-oriented projects within the overall American Electric Power, Ohio (AEP Ohio) 
gridSMART program.  This project engages residential households to adapt their electricity use in 
response to a fluctuating 5-minute price signal.  In particular, heating, ventilation, and air conditioning 
(HVAC) units are managed by intelligent software in the home that interacts with a real-time electricity 
market.  The electricity supply price is function of the PJM wholesale market price of electricity as 
described in the real-time tariff approved by the Public Utility Commission of Ohio (Schedule RS-RTP, 
2012). 

Significant effort went into the specification, design, development, and deployment of the RTPda 
demonstration so that AEP Ohio, the U.S. Department of Energy (DOE), and the Project partners could 
learn from the experience of this innovative approach to engaging end-use systems to the benefit of the 
consumer and the service provider.  The analysis of the RTPda demonstration addresses the question, 
“What did we learn from the RTPda experiment?”  The topics for analysis were developed by the AEP 
Ohio and Pacific Northwest National Laboratory (PNNL) Project team and each organization was given 
responsibility for a portion of the topics.  This report covers analysis topics assigned to PNNL.  Other 
analysis topics related to the RTPda demonstration, such as customer satisfaction, are covered elsewhere in 
the gridSMART Project report. 

While this analysis report provides insights into the behavior of the RTPda system and its implications 
for service providers and consumers, it represents only a step on a path to discovering the characteristics 
and capabilities of end-use systems to participate in system operations and how to best engage them for 
consumer, local, and regional system objectives.  Where appropriate, the report provides perspective for 
the results and lists additional issues that still need to be addressed. 

1.1 Analysis Objectives 

The RTPda demonstration represents the first time that a real-time electricity market with an approved 
regulatory tariff has operated in a realistic situation of approximately 200 households.  These households 
are supplied by four distribution feeders and represent a small fraction of the roughly 2000 total number 
of households on these feeders.  While the measurements on the HVAC systems in these households 
provide good data to help quantify their price-responsive behavior, the penetration level is too low to 
address other analysis questions that require significant penetration levels of RTPda households.  For this 
reason, simulations of a higher penetration of RTPda households are needed.  Once calibrated to behave 
similarly to actual household loads, simulations can be configured to provide insights into questions that 
would be difficult and costly to address in the demonstration. 

This analysis report investigates the following areas: 

• the potential benefits of RTPda for system-capacity and feeder-capacity issues 

• the potential benefits of improving wholesale purchases in the real-time (5-minute) market and 
participation in a spinning reserve market 
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• the impacts of RTPda from the consumer’s perspective, including consumer bills and consumer 
configuration of the thermostat set point and adjustments of it over time 

• a characterization of the sensitivity of the RTPda loads to price fluctuations and their behavior when 
called upon for system events. 

This analysis report explains the approach taken for the investigation, the source of the information, 
and the results obtained.  Other areas of analysis, such as the implications of RTPda in overall energy 
consumption or customer satisfaction with the program offering, were done by AEP Ohio.  This 
document supplements that other analysis. 

The analysis also includes the results of simulations of RTPda households.  While the measurements 
on these HVAC systems in these households provide good data to help quantify their price-responsive 
behavior, the penetration level is too low to address other analysis questions that require significant 
penetration levels of RTPda households.  For this reason, simulations of a higher penetration of RTPda 
households are needed.  Once calibrated to behave similarly to actual household loads, simulations were 
used to provide insights into questions that would be difficult and costly to address in the demonstration. 

1.2 RTPda Theory of Operations 

The following sections describe the way in which the RTPda system operates.  This provides a context 
for better understanding the analysis results described in this report.  The theory of operations starts with a 
description of how the distribution feeder market works.  This is followed by a high-level description of 
the RTPda dispatch system and how the end-use devices interact with this this system. 

1.2.1 Market Operations 

The RTPda system follows a transactive-control approach to coordinate household equipment 
participation in system operations.  The term “transactive control” refers to a distributed decision-making 
approach that allows suppliers and consumers of energy to arrive at a coordinated solution for how each 
participant will operate based upon a trade-off of the value they place on electricity for a specified time.  
In this case, an energy market is used to resolve which HVAC loads will run in the next operating 
interval.  The design combines  

• a 5-minute retail RTPda reflecting PJM wholesale locational marginal price (LMP) and capacity 
values 

• an RTPda tariff designed to be revenue neutral for the average consumer prior to any load shifting 
induced by the rate, and with the intent to robustly protect the consumer and the utility from long-
term fluctuations in market prices 

• a retail double-auction market design that directly manages congestion (that is, limits that constrain 
the amount of load served) at the distribution feeder level 

• a retail market design capable of managing a share of congestion occurring at levels in the grid above 
a distribution feeder (for example, transmission), allocated to responsive load served by that feeder 
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• an economically rational heating/cooling thermostat design that balances a consumer’s desire to save 
on their electric bill in exchange for their willingness to be flexible, and that bids the price at which 
the load it controls will operate (or not), plus the quantity of that load 

• a price-normalization scheme that eliminates the need for a consumer to understand or specify price 
levels as (for example) high, medium, and low, and that adapts to both short-term (days) and long-
term (years) changes in price. 

The following sections present the operational objectives driving the Project and the design 
incorporating the elements listed above. 

1.2.1.1 RTPda Market – Uncongested Conditions 

A double-auction market implements a mechanism to determine the price at which supply and 
demand match at a given time.  Bids are collected for a specified period of time from market opening to 
market closing, after which the market is cleared.  The market clears every 5 minutes, a period that 
approximately matches the typical air conditioning load cycle. 

After the market clears, the cleared price (Pclear) becomes the new prevailing retail RTPda and the 
cleared load (Qclear) varies with the demand curve.  When the cleared price is published, devices can 
respond appropriately based on internal price-response logic.  The auction itself does not provide any 
bookkeeping or enforcement of the price-response logic.  It simply provides a central facility for buyers 
and sellers to deliver their price and quantity response information and obtain the prevailing RTP.  The 
following figure shows the feeder supply curve, the ordered demand curve of bids for energy from the 
RTPda households, and the market clearing at the intersection of these two curves. 

 
Figure 1.1.  RTPda Market Clearing – Uncongested Condition 
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1.2.1.2 RTPda Market – Distribution Congestion  

Congestion reflects feeder capacity limit constraints or system-wide operational constraints whose 
resolution could benefit from load reduction.  Congestion can be addressed by allocating load reduction at 
the distribution feeder level in proportion to household bids on that feeder.  By participating in a 
reoccurring market mechanism to negotiate energy need by willingness to pay, participants’ actions can 
dynamically mitigate congestion limits. 

During congestion, the cleared price (Pclear) is greater than the 5-minute, price of supply (Pbase), and 
the cleared quantity (Qclear) equals the feeder capacity, as shown in the Figure 1.2.  Every time period 
(5 minutes), Pclear varies in order to try to keep load at the feeder capacity.  The market auction proceeds 
as follows: 

• The cleared price (Pclear) is set to clear the total load (Qclear) at feeder capacity. 

• When congested, Pclear > Pbase. 

• Pclear varies every 5 minutes to try to keep load at feeder capacity. 

• If there is an inadequate amount of responsive load to hold the feeder capacity, the market will clear 
at its limit, that is, the price cap, Pcap. 

• As shown in Figure 1.2, the total load on the feeder can theoretically vary between a minimum (Qmin) 
and maximum (Qmax). 

 
Figure 1.2.  RTPda Market Clearing – Congested Condition 

 
The RTPdamechanism can also be used to address system congestion issues, that is, issues that the 

service provider may have with system capacity constraints.  In that case, an overall system load 
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reduction target is desired.  To accomplish this, a share of the system-wide load reduction target can be 
allocated to each distribution feeder’s households in proportion to their price and quantity bids.  The 
number of RTPda households per feeder and the feeder load itself play important roles in keeping Qclear 
below the feeder capacity. 

1.2.1.3 RTPda Market – Rebate and Incentive Mechanisms 

The market clearing at a higher price during congestion events encourages the bidding equipment to 
curtail operations.  This allows consumers to avoid paying a high market price for energy; however, their 
exposure to higher prices was done to benefit the system, not to make the price-responsive consumer pay 
more for energy than a flat-rate consumer.  The excess payment of the RTPda consumers due to the higher 
cleared price than the base supply price (Pbase) is indicated in Figure 1.3 as the congestion surplus (in the 
figure, only the households in the RTPda program are represented).  This surplus is either rebated back to 
the consumers at the end of the month, or equivalently, the consumers are only charged the Pbase price 
even though the market cleared above this price.  As the service provider did not experience added costs 
from associated wholesale price increases, and was able to avoid other, higher priced solutions (such as 
purchasing generation), the congestion surplus represents revenue for the service provider.  Returning the 
congestion surplus back to the consumer removes the unfair burden of charging price-responsive 
consumers more, when in fact they are helping the service provider to avoid more costly alternatives. 

 
Figure 1.3.  RTPda Congested Condition – Congestion Surplus Rebate and Incentive 

 
In fact, the rebate of the congestion surplus does not include any percentage of the added, long-term 

benefit that system operation achieves by reducing or moving a peak load condition (for example, 
deferring distribution system infrastructure upgrades).  The value of this long-term benefit can be shared 
with the RTPda households that actually reduced their load by using an incentive mechanism.  Several 
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alternatives were reviewed by the Project team as to how an incentive could be calculated.  The team 
chose an algorithm meant to reward consumers who are the most flexible to price changes.  Figure 1.3 
shows an example of the incentive provided to a consumer with the bid (pbid, qbid).  The incentive is 
computed as the quantity of energy consumed (that is, the product of the bid and the 5-minute time 
interval) times a function of the difference between cleared price and RTPda base price. 

If Pbase ≤ pbid ≤ Pclear,  

then pincentive = qbid × F(Pclear − Pbase).  

If not, then no incentive is applied. 

1.2.2 Dispatch System 

The RTPda system runs an electricity market on a distribution feeder-by-feeder basis.  For the 
demonstration, four markets are running simultaneously, one for each of four feeders that supply the 
participating households.  A simplified drawing of one of the markets is depicted in Figure 1.4. 

 
Figure 1.4.  RTPda System Overview 

 
Within the home is an electronic program-controlled thermostat (ePCT) communicating with an 

HVAC unit and a home energy manager (HEM).  The HEM hosts a software agent that monitors the 
market price of electricity and converts the residents’ desired temperature set point, the current deviation 
from that set point, and their preference setting for relative comfort and savings into an amount it is 
willing to bid for the next 5 minutes of electricity.  The HEM takes this price, along with the amount of 
electricity needed to run the HVAC unit, and assembles all bids in the home (in this case there is only 
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one, representing the HVAC ePCT) and communicates the bid information via a cellular connection to 
the dispatch system located in the operations center. 

The dispatch system assembles the bids from all households on the feeder along with the market price 
for supplying electricity as determined by the RTPda tariff and based on the LMP for electricity in the 
feeder’s service area.  The dispatch system clears the market of supply and demand bids where the two 
curves intersect, creating a cleared price (as shown in Figure 1.1).  The cleared price is broadcast to all 
homes’ HEMs and sent to the service provider’s operations system for billing.  The billing system 
exchanges information with the advanced metering infrastructure smart meter at the home to obtain the 
energy used during the 5-minute interval so the bill can be calculated.  The HEM communicates the 
results of the auction to the ePCT, which sends the appropriate operating signal to HVAC unit.  A 
consumer display is built into the ePCT; it displays the estimated billing price for energy so the consumer 
can participate with other energy saving actions, should they be monitoring the system. 

This transactive-control approach results in very simple message exchange.  In general, the approach 
is sensitive to data-exchange privacy concerns because the transacting parties only need to share what 
they are willing to pay for a quantity of electricity.  What is returned to all participants on the feeder is the 
market cleared price.  For experimental purposes, additional information is collected to understand the 
performance of the RTPda system.  For example, the observed temperature in the home is recorded, as is 
the deviation of the temperature from the desired set point.  In addition, the configuration of the ePCT is 
monitored, including the residents’ preference for savings or comfort and any system overrides, so that 
consumer behavior can be studied. 

1.2.2.1 Thermostat Agent 

The smart thermostat agent is configured by the consumer to address their preference for comfort 
versus economy.  For each daily period of operation (for example, “Home,” “Away,” or “Night”), the 
homeowner specifies their desired temperature (Tdesired), and influences their minimum and maximum 
temperatures (Tmin, Tmax), through a five-level setting for their preference for more comfort (tighter 
temperature control) or more savings (more flexible temperature control), as represented by the slope (k) 
in Figure 1.5.  To simplify the discussion, only cooling mode is described below. 

The thermostat agent’s price-responsive controller is programmed to account for two market 
phenomena:  price trends and price variability.  In the case of price trends, the agent needs to determine 
whether a price is expensive or inexpensive.  What may seem like a high price today may seem like a low 
price tomorrow, and vice versa.  We see this in the fluctuation of the price of gasoline, where today’s 
price may seem low compared with the price paid several months ago.  In the case of price variability, we 
look at the volatility of short-term changes in price.  Although the average price over a period may be 
relatively constant, the variability of the actual price above and below the average can change. 

The volatility (standard deviation divided by mean) of wholesale and retail prices varies over time.  
Because the price-responsive controllers are designed to attenuate their response in the presence of more 
volatile prices, the determination of volatility is essential to the operation of the overall RTPda system.  In 
the case of this demonstration, the time window for the calculation of price volatility is the most recent 
24 hours.  The effect of this implementation is to attenuate the responses of the thermostat agents 
during the 24 hours that follow a period of significantly increased price volatility.  The longer the 
duration of increased volatility, or the greater the volatility, the more the thermostat agents’ responses 



 

1.8 

are attenuated.  For this reason it is typical to see diminished response to LMP fluctuations during the 
24 hours that follow a feeder constraint event. 

 
Figure 1.5.  HVAC Thermostat Agent Price-Response Curve in Cooling Mode1 

 
Bids are submitted every 5 minutes up until 60 seconds before the market is cleared.  The bid price 

𝑃𝑏𝑖𝑑 in the figure above is computed by each thermostat agent as follows: 

 𝑃𝑏𝑖𝑑 = 𝑃𝑎𝑣𝑔 + (𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑)×𝑘×𝑃𝑑𝑒𝑣
𝑇𝑚𝑎𝑥− 𝑇𝑚𝑖𝑛

 (1.1) 

where 𝑃𝑎𝑣𝑔 = the average price over the last 24 hours 
 𝑃𝑑𝑒𝑣 = the standard deviation of the price over the last 24 hours 
 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = the current indoor air temperature 
 𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = the desired indoor air temperature 
 𝑘 = the responsiveness desired by the consumer 
 𝑇𝑚𝑎𝑥 = the maximum temperature limit 
 𝑇𝑚𝑖𝑛 = the minimum temperature limit. 

𝑃𝑏𝑖𝑑 and 𝑞𝑏𝑖𝑑 are sent by the HEM to the market system, where they are assembled with the other 
bids and the market is cleared.  The cleared price (Pclear) is then published to all the RTPda HEMs on the 
feeder, which pass it on to the thermostat agents where the price-response curve is used to define the 
temperature set point for the next 5 minutes of operation (Tset, see Figure 1.5).  In the cooling mode case 
in Figure 1.5, the fact that Pclear > Pbid results in Tset being set higher than Tcurrent and less than Tmax so the 
HVAC unit will not run.  A higher comfort setting would result in higher prices bid as the indoor 
temperature deviates from Tdesired. 

                                                      
1 Hammerstrom, D. J., et al, “Pacific Northwest GridWise® Testbed Demonstration Projects, Part I. Olympic 
Peninsula Project,” Pacific Northwest National Laboratory, PNNL-17167, October 2007. 
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In cooling mode, if the current temperature is above the maximum temperature (𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 𝑇𝑚𝑎𝑥), 
then a bid at the price cap with zero quantity is submitted (that is, the consumer is fully unsatisfied).  If 
the current temperature is below the minimum temperature (𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝑇𝑚𝑖𝑛) then a bid of zero price and 
zero quantity is submitted as a programming convention to represent that the consumer is fully satisfied. 

The bid quantity is provided by the RTPda equipment installer based on the estimated nominal power 
demand of the heating/air-conditioning unit.  The bid state is determined by the operating mode of the 
heating/air-conditioning unit—for example, “Off,” “Cool,” or “Heat.” 

If a previously submitted bid is invalidated by a change in ePCT state (for example, “Off” to “Cool”), 
or if there was a disruption of service, then a new bid is computed and submitted to replace the previous 
bid.  All bids received are recorded in the system database, but only the last bid received is used to clear 
the market. 

1.2.2.2 HVAC Operating States 

To better understand the operating status of the HVAC equipment and its interplay with the market 
bidding system, the following states are considered in the summer cooling scenario of the analysis.  A 
diagram of the HVAC states and their possible transitions over time is depicted in Figure 1.6.  The flag, 
“Included in Market,” indicates that the HEM successfully communicated with the RTPda dispatch system 
so that its bid can be included in the next auction. 

 
Figure 1.6.  HVAC State Diagram 

 

• Must Run:  This state is reached in two situations.  First, if the household temperature and comfort 
settings in the ePCT result in a bid at the highest price allowed in the market, Pcap, then the unit will 
automatically clear the market and will be expected to be in the “On” state during the next 5-minute 
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period.  Second, in the case where Tcurrent > Tmax (that is, the household temperature is over the 
maximum temperature set point), then the thermostat agent is programmed to bid price = $0 and 
quantity = qbid, and it is expected to be in the “On” state no matter what the cleared market price.  
This distinction is made so that the HVAC unit is counted as unresponsive load.  This convention 
allows the dispatch system to more easily recognize it as unresponsive. 

• Over-Satisfied:  If Tcurrent < Tmin (that is, the household temperature is below the minimum temperature 
set point), then the HVAC unit is in the Over-Satisfied state and will bid price = $0 and quantity = 0. 

• Active:  Represents the state where the HVAC bid was cleared (pbid higher than Pclear) to run in the 
market period.  The HVAC unit can either be Off and available to remain Off or turn On, or On and 
available to remain On or turn Off. 

• Inactive:  Represents the state where the HVAC bid was not cleared (pbid lower than Pclear) to run in 
the market period.  As with the Active state, the HVAC unit can either be On or Off and available to 
switch states. 

In moving from one auction to the next, it is possible that an HVAC unit may stay in the same state or 
move to any other state.  As the internal temperature is increasing in conditions of steady market supply 
price, one would expect an HVAC unit to move from Inactive to Active, and possibly to Must Run, if it 
could not keep up with the temperature increases.  However, under volatile market conditions and 
congestion events, state changes could be more dramatic. 

Considering the entire RTPda household load under control (RTPda Load), a more detailed market 
clearing illustration is presented in Figure 1.7 to reflect the different states of the HVAC units in a  

 
Figure 1.7.  RTPda Load Bidding Classifications – Non-Congested Case 
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particular 5-minute auction.  The HVAC units to the left in the figure are in the Must Run state, followed 
by the Active units, then the Inactive units, and lastly the Over-Satisfied units.  The remaining load on the 
feeder is referred to as Non-RTPda Load.  This is slightly different from the definition of the Unresponsive 
Load, which also includes the Must Run devices that submit a zero bid.  The subscript F in the figure 
refers to feeder-based variables, with new variable 𝑄𝐹𝑢𝑛𝑟𝑒𝑠 being the quantity of unresponsive load on the 
feeder, 𝑄𝐹𝑙𝑖𝑚 being the congestion limit placed on the feeder, and 𝑄𝐹𝑐𝑎𝑝 being the rated capacity of the 
feeder. 

1.3 RTPda Experiment Setup 

To run the RTPda demonstration, households were recruited to participate under the RTPda tariff and 
they were outfitted with the ePCTs and HEMs.  The RTPda dispatch system was commissioned and 
communication was enabled between the various components of the system.  An operations experiment 
plan was developed for testing the RTPda system and performing congestion experiments. 

1.3.1 RTPda Households 

The RTPda households were selected from a pool that already had smart meters installed.  These 
meters provided data to the meter data management (MDM) system and were also read by the HEMs, 
which returned metered data with their market bids, the status of the ePCT, and the indoor temperature.  
Based on consumer recruitment into the RTPda program, changes that occurred with the households, and 
the eventual decommissioning, the number of participants grew over the spring and summer of 2013 and 
diminished in the fall months as their equipment was removed.  The household equipment was configured 
at the time of installation, and the consumer was trained on how to enter their desired thermostat settings 
and change them to reflect their preferences over time.  Any changes were recorded and sent back to the 
RTPda dispatch system from the HEM. 

The RTPda dispatch system and the HEMs were designed to handle problems with communications.  
For example, default values were used for the PJM LMP price if there were delays in getting that from 
PJM.  If a HEM’s bid came in too late for the 5-minute market auction, then it did not participate in that 
auction, but it could participate in the next auction in which a successful bid was submitted and received.  
To properly analyze the behavior of the system, missing or bad data need to be detected and removed.  An 
understanding of the default or backup settings is needed, as their appearance in the data collection can 
become regular, potentially skewing analysis results and observations. 

The RTPda system operated from December 2011 through the fall of 2013, but a sufficient population 
of households for conducting the experiments was not installed and operational until June, 2013.  As most 
of the HVAC resources only operated in cooling mode, there was little heating HVAC market interaction 
after the beginning of October.  For this reason, we limit the bulk of RTPda analysis to the period from 
1 June 2013 through 30 September 2013. 

1.3.2 Operations Experiments and Data Collection 

To identify and quantify various value streams, and to fully characterize the behavior of RTPda 
resources, various operating scenarios were designed for the congestion experiments.  The operating 
scenarios involved changing feeder congestion limits for varying durations to engage the RTPda resources.  
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The RTPda experiments were conducted to test the response of RTPda resources based on parameters such 
as time of day (peak/off-peak), day of week, and weather conditions (temperature, wind, etc.).  Operating 
scenarios were also designed to test the response of RTPda resources during the critical peak pricing (CPP) 
events called by AEP Ohio. Finally, fatigue experiments were designed to test the extent to which the 
RTPda households continued responding to high clearing prices, by letting the indoor temperature rise, 
before manually overriding the thermostat settings.  

Feeder Limit Setting for RTPda Congestion Experiments 

First, the process of inducing feeder congestion to conduct an RTPda experiment will be described.  
Figure 1.8 presents a conceptual view of how congestion limits were set to engage RTPda resources during 
experiments.  The dispatch system allows the operator to enter a percentage (𝐶%) of the feeder’s rated 
capacity (𝑄𝐹𝐶𝑎𝑝) to define the feeder congestion limit (𝑄𝐹𝑙𝑖𝑚).  The initial plan was to conduct the 
congestion experiments by setting the feeder congestion limit in a manner that would engage 10–25% (α) 
of the total RTPda responsive load on the feeder, using the following formula:  

 C% = QFlim / QFcap × 100% (1.2) 

 C% = (QFtotal − αQres )/ QFcap × 100% (1.3) 

where α < 1 = portion of Qres to engage 
 𝑄𝐹𝑙𝑖𝑚 = feeder congestion limit 
 𝑄𝐹𝐶𝑎𝑝 = feeder rated capacity 
 𝑄𝐹𝑡𝑜𝑡𝑎𝑙 = total feeder load 
 𝑄𝑟𝑒𝑠 = responsive feeder load 
 𝐶% = percent of the feeder rated capacity. 

 
Figure 1.8.  Engaging Responsive Load on a Feeder by Varying the Congestion Limit 
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However, the responsive loads were low compared to the total feeder load levels to the extent that the 
normal unresponsive load variations were greater than the total responsive load; thus, the reduction of the 
feeder capacity limit as a percentage of the responsive load did not always lead to congestion on the 
feeder.  To be sure that the RTPda resources would be engaged, the feeder congestion limit (𝑄𝐹𝑙𝑖𝑚) in the 
congestion experiments was set at 10% below the total (responsive plus unresponsive) prevailing feeder 
load, instead of the total responsive load.  As an example of setting the feeder congestion limit, consider a 
total load level of 3 MW on a 10 MW feeder with only 100 kW of total responsive load.  To impose 
congestion during an experiment, the feeder limit would be set at 10% below 3 MW, i.e., 2.7 MW (𝑄𝐹𝑙𝑖𝑚) 
or at 27% (𝐶%) of the rated feeder capacity of 10 MW (𝑄𝐹𝐶𝑎𝑝). 

Period of Study 

The initial two-week period in the beginning of June was deemed a practice period.  Congestion 
experiments were scheduled during this period on a limited basis to help shed light on the systemic 
behavior of RTPda resources under different operating conditions.  The information gathered during this 
period was instructive in setting up more extensive experiments later. 

Practice Period 

RTPda resources were initially engaged for 60 minutes by setting the feeder capacity limit at 10% 
below the prevailing feeder load.  If the RTPda resources were not exhausted during the test period, the 
length of time to impose congestion was increased by 30 minutes during the experiment, while keeping 
the same congestion limit.  Congestion experiments during the practice period were conducted under 
constant supervision of staff members at both PNNL and AEP Ohio. 

Normal Operation 

After the initial practice period, congestion experiments were scheduled daily during the last two 
weeks of June.  The experiments were initially conducted under constant supervision of PNNL and AEP 
Ohio staff members.  However, the experiments were later scheduled to run without constant supervision, 
once it was determined that market conditions were not being violated and that the RTPda resources were 
not being exhausted during the course of the experiment.  Table 1.1 and Table 1.2 present a breakdown of 
congestion experiments scheduled over different hours of a day, as well as weekend versus weekday 
experiments.  As can be seen in Table 1.1 and Table 1.2, respectively, majority of the congestion 
experiments were conducted during peak periods on weekdays.  The feeder capacity limits were set at 
10% below the prevailing feeder load at the start of the experiment to ensure that the RTPda resources 
were engaged. 

Table 1.1.  Breakdown of Congestion Experiments by Hour of Day 

5:00–10:00 10 10.42% 
10:00–14:00 25 26.04% 
14:00–22:00 61 63.54% 
Total 96 100.00% 
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Table 1.2.  Breakdown of Congestion Experiments by Day of Week 

Weekend 25 26.04% 
Weekday 71 73.96% 
Total 96 100.00% 
   

Table 1.3  presents the breakdown of congestion experiments based on the experiment durations.  As 
mentioned earlier, 4-hour and 6-hour experiments were conducted to test consumer fatigue, as measured 
by the number of manual adjustments to thermostat controls. 

Table 1.3.  Breakdown of Congestion Experiments by Experiment Duration 

2 Hours 70 72.94% 
4 Hours 25 26.04% 
6 Hours 1 1.04% 
Total 96 100.00% 
   

SMART Shift Plus Events and Feeder Constraints 

To study the response of RTPda resources during SMART Shift PlusSM events called by AEP Ohio, 
experiments were scheduled to coincide with and span the duration of the SMART Shift Plus events.  
SMART Shift Plus events were typically called for 4 hours; these also served as consumer fatigue tests.  
Table 1.4 below shows the experiments scheduled on the SMART Shift Plus event days, when congestion 
experiments were scheduled to coincide with the SMART Shift Plus events. 

Table 1.4.  Congestion Experiments Scheduled during SMART Shift Plus Events 

SMART 
Shift Plus 

Day 

SMART 
Shift Plus 

Date 
Start Time 
(Eastern) 

Duration 
(Hours) 

Tue 7/16/2013 13:00 4 
Wed 7/17/2013 15:00 4 
Thu 7/18/2013 15:00 4 
Thu 8/22/2013 15:00 4 
Tue 8/27/2013 14:00 4 
Thu 8/29/2013 14:00 4 
Fri 8/30/2013 15:00 4 
Tue 9/10/2013 15:00 4 
Wed 9/11/2013 15:00 4 
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1.4 Control Groups 

A number of control households were selected that were expected to have characteristics similar to 
the RTPda households, but that remained under the standard residential tariff.  Changes in behavior of the 
RTPda group can be estimated by comparing RTPda results against those of the control group.  A pool of 
thousands of households who did not participate in the customer-oriented projects was established from 
which control group households could be chosen.  From this pool, PNNL developed a control group of 
272 households for comparison in several of the analyses in this report.  Note that this RTPda control 
group is different from other control groups used in other parts of the gridSMART report. 

This section describes the way in which the control group was selected from 2010 metered data and 
how the control group data from 2013 were corrected for use in comparisons with RTPda2013 metered 
data.  A set of definitions for the groups of households used for the analyses follows. 

1. RTP13:  This group represents the 192 households who were technology-enabled and participated in 
the RTPda market some or all the time in 2013.  Often their energy use in an interval such as 
5 minutes will also be referred to as RTP13. 

2. RTP10:  This is a group of 272 households who were recruited in 2013 as potential RTPda participants 
and were in the RTPda system database.  The 15-minute energy use data for 2010 was obtained for 
these households.  This group includes the 192 RTP13 households that participated in the RTPda 
market during the demonstration period; however, the selection was done prior to the analysis of how 
many RTPda households actually participated in the market. 

3. Ctrl10:  From the pool of households who did not participate in the gridSMART program, a set of 
272 households were identified as close to RTP10 in their 15-minute energy use profiles.  These are 
referred to as Ctrl10.   

4. Ctrl13:  The energy use by the same set of households as Ctrl10 in 2013 is referred to as Ctrl13. 

5. RTPnr10:  The average energy used by a household in Ctrl10 was then adjusted to improve the 
comparison with the RTPda households in 2010 (RTP10).  This adjusted control group is referred to as 
RTPnr10 (“nr” meaning non-responsive). 

6. RTPnr13:  The average energy used by a household in Ctrl13 was then adjusted to improve the 
comparison with the RTPda households in 2013 (RTP13).  This adjusted control group is referred to as 
RTPnr13. 

1.4.1 Control Group Member Selection Process 

The following describes how the control group was initially selected to create a set similar to RTPda 
households, but not in the program.  This involved acquiring data for candidate households to be in the 
control group, processing the data, (including handling bad or missing values in the acquired data), and 
employing data filtering mechanisms to help match load shapes to select control group members from the 
candidates that could represent non-responsive RTPda households. 

Data Acquisition:  The 2010 15-minute MDM data for approximately 11,800 homes were used to 
identify the control group.  The analysis interval was from June 1, 2010 through September 30, 2010. 
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Bad and Missing Values:  15-minute values that exceeded 40 kWh (an unusually high and suspect 
value) were treated as bad data and removed by setting the large value to zero so that they would be 
handled as missing data during subsequent processing.  Missing values in the household meter data were 
replaced using a zero-order hold before any selection filter was applied.  Note that the missing values 
were reset to zero after the filter (see below) was applied to avoid affecting the match with an RTPda 
household itself. 

Filtering:  Load data collected at sub-hourly intervals can exhibit large fluctuations in the average 
energy (that is, power) measurement due to the cycling behavior of large loads.  The quantity of interest is 
the duty cycle, but this quantity cannot be directly observed from interval energy data.  However, for time 
intervals longer than the cycling time of the loads the average load, 𝑃𝑎𝑣𝑔, is related to the duty cycle, D, as 

 𝐷 = 𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑃𝑜𝑛

  (1.4) 

where 𝑃𝑜𝑛 is power measured when the equipment is On. 

This property is used to estimate the total load at various time intervals by filtering the load data using 
a sliding-window filter based on the 1/𝑝-state binomial probability distribution function (PDF).  The 
binomial PDF is defined as  

 Prob{𝑡|𝑛,𝑝} = �𝑛𝑡� 𝑝
𝑡(1 − 𝑝)(𝑛−𝑡)  (1.5) 

where 𝑝 = 2 and describes the probability that the true state (On or Off) at the time 𝑡 = 𝑛/2 is described 
by the observed state at the time 𝑡.  The choice of the window size 𝑛 was based on the load cycling time 
relative to the sampling time Δtsample; for example, 

 𝑛 = 𝛥𝑡𝑜𝑛+𝛥𝑡𝑜𝑓𝑓
𝛥𝑡𝑠𝑎𝑚𝑝𝑙𝑒

 (1.6) 

Note that the filtered data has zero lag (it is shifted back by a half window).  In addition, the last 
sample is held for an additional half window to provide a smooth end to the filtered data.  The result of 
applying such a filter with window size of 8 15-minute periods is shown in Figure 1.9. 
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Figure 1.9. Raw and Filtered 15-Minute Electric Meter Data with a 2-Hour Binomial Window Size 

 
Load Shape Matching:  The simplest method for load shape matching is based on minimizing the 

total mean-squared error (MSE) between candidate load shapes 

 𝑀𝑆𝐸 = ∑ (𝑥𝑡+ − 𝑦𝑡+)2𝑁
𝑡=1   (1.7) 

where N is the number of samples in the time series, and 𝑥+ and 𝑦+ are the non-zero values from the load 
shape time-series vectors.  An example of a match is shown in Figure 1.10.  The corresponding figures, 
known as heat maps because they show the high (hot) and low (cold) areas, are shown in Figure 1.11.  
Each RTPda home was assigned a single control home.  However, some control home choices were 
matched to more than one RTPda home.  In such cases, the next-best match that was not already selected 
for the control group was chosen. 
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Figure 1.10.  Illustration of Match of Reference Load (blue) to Best Fit (green) and Second-Best Fit (red) 

 
Figure 1.11. Load Shape Maps for Reference (upper left), Best Match (upper right), Second-Best Match 

(lower left), and Third-Best Match (lower right) 
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1.4.2 Control Group Adjustment for RTPda Group Comparison 

Recall that the RTPda load data from the 2010 data are referred to as RTP10 and the RTPda data 
measured during the course of the demonstration period in 2013 are referred to as RTP13.  Similarly, the 
control group data for 2010 and 2013 are referred to as Ctrl10 and Ctrl13, respectively.  If Ctrl13 
accurately represents the behavior of RTP13 had they not been price responsive, then it is a simple matter 
to subtract the interval data for the average of the two groups to determine price response.  Despite the 
optimal search for a best fit of Ctrl10 with RTP10, there were substantial differences.  A typical 7-day 
profile of energy use by the two groups in 2010 is shown in Figure 1.12.  The variations, especially of 
peak loads, are of concern.  While the selection process emphasized load shape matching, it did not match 
peak energy use.  An adjustment was made to make Ctrl10 closer to RTP10.  The correction procedure is 
explained below, and the resulting group is RTPnr10. 

 
Figure 1.12.  Comparison of RTP10 and Ctrl10 Profiles for a Typical 7-Day Period 

 
Consider a relationship between RTP10(t) at time t and Ctrl10(t) of the form 

 𝑅𝑇𝑃10(𝑡) ~ 𝑓(𝐶𝑡𝑟𝑙10(𝑡),𝑇𝑖𝑚𝑒 𝑜𝑓 𝑑𝑎𝑦) (1.8) 

As RTP10 and Ctrl10 are experiencing the same outdoor temperature, the time of day (actual date is 
not relevant) turned out to be a good proxy for many of the un-modeled variables, including outdoor 
temperature.  Another approach is to consider the difference between RTP10 and Ctrl10 as a function of 
Ctrl10 and time-of-day. A Ctrl10 value of 0.6 at 3 pm  on a day in July (this would happen on a relatively 
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cool July day) gets the same correction as a Ctrl10 value of 0.6 at 3 pm on a day in September (this would 
happen on a relatively warm September day). Thus, the Ctrl10 value and time-of-day act as proxies for 
temperature.  So RTP10 - Ctrl10 ~ f(Ctrl10, time-of-day) is our non-parametric model. And RTP10 ~ 
Ctrl10 + f(Ctrl10, time-of-day) is just another f(Ctrl10, time-of-day). If the function f is parameterized in 
some fashion, the parameters can be estimated by a method such as the least-squares method.  However, 
because the functional form as well as the parameters and their interpretation are not of much interest, a 
non-parametric method was used.  The method of choice was LOcal regrESSion (LOESS).2  This was 
implemented in MATLAB®. 

The time series 

 𝑅𝑇𝑃𝑛𝑟10(𝑡) =  𝑓(𝐶𝑡𝑟𝑙10(𝑡),𝑇𝑖𝑚𝑒 𝑜𝑓 𝑑𝑎𝑦) (1.9) 

is a significantly better approximation of RTP10 than Ctrl10.  Weekdays and weekends were treated 
separately.  The resulting fit for the same 7-day period as in Figure 1.12 is shown in Figure 1.13. 

 
Figure 1.13. Comparison of RTP10, RTPnr10, and Ctrl10 Profiles for the Same 7-day Period as in 

Figure 1.12 

The fit for the entire 122-day period is shown in Figure 1.14. 

                                                      
2 http://www.mathworks.com/products/datasheets/pdf/curve-fitting-toolbox.pdf 
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Figure 1.14. Comparison of RTP10, RTPnr10, and Ctrl10 Profiles for the Period June to September 

2010 

 
Although Figure 1.14 is crowded, one can discern that RTPnr10 is closer to RTP10 than Ctrl10 is.  

This is quantified by the comparison of means and standard errors in the inset in Figure 1.14.  The 
performance of LOESS in matching peak loads can be assessed by comparing the top 5% of RTP10 loads 
with the coincident Ctrl10 and RTPnr loads.  This is shown in Figure 1.15.  It is clear that, for our 
purposes, RTPnr is a much more accurate representation of RTPda than Ctrl. 
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Figure 1.15.  Comparison of the Top 5% of RTP10 Loads with the Coincident Ctrl10 and RTPnr Loads 

 
We can now use the LOESS model to generate RTPnr13 from Ctrl13.  From this point on, we will 

use RTPnr13 as the corrected control group with which RTP13 is to be compared.  RTP13 is available in 
5-minute intervals, whereas RTPnr13 (generated from 15-minute Ctrl13) is in 15-minute intervals.  A 
linear interpolation method was used to generate 5-minute data from the 15-minute data.  (This process is 
much cleaner than rolling up 5-minute RTP13 data into 15-minute data, for which missing data creates a 
number of special issues.) 

Consistent handling of missing data is essential.  Although Ctrl10 is an aggregate over a maximum of 
272 households, there are many periods with fewer households.  For obtaining statistically good 
aggregate data, only data to which >80% of the 272 contributed were retained.  Similar processing was 
done for RTP10.  The missing data time stamps for the two need not be the same.  Only time stamps for 
which both RTP10 and Ctrl10 data are present are retained.  Similar processing was done for RTP13 and 
RTPnr13. 
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1.5 Document Structure 

This report supplements the RTPda system analysis done by AEP Ohio in the main body of the 
gridSMART Project report.  It covers three major areas: 

• an analysis of the impacts of the RTPda approach to engage end-use resources for system operations, 
including its application to address system capacity concerns, wholesale purchases, and spinning 
reserves, 

• an analysis of impacts related to the consumer, including household bills, the consumers’ interactions 
with the thermostats, and a comparison of the amount of energy bid into the market for running the 
HVAC units and the actual consumption of those units, 

• and an analysis of the sensitivity of the of the RTPda load to the fluctuating price of energy, including 
the observed response of the RTPda resources to the congestion experiments. 
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2.0 System Impacts 

The following sections describe the results of an analysis of impacts that affect system operations of 
the service provider.  These include system- and feeder-capacity issues, wholesale power purchases, and 
the potential of applying RTPda resources to spinning reserve markets. 

2.1 Capacity 

This analysis measures the reduction in capacity expansion requirements due to a price-induced shift 
in household peak load.  The benefit of this analysis will be presented in terms of kW/household 
reduction in peak load. 

Evaluating the capacity reduction is a complex problem that can be difficult to observe and 
characterize under real-world conditions, especially when the penetration level of RTPda households is 
relatively low compared to other groups.  A series of experiments were developed on the end-use 
resources to characterize their behavior and limitations.  The results of these experiments were used to 
better calibrate the parameters of the simulation models.  The simulation models were then used to 
quantify the potential for capacity reduction at various penetration levels. 

2.1.1 Results of Analysis 

The simulation models of the RTPda system were evaluated on three peak days in July to determine 
the greatest sustainable capacity reduction that was achievable.  On these days (July 16–18), the 
temperature was greater than 90o F on five successive days.  The evaluation was performed by 
(1) lowering the capacity limit until the cleared price reached the price cap during peak system load hours 
and (2) lowering the capacity limit until the price cap was reached during the projected peak feeder hours.  
The simulations in (2) were also run over the four-month test period to verify that the capacity could be 
maintained at a lower level throughout the four-month period.  The simulations were performed at 15%, 
25%, 35%, and 50% RTPda penetration levels.  The models were “tuned” to be responsive only to peak 
conditions, and not wholesale price fluctuations; this is similar to a day following a high-price event, 
when the controllers are desensitized to small fluctuations in the wholesale price. 

Figure 2.1 shows a representative simulation during a 3.5-hour peak system load event.  Figure 2.2 
shows a representative simulation on the same day, but focusing on feeder peak reduction.  All 
measurements are 15-minute average demand and are translated into a kW/household basis.  Notice that 
the feeder peak is near the end of the event, highlighting that system and feeder peak demands do not 
necessarily align; hence the need to look at the availability of the resource in different periods.  In  
Figure 2.1, notice that after the event is triggered, the two lines approach each other after approximately 
2.5 hours, indicating that the resource is no longer able to hold a load reduction and the households begin 
to become less responsive, while in Figure 2.2 the resource begins to reduce sooner (approximately 
2 hours into the event).  The time the reduction is called for this peak load event affects the overall 
availability of the resource. 



 

2.2 

 
Figure 2.1. Time-Series Simulation during Peak System Load Event with 25% Penetration of RTPda 

Households 

 
Figure 2.2. Time-Series Simulation of Feeder Peak Reduction with 25% Penetration of RTPda 

Households 

 
Figure 2.3 and Figure 2.4 show the peak demand reduction (i.e., the difference between the greatest 

demand before the capacity constraint was applied and the greatest demand after it was applied) as a 
function of RTPda penetration levels for peak load events and feeder peak reduction, respectively.  
Additionally, a linear trend line has been added to the figures for clarification.  Notice that the ability to 
reduce the peak during the feeder peak situation is much greater than during a peak system load event.  
This is for a number of reasons.  The first is that the peak system load event lasted longer than the feeder 
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peak event, meaning the resources are spread out over a longer period.  The second is that the availability 
of resources for reduction is lower in non-feeder peak periods.  If the values are extrapolated to 100% 
penetration (or the average response of an RTPda household), it is seen that the RTPda households provide 
a 13% load reduction during a peak system load event and a 22% reduction during feeder peak events. 

 
Figure 2.3. Comparison of Peak Reduction during a Peak System Load Event at Different RTPda 

Penetration Levels 

 
Figure 2.4.  Comparison of Feeder Peak Reduction at Different RTPda Penetration Levels 

 
Note that these values represent a specific case for RTPda household response, and in some ways, the 

“best case.”  In all simulations, it was known ahead of time when system peak events would occur and for 
how long, and what the load would be during a peak system load event.  In an actual system, this will not 
be well known and the determination of the capacity limit may overuse resources (leading to early decay 
of the response) or underuse resources (leaving unused capacity from this resource).  Even in 
simulation, the reduction did not provide a perfectly flat load (see Figure 2.2), as the market lags 
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behind the changing load of the non-RTPda households.  Incorporation of short-term load prediction 
may improve this aspect of RTPda system performance. 

Additionally, the length of the time the resource is needed affects the amount of reduction available.  
For example, a 1-hour peak system load event is able to sustain deeper reductions than a 6-hour peak 
system load event.  Figure 2.5 shows the reduction of demand as a function of the length of a peak system 
load event using the same simulation and day shown previously.  This is shown with 100% penetration of 
RTPda households.  Notice that after 4 hours, the load has effectively returned to a new baseline state, 
with a minor reduction coming from the thermostat setback.  Also, note the magnitude of the rebound 
after releasing the peak system load event.  While significant rebounds occur in the peak periods, if the 
end of the event is timed correctly after the control peak, the rebound is relatively minor and much lower 
than during the peak period.  The recovery period for all events is such that most devices do not return to 
normal operation until 22:00 hours, seven hours after the start of the event. 

 
Figure 2.5.  Comparison of Average Household Demand during a 1- to 6-Hour Peak System Load Event 

 
2.2 Wholesale Purchases 

Price-responsive loads alter their load shape in response to the retail energy prices.  If the retail prices 
are determined in real time by wholesale market LMPs, then demand response to prices should result in 
decreased cost of wholesale energy purchases.  The purpose of this analysis is to examine the impact on 
wholesale purchases using the data captured related to energy use by the HVAC systems in response to 
the market signal. 

The approach is to compare the energy use in response to RTPda every 5 minutes by the RTPda 
households against the energy use by the control group.  The difference is attributed to price response.  
Knowing the LMP, the difference in wholesale purchase costs can be calculated. 
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In this section, only the aggregate response by the participants is considered.  That is, data from 
individual participants were aggregated.  The way missing data were handled was considered in 
Section 1.4.2.  The definitions of the household groups were listed in Section 1.4. 

2.2.1 Response to Prices 

It is instructive to examine RTP13 and RTPnr13 for typical periods.  In addition, LMP data also were 
acquired.  Figure 2.6 shows a comparison between RTP13 and RTPnr13 in the top panel and the 
difference between RTP13 and RTPnr13 and LMP in the bottom panel, which uses the same x-axis day 
intervals. 

 

 

Figure 2.6. A Comparison between RTP13 and RTPnr13 (top), and between RTP13-RTPnr13 and LMP 
(bottom) 

 
No data are plotted for August 25 and August 27.  On those days, feeder congestion experiments were 

done, so on those days, the system is responding to real-time prices generated by simulated feeder 
congestion and not to wholesale LMP-generated prices.  For this reason, feeder congestion experiment 
days were excluded from the wholesale purchase analysis.  August 26 shows a very discernable load 
response to prices. 

2.2.2 Totals for the 4-Month Period 

The aggregation of RTP13 and RTPnr13 will now be examined to compare total loads with and 
without price response, and RTP13 × LMP and RTPnr13 × LMP will be examined to compare wholesale 
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purchase costs with and without price response.  Out of the 122 days in June, July, August, and 
September, all days when congestion experiments were performed were excluded.  Furthermore, only 
aggregate data that received contributions from >80% of the maximum number of contributors was 
included.  This resulted in 50 days of usable data—31 weekdays and 19 weekend days.  Not all 50 days 
had data for every one of the 288 5-minute periods.  Because this affected both RTP13 and RTPnr13 
similarly, this was not considered sufficient reason to exclude a day.  Table 2.1 shows a summary for the 
50 days. 

Table 2.1.  Summary of Energy and Wholesale Costs for July–September Before Adjustments 

Energy    
RTP13 (kWh/day/house) 36.21   
RTPnr13 (kWh/day/house) 35.55   
RTP13 is 1.9% higher  than RTPnr13  
Wholesale cost    
RTP13 ($/day/house) $1.432   
RTPnr13 ($/day/house) $1.42   
RTP13 is 0.7% higher than RTPnr13  
    

Feeder congestion days were excluded, but they affected the behavior of the HVAC units the 
following day.  The high prices (~$1000/MWH) experienced during the congestion period made the 
prices expected by HEMs high for 24 hours following the conclusion of the feeder congestion experiment.  
This resulted in the normal prices appearing low, and the HEMs responded by lowering the house 
temperatures.  This can be seen in Figure 2.7, which shows that the daily average observed temperature 
for the non-congestion days was generally substantially lower than the desired set points.  The moving 
average in the figure is computed over 5 points. 

 
Figure 2.7.  Daily Average Cooling Set Points and Observed Temperatures during Non-Congestion Days 
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The undesirable situation of temperatures below desired set points necessitated adjustments for the 
additional cooling energy use.  This was done as follows.  From a plot of daily average outside 
temperature obtained for the Columbus, Ohio, weather station, a regression of daily energy use versus 
daily average outside temperature was performed.  Separate regressions were performed for weekdays 
and weekends.  The results are shown in Figure 2.8 and Figure 2.9. 

 
Figure 2.8. Plot of Daily Average Energy Use per House versus Average Outdoor Temperature for 

Weekdays 

 
Figure 2.9. Plot of Daily Average Energy Use per House versus Average Outdoor Temperature for 

Weekend Days 
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From the above regressions, a value of 1.5 kWh/day/house/°F was derived for weekdays and 
1.8 kWh/day/house/°F for weekend days.  The behavior of Ctrl13 is statistically indistinguishable from 
that of Ctrl10.  This means that on a weekday, if the average outdoor temperature increases by 1°F, the 
energy use for the day increases by 1.5 kWh/house.  Similar considerations apply for the weekend days.  
Increasing the outside temperature by 1°F is, to a very good approximation for energy use, equivalent to 
decreasing the inside temperature by 1°F.  If it is now assumed that, in the absence of feeder experiments, 
the average observed temperature would have been equal to the average desired temperature set point 
(rather than the observed temperature resulting from the RTPda-driven set point), a compensation term for 
the daily energy use and the resulting impact to wholesale cost can be applied.  The compensation term 
for the wholesale cost can be calculated as the average LMP for the day times the change in kWh per 
household for the day.  The results of applying such compensation are shown in Table 2.2. 

Table 2.2. Summary of Energy and Costs for July–September after Compensating for Congestion 
Experiments 

After compensating for the impact of congestion experiments on non-congestion days 
Energy    
RTP13_Compensated 
(kWh/day/house) 33.66   
RTPnr13 (kWh/day/house) 35.55   
RTP13_Compensated is 5.3% lower than RTPnr13  
Wholesale cost    
RTP13_Compensated ($/day/house) $1.351   
RTPnr13 ($/day/house) $1.423   
RTP13_Compensated is 5.0% lower than RTPnr13  
    

The kWh usage is reduced by 5.3% and the wholesale costs by 5.0%.  Comparing this table with 
Table 2.1, it can be seen that the effect of the temperature compensation on cost reduction was not 
commensurate with the effect of temperature compensation on kWh reduction.  This is due to the fact that 
the compensation was effective largely during periods of low prices, as seen in Figure 2.10. 

Some sources of error and their impacts follow.  These include: 

• There is a difference in the demographics of RTPda households over the years 2010 to 2013, and 
similarly in the control group. 

• The RTP10 group had 272 households, whereas RTP13 had 192 households.  This is not necessarily a 
problem, but further review that the pool characteristics match would add confidence. 

• The compensation method for the excessive cooling due to congestion experiments in the preceding 
day deserves further investigation. 

• Good data representing only 50 days of operation survived the various filters. 

• Even on these 50 days of good data, the number of houses contributing was variable. 

No attempt was made to quantify the errors arising from these sources in this report; however, it 
remains a good topic for future investigation. 
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Figure 2.10. The Depression of Observed Temperature Below Set Point versus Average LMP for the 

Day 

2.2.3 Simulated Results 

The RTPda household information was used to calibrate GridLAB-D1 simulated models.  These 
household models were used within GridLAB-D to represent 25% penetration of RTPda households; 
300 households were “experimental” while 900 were operated similarly in each simulation and did not 
respond to variations in price.  The experimental households were modeled using three different 
scenarios: 

1. Control – the households were simulated using the standard pricing tariff. 

2. RTPda – the households were simulated using the residential RTPda service tariff and responded to 
wholesale price fluctuations in a manner similar to those observed in the pricing experiments (for 
example, thermostat slider and temperature settings, internal air temperature decay rates, etc.). 

3. RTPda Congested – the households were simulated using the residential RTPda service tariff, 
responded to wholesale price fluctuations, and responded to capacity limits placed on the feeder 
aligned with the actual experiments (96 experiments in four months). 

The simulations were run for four months, collecting energy consumed at 5-minute intervals by each 
of the 300 RTPda households.  An “average” RTPda household was constructed from the resulting 
information by summing all 300 loads and dividing by 300 in each interval.  The total wholesale energy 
cost for the average household is shown in Table 2.3.  Table 2.4 shows these same values in terms of 
percent of total energy costs, showing an average RTPda household savings of 2.5% for wholesale energy 
costs on a per RTPda household basis.  When accounting for the effects of the congestion experiments, 

                                                      
1 www.gridlabd.org 
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this number is reduced to 1.5%.  This is expected, as the effect of the congestion experiments is to reduce 
sensitivity to wholesale price fluctuations.  Note that the energy costs per day match closely with the 
experiment results shown in Table 2.1 above. 

Table 2.3.  Comparison of Monthly Wholesale Energy Costs for an Average Household ($) 

  
Monthly Wholesale Energy Cost Per Household ($) 

June July August September Average Per Day 

Control $43.93 $57.57 $42.58 $37.92 $45.50 $1.492 
RTPda $42.80 $55.68 $41.69 $37.17 $44.34 $1.454 
RTPda Congested $43.10 $56.55 $42.05 $37.44 $44.79 $1.470 

Table 2.4.  Reduction of Wholesale Energy Costs for an Average Household (%) 

 
Change in Consumer Wholesale Energy Cost (% Savings) 

June July August September Average 
RTPda 2.6% 3.3% 2.1% 2.0% 2.5% 
RTPda Congested 1.9% 1.8% 1.2% 1.3% 1.5% 
      

Looking at the impact on energy consumption, Table 2.5 shows the average energy reduction for each 
of the cases (a positive number indicates reduced energy consumption).  The average reduction in energy 
consumption is 1.2%, decreasing to 0.9% during the congestion experiments due to the effects of 
precooling. 

Table 2.5.  Reduction of Energy Consumption for an Average Household (%) 

 
Change in Consumer Energy (% Reduced) 

June July August September Average 
RTPda 1.3% 1.3% 1.4% 0.7% 1.2% 
RTPda Congested 1.1% 0.9% 1.0% 0.7% 0.9% 
      

While these values do not perfectly align with the estimated results in Table 2.2 above, they are very 
similar, and provide additional veracity to the method described in Section 2.2.2 for adjusting the load 
shapes. 

2.3 Spinning Reserves 

This analysis investigates the spinning reserve capacity that can be achieved at any given time due to 
the demand response capability of the loads in the demonstrations.  “Spinning reserve” is the extra 
generating or demand response capacity that is available to the system operator within a short interval of 
time to meet demand in case a generator goes down or there is another disruption to the supply.  Most 
system operators require the spinning reserve capacity to be available to compensate for the loss of the 
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largest power plant (plus a fraction of the peak load) within a preset amount of time (typically 
10 minutes), and be available to respond continuously for a preset amount of time (typically 30 minutes).  
The spinning reserve capacity is a short-term capability and can therefore be measured in 
kW/household/hour or kWh/household/hour.  It can also be measured in annual monetary terms as the 
$/household earned in the spinning reserve market.  This analysis evaluates the capability of RTPda 
households to participate in spinning reserve markets.  While this analysis is not comprehensive, it is used 
to determine a “best case” for RTPda households participating in spinning reserve markets, using average 
market prices from various independent system operators. 

2.3.1 Results of Analysis 

Spinning reserve is an ancillary service that can be bid into the ancillary services market.  Within 
PJM, the Synchronized Reserve and Regulation Market decides the Synchronized Reserve market cleared 
price (SRMCP).  As load becomes price responsive, like the HVAC loads in the RTPda demonstration, the 
load can be considered as a spinning reserve for specific durations in the day and can be bid into ancillary 
services markets.  Knowing the amount of load that can be safely bid into the spinning reserve market is 
important not only to make a bid, but to also be assured that the required reserve requirement can be 
successfully satisfied if called upon to provide the service.  The auction collects all RTPda customer 
resource availability and the bid curve can be used to determine the amount of resource available at any 
given market period, as shown in Figure 2.11.  The highlighted area represents the households that are 
willing to reduce their demand given the proper incentive (via the RTP).  The service provider may 
engage only a fraction of the total available resource to participate in the spinning reserves market by 
setting the congestion limit, and hence the cleared price, appropriately.  The utility would weigh the cost 
of acquiring the resource (incentive payment to displaced consumers) against the benefit from provision 
of spinning reserve capacity (revenue from spinning- reserve markets, or avoidance of self-scheduling 
cost). 

 
Figure 2.11.  Resource Available for Spinning Reserve During Each Market Period 



 

2.12 

In each market period, the total quantity (kW) of responsive load less than the load at the cleared 
price is available for participation in the spinning reserve call.  In this study, the quantity is calculated for 
each 5-minute interval, then averaged over the hour to determine the amount of load available for a one-
hour spinning reserve call (although most spinning reserve calls last for periods much shorter than one 
hour). 

The overall spinning reserve capabilities of the system during the study period are difficult to 
determine because the frequent congestion experiments held over the operational period distort a more 
natural behavior of the bidding system.  To better estimate the benefits, PNNL instead used the simulated 
models to determine the average amount of resource available at every hour of the summer.  By then 
comparing that value to the average PJM market price at each hour, the maximum amount of possible 
revenue generation in the spinning reserve market can be estimated.  Note that this includes every hour in 
the summer and assumes that no spinning reserve calls were made to affect future household behavior.  It 
also assumes that there is enough resource in the RTPda system to participate in the market.  These 
assumptions are used to determine the “best case” scenario for capturing spinning reserve revenue. 

Table 2.6 shows the results of this study in the form of total revenue generated per RTPda household 
per month.  This is calculated by determining the total amount available (as shown in Figure 2.11), then 
dividing by the total number of RTPda households.  The spinning reserve prices were exceptionally low in 
the PJM market for the summer evaluated, averaging $0.49/MWh between June and October of 2013.  A 
number of additional historical spinning reserve markets were evaluated for comparison.  While the 
potential in PJM’s market is extremely small, in other markets, where spinning reserve resources are in 
higher demand, differing amounts of revenue can be generated with relatively little impact on the 
consumer (assuming the resource is called relatively infrequently).  The results of three other markets are 
shown for comparison.  This analysis does not address the impact on the spinning reserve market itself or 
the reduction of overall prices as additional demand- response resources participate, but rather highlights 
the potential uses of this system. 

Table 2.6.  Spinning Reserve Markets and the Maximum Amount of Revenue Available to RTPda 

 PJM 2013(a) CAISO 2013(b) ERCOT 2013(b) ERCOT 2008(a) 
Total Revenue Per Household Per 
Month 

$0.08 $1.78 $5.79 $13.64 

(a) Based on average hourly prices 
(b) Based on average monthly prices 
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3.0 Household Impacts 

This chapter analyzes the impacts of the RTPda approach on consumers and their residential 
equipment.  These include household electricity bills, consumer interactions with their thermostats, and 
the quantity of HVAC energy bid into the market versus the amount observed from the metering data. 

3.1 Household Bill Impacts 

This section analyzes the impact on RTPda household bills (per tariff Schedule RS-RTP, 2012) for the 
months of June through September 2013.  The RTPda bills are divided into the following components: 

 𝐵𝑅𝑇𝑃𝑡𝑜𝑡 = 𝐵𝑅𝑇𝑃𝑒𝑛𝑔 −  𝐵𝑅𝑇𝑃𝑖𝑛𝑐 +  𝐵𝑅𝑇𝑃𝑓𝑖𝑥𝑒𝑑 (3.1) 

where 𝐵𝑅𝑇𝑃𝑡𝑜𝑡 = RTPda household total bill per period of interest 
 𝐵𝑅𝑇𝑃𝑒𝑛𝑔  = RTPda household energy-sensitive component of the bill per period of interest 
 𝐵𝑅𝑇𝑃𝑖𝑛𝑐   = RTPda household incentive savings component of the bill per period of interest 
 𝐵𝑅𝑇𝑃𝑓𝑖𝑥𝑒𝑑   = RTPda household fixed, non-energy-sensitive component of the bill per period 

of interest. 

The incentive savings is calculated as explained in Section 1.2.1.3.  In any one month, the incentive 
savings (𝐵𝑅𝑇𝑃𝑖𝑛𝑐) is not allowed to exceed the RTPda market-based energy component (a portion of 
𝐵𝑅𝑇𝑃𝑒𝑛𝑔) of the RTPda bill; however, it is possible that 𝐵𝑅𝑇𝑃𝑖𝑛𝑐 >  𝐵𝑅𝑇𝑃𝑒𝑛𝑔 on a daily or hourly basis.  As 
the monthly billing periods for the households are staggered throughout a month, and 5-minute energy 
usage information is available from the meters, the non-energy portion of the monthly bill is spread 
evenly over 5-minute intervals to obtain 𝐵𝑅𝑇𝑃𝑓𝑖𝑥𝑒𝑑 and the 5-minute energy data are used with the RTPda 
tariff to obtain 5-minute portions of 𝐵𝑅𝑇𝑃𝑒𝑛𝑔.  The 5-minute household market bidding data are used to 
calculate a 5-minute 𝐵𝑅𝑇𝑃𝑖𝑛𝑐 component, and Equation (3.1) is used to calculate 𝐵𝑅𝑇𝑃𝑡𝑜𝑡.  This 5-minute 
data forms the basis for calculating average hourly bills.  The average bill for any one hour is calculated 
based on the population of households that are participating during that hour.  This is done for every hour 
(for which good data exist) over the four-month period.  These hours are also analyzed in subsets of peak 
and off-peak, and hot and mild temperature periods. 

Because the bills in this analysis are calculated based on the energy use data captured by the RTPda 
system about and the RTPda tariff, there will be discrepancies with the actual bills calculated by the AEP 
Ohio billing system.  That system must handle various complicating situations with regard to metering 
and household changes, and make appropriate adjustments to the final bill that are not replicated here. 

The average $/hr billing information over the months of June through September for all households in 
the RTPda group is presented in Table 3.1 below.  The total bill and the contributions to it are represented 
according to averages of the totals as well as the averages for the top and bottom 25% of households by 
bill component area.  In addition, the average $/hr of the bills for households in off-peak (22:00–14:00) 
and peak (14:00–22:00) periods is also listed.  Both off-peak and peak periods are further filtered for mild 
(outdoor temperature ≤ 80°F) and hot (outdoor temperature > 80°F) weather.  These same quantities are 
repeated in Table 3.2, but reflect percentages based on the average total RTP13 bill. 
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One can see from the tables that the incentive savings were dispersed to households of all levels of 
energy usage by amounts on the order of 3–4%.  When looking at all the households according to 
incentive savings component, the average of the top 25% bills of the households received a savings of 
12% of the average total bill of all households.  This counteracts a 2.5% increase in the energy-sensitive 
portion of the bill, for a total bill savings of about 5% from the average $/hr over the entire population of 
households.  Those in the bottom 25% have no incentive savings contribution and show a higher average 
total bill of about 10.5% compared with the average of all households. 

Table 3.1.  RTPda Bill $/hr Averages for All Households 

 

Table 3.2.  RTPda Bill $/hr Averages:  Percent of Average Total Bill for All Households 

 
 

Total Bill kWh Energy Incentive Fixed
0.1916 1.4812 0.1909 0.0081 0.0087

Top 25% 0.2563 1.9742 0.2539 0.0064 0.0087
Bottom 25% 0.1289 0.9987 0.1277 0.0076 0.0087

Top 25% 0.2531 1.9706 0.2529 0.0084 0.0087
Bottom 25% 0.1290 0.9805 0.1253 0.0050 0.0087

Top 25% 0.1820 1.5486 0.1963 0.0230 0.0087
Bottom 25% 0.2116 1.5643 0.2029 0.0000 0.0087

0.1506 1.2089 0.1457 0.0039 0.0087
Off-Peak Mild 0.1204 1.0101 0.1148 0.0031 0.0087
Off-Peak Hot 0.1754 1.3727 0.1712 0.0045 0.0087

0.2736 2.0257 0.2812 0.0164 0.0087
Peak Mild 0.1891 1.5225 0.1884 0.0081 0.0087
Peak Hot 0.3405 2.4247 0.3547 0.0230 0.0087

Average $/hr Peak

RTP13

Average $/hr Off-Peak

Average $/hr Energy Bill

Average $/hr Incentives

Metric
Average $/hr Total Bill

Total Bill kWh Energy Incentive Fixed
100.0% 100.0% 99.7% 4.2% 4.6%

Top 25% 133.8% 133.3% 132.6% 3.3% 4.6%
Bottom 25% 67.3% 67.4% 66.7% 3.9% 4.6%

Top 25% 132.1% 133.0% 132.0% 4.4% 4.6%
Bottom 25% 67.3% 66.2% 65.4% 2.6% 4.6%

Top 25% 95.0% 104.6% 102.5% 12.0% 4.6%
Bottom 25% 110.5% 105.6% 105.9% 0.0% 4.6%

78.6% 81.6% 76.1% 2.0% 4.6%
Off-Peak Mild 62.8% 68.2% 59.9% 1.6% 4.6%
Off-Peak Hot 91.6% 92.7% 89.4% 2.4% 4.6%

142.8% 136.8% 146.8% 8.5% 4.6%
Peak Mild 98.7% 102.8% 98.4% 4.2% 4.6%
Peak Hot 177.8% 163.7% 185.2% 12.0% 4.6%

Average $/hr Off-Peak

Average $/hr Peak

Metric
RTP13

Average $/hr Total Bill

Average $/hr Energy Bill

Average $/hr Incentives
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The bill components can also be viewed across the peak and off-peak periods with hot and mild 
weather.  This ranges from off-peak+mild incentive savings of 1.6% of the average $/hr total bill to 
peak+hot incentive savings of 12%.  The impact on the hourly rate of the bills over these periods is about 
63% for off-peak+mild to about 180% for peak+hot periods when compared to the average $/hr for all 
time periods.  This range is more dramatic than for the kWh consumed in those periods because energy 
prices for the RTPda households are generally greater during peak+hot periods than during off-peak+mild 
periods. 

 

 

 
Figure 3.1. RTPda Average Hourly Household Bills with Total, Energy, and Incentive Savings 

Components 
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The graphs in Figure 3.1 show the distribution of the hourly rates for the population of households as 
ordered from lowest to highest household for each bill component; the households (indicated by meter 
index in the graphs) are reordered in each graph from lowest to highest household contribution.  Each 
figure includes the average of the top and bottom 25% for the population being displayed. 

One can see from these figures that there are a few households with relatively high total average 
hourly energy bills, with the remainder distributed with a relatively flat slope.  When one looks at the 
incentive savings component, about 40% of the households received little or no incentive savings, while 
about 10% of households had significant average $/hr incentive savings.  Note that the incentive saving is 
allowed to exceed the RTPda market-based contribution to the energy portion of the bill on an hourly 
basis, but not on a monthly basis. 

The graphs in Figure 3.2 depict the distribution of the average $/hr energy-sensitive components of 
the bills for households in off-peak and peak periods.  Both off-peak and peak periods are further filtered 
for mild and hot weather as defined above.  For each graph, the households are reordered from lowest to 
highest contribution for the population displayed. 

 

 

 
Figure 3.2. RTPda Average Hourly Household Energy-Sensitive Bill Component for Peak and Off-Peak 

Periods 
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From these graphs one can see the relatively small number of households at the extremes of the 
billing range and the significant differences in peak+hot and peak+mild versus off-peak conditions.  
Similarly, the incentive savings contributions to the RTPda bills are shown in Figure 3.3. 

 

 

 
Figure 3.3. RTPda Average Hourly Household Incentive Savings for Peak and Off-Peak Periods 

 
A review of the incentive savings indicates that the peak periods have significantly more savings than 

the off-peak periods.  This is to be expected, as there is more HVAC resource available for market-based 
curtailment in the peak periods.  The difference is also likely increased because more congestion 
experiments were run during peak periods (see Section 1.3.2).  The hot days also have significantly more 
incentive savings than the mild days, again likely because there is more HVAC resource available to 
participate in the market. 

The following subsections describe comparisons of the RTPda bill with bills for the same households 
subjected to the standard tariff (RTPstd).  Since the RTPda congestion experiments called upon the 
households more frequently than would be expected in typical operations, an additional section is 
provided that compares the bills of RTPda to non-RTPda households. 
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3.1.1 RTPda Household Bills Compared with Standard Tariff 

Figure 3.4 presents the total RTPda bill with the total standard tariff bill.  Each “index number” is one 
household in one month (which may be June, July, August, or September); some households will be listed 
four times (June-September), while others may only appear once.  Household bills that had less than 80% 
data acquisition through the RTPda dispatch system were removed from this analysis, due to large 
variability and errors in the bill calculation.  Figure 3.4 orders the household bills by kWh consumed over 
the four-month period and compares the households’ RTPda bills against the same households’ bills as if 
they had been charged the standard tariff.  One can see that there is a wide spread of relatively small bill 
increases and decreases at all levels of consumption; this is more clearly shown in Figure 3.5. 

 
Figure 3.4.  RTPda Bill Comparisons with Standard Tariff Applied to the Same Households 

 
The distribution of the difference between the RTPda bills’ without incentive savings compared to the 

same energy consumption calculated with the standard tariff is plotted in Figure 3.5.  Again, this is sorted 
by monthly energy consumption.  Figure 3.6 re-sorts the data by the change in overall bill.  The two 
figures indicate that slightly more than half of the households were paying less under the new tariff; 
however, the households paying more did so by a greater amount, and on average, household bills were 
increased by $3.68, evenly spread across all household sizes.  However, Figure 3.7 and Figure 3.8, in 
which the incentive is included in the bill calculation, show that many of the households were saving by 
switching to the new tariff; on average, household bills were decreased by $1.99, again spread across the 
sizes of the households.  This indicates that the large number of congestion experiments may have made 
the prices appear lower (causing precooling) and disrupted the revenue neutrality calculations.  However, 
when including the incentive, a majority of households were saving, indicating that by responding to the 
congestion events households are able to see savings. 
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Figure 3.5.  RTPda Bill (Without Incentive Component) Minus Standard Tariff Bill 

 
Figure 3.6. RTPda Bill (Without Incentive Component) Minus Standard Tariff Bill, Sorted by Change in 

Bill 
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Figure 3.7.  RTPda Bill (With Incentive Component) Minus Standard Tariff Bill 

 
Figure 3.8.  RTPda Bill (With Incentive Component) Minus Standard Tariff Bill, Sorted by Change in Bill 
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3.1.2 RTPda Bills Compared to Control Group 

The average $/hr billing information over the months of June through September for all households in 
the RTPda group and the RTPnr control group, and their percentages with respect to the average of all 
households’ RTPda bills, are presented in Table 3.3 and Table 3.4.  The fixed-cost portion of the bills is 
the same for both RTPda and RTPnr bills; it is listed in Table 3.1 and not shown here, so the bill 
components will not sum precisely to the total bill.  The difference represented in the Delta Energy 
column only shows the energy component and does not include the incentive savings component of the 
bills. 

The RTPda billing information is calculated as reported in Section 3.1.  The RTPnr billing information 
is calculated from the 15-minute metered data obtained for the households in the control group, then 
averaged and adjusted as explained in Section 1.4.2 to create an average RTPnr household energy use for 
each hour.  The standard tariff is then applied to this average energy use to calculate the total bill and the 
energy component.  As with the RTPda bill calculation, discrepancies may exist between the RTPnr 
average billing calculation and the actual bills for the control group. 

Table 3.3.  $/hr Averages for RTPda Bill Households Compared with Control Group (RTPnr) 

 

Table 3.4. $/hr Average Percentages of Average Total RTPda Household Bill Compared with Control 
Group (RTPnr) 

 

 
Overall, the average $/hr savings in the bills of all households in this analysis is about 5% in RTPda 

versus the RTPnr control group; however, the overall energy consumption is about 2% higher.  When one 
looks at the sensitivity of the bills to the different types of operating periods, further insights can be 
gained.  For the off-peak periods, the RTPda bills show a slightly greater savings compared to the control 
group even though their energy usage is slightly higher. 

Total Bill kWh Energy Incentive Total Bill kWh Energy Total Bill kWh Energy
Average $/hr Total 0.1916 1.4812 0.1909 0.0081 0.2016 1.4516 0.1928 -0.0101 0.0296 -0.0019

0.1506 1.2089 0.1457 0.0039 0.1666 1.1878 0.1578 -0.0160 0.0211 -0.0120
Off-Peak Mild 0.1204 1.0101 0.1148 0.0031 0.1381 0.9736 0.1293 -0.0178 0.0365 -0.0145
Off-Peak Hot 0.1754 1.3727 0.1712 0.0045 0.1939 1.3934 0.1851 -0.0185 -0.0207 -0.0139

0.2736 2.0257 0.2812 0.0164 0.2717 1.9792 0.2629 0.0019 0.0465 0.0183
Peak Mild 0.1891 1.5225 0.1884 0.0081 0.2056 1.4817 0.1968 -0.0165 0.0408 -0.0084
Peak Hot 0.3405 2.4247 0.3547 0.0230 0.3283 2.4055 0.3195 0.0122 0.0192 0.0352

Average $/hr Peak

Metric
RTP13 RTPnr13 Delta

Average $/hr Off-Peak

Total Bill kWh Energy Incentive Total Bill kWh Energy Total Bill kWh Energy
Average $/hr Total 100.0% 100.0% 99.7% 4.2% 105.3% 98.0% 100.7% -5.3% 2.0% -1.0%

78.6% 81.6% 76.1% 2.0% 87.0% 80.2% 82.4% -8.4% 1.4% -6.3%
Off-Peak Mild 62.8% 68.2% 59.9% 1.6% 72.1% 65.7% 67.5% -9.3% 2.5% -7.6%
Off-Peak Hot 91.6% 92.7% 89.4% 2.4% 101.2% 94.1% 96.6% -9.6% -1.4% -7.2%

142.8% 136.8% 146.8% 8.5% 141.8% 133.6% 137.2% 1.0% 3.1% 9.6%
Peak Mild 98.7% 102.8% 98.4% 4.2% 107.3% 100.0% 102.7% -8.6% 2.8% -4.4%
Peak Hot 177.8% 163.7% 185.2% 12.0% 171.4% 162.4% 166.8% 6.4% 1.3% 18.4%

Delta

Average $/hr Off-Peak

Average $/hr Peak

Metric
RTP13 RTPnr13



 

3.10 

A potential reason for this is the ability of the RTPda households’ HVAC units to respond to market 
price fluctuations in the off-peak periods.  As explained in Section 2.2, the many congestion experiments 
performed had the effect of desensitizing the thermostat controllers to high prices.  This had the effect of 
making prices that were not near the market cap appear to be bargains for a significant period of time 
after a congestion experiment.  This could have resulted in overcooling.  When market prices remained 
high after the congestion experiment, the effect was to use more energy during a normally high-price 
period.  This phenomenon appeared to be emphasized when looking at the average $/hr during the 
peak+hot period.  In this case, the energy consumption was 1.3% higher for the RTPda group than for the 
control group; however, the energy component of the bill was 18.4% higher and the total bill was 6.4% 
higher.  This is likely because, on average, the additional energy was being purchased at high market 
prices relative to the standard tariff.  The effect of the incentive savings during these periods was to 
significantly reduce the impact of the large energy component on the overall average total bills. 

When looking at peak+mild days, a greater amount of energy was used by the RTPda group on 
average; however, the total bills were reduced by 8.6% compared to the control group, likely because the 
mild weather suppressed the market prices.  Similar savings were seen in all off-peak figures, likely due 
to the lower market prices during the off-peak periods. 

To summarize, the bill comparison between the RTPda households and the RTPnr control group 
indicated bill savings in the summer months.  More-detailed examination of the behavior of the RTPda 
group in different periods of operation and the changes in the bill components revealed a variety of 
differences between the two bills.  The low penetration of RTPda households on each feeder and the 
frequent congestion experiments had a large impact on the behavior of the RTPda resources and their 
interaction with the market.  In addition, the accuracy of the representation of the control group as a 
“non-responsive” reflection of the RTPda households deserves further scrutiny.  More investigation is 
needed to fully understand these impacts. 

One approach to isolate the impact of the congestion experiments as well as to compare results with a 
“perfect” control group is to model the RTPda system using the GridLAB-D simulator.  Section 3.1.3 
reports the results of the use of simulation to both increase the penetration of RTPda households and 
independently look at the performance of the RTPda system with and without congestion experiments. 

3.1.3 RTPda versus Non-RTPda Bill Comparison – Simulation 

Simulations of the RTPda group with controls and the same households without controls have been 
executed in GridLAB-D.  The simulated households have been configured to represent the sizes and types 
of housing in the RTPda group.  The observed RTPda household thermostat statistics and energy usage 
information have been used to calibrate the simulated households.  This section reports the comparison of 
their bills.  Bill comparisons include the summer months without congestion events and with congestion 
events to better understand the impacts. 
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Households were simulated within GridLAB-D to represent 25% penetration of RTPda households; 
300 households were “experimental” while 900 were operated similarly in each simulation and did not 
respond to variations in price.  The experimental households were run using four different scenarios: 

1. Control – The households were simulated using the standard pricing tariff (Schedule R-R, 2012). 

2. RTPda Without Response – The households were simulated using the experimental residential real-
time pricing service tariff (Schedule RS-RTP, 2012), but did not respond to price fluctuations (these 
households could be considered to serve a purpose equivalent to the RTPnr households described in 
the previous section, but with the advantage that in the simulator, they are precisely the same 
household models). 

3. RTPda – The households were simulated using the residential RTPda service tariff and responded to 
wholesale price fluctuations in a manner similar to those observed in the pricing experiments (for 
example, thermostat slider and temperature settings, internal air temperature decay rates, etc.). 

4. RTPda Congested – The households were simulated using the residential RTPda service tariff, 
responded to wholesale price fluctuations, and responded to capacity limits placed on the feeder 
aligned with the actual experiments. 

The bills are calculated using all components of the tariffs, including all fixed, rider, and energy 
charges.  The bills are presented as the average of all four months and the impact on that average monthly 
bill.  Figure 3.9 shows the monthly billing impact when switching from the standard tariff to the RTPda 
tariff, without changing load behavior.  The left-hand axis (red bars) indicates the percentage by which 
the household’s bill changes when switching from the standard tariff to the RTPda tariff, where a negative 
number indicates a savings when moving from the standard tariff to the RTPda tariff.  The right-hand axis 
(blue line) indicates the monthly energy consumption of the household, ranked from low to high (left to 
right).  The percent differences are consistent across most household sizes with an average reduction of  

 
Figure 3.9. Change in Monthly Household Bills When Switching from Standard Tariffs to RTPda (No 

Response), Without Responding to Price Fluctuations 
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1.1% in the bill.  This indicates that during the four-month period, the RTPda rate was nearly revenue 
neutral but slightly skewed toward decreasing the households’ bills.  The rate was designed to be revenue 
neutral over an entire year, but may show variance within any given period.  The energy consumption is 
identical in these two cases. 

Figure 3.10 shows a similar plot for households responding to wholesale price fluctuations.  In this 
case, the difference in bills reflects moving from RTPda Without Response to RTPda (with response).  The 
households are still stacked from left to right according to their energy consumption using the standard 
tariff (that is, Household 10 is the same Household 10 in each graph).  This indicates the amount of 
savings seen by each household in responding to the price, with the effects of whether the rate is revenue 
neutral removed—in other words, the amount the household saves by allowing their thermostat to be 
adjusted in response to price fluctuations.  The average reduction in the bill is 2.1%, with an average 
decrease in energy consumption of 1.2%. 

 
Figure 3.10. Change in Monthly Household Bills When Responding to Price Fluctuations (changing 

from RTPda Without Response to RTPda With Response) 

 
Figure 3.11 is a combination of Figure 3.9 and Figure 3.10, moving from the standard tariff to RTPda 

(with response).  The average household reduces their bill by 3.2% and reduces energy consumption by 
1.2%.  Figure 3.12 shows the same information, but in terms of actual dollars saved (rather than 
percentage of bill).  The average bill reduction is $5.11 with a maximum (average) reduction of $12.43 
(one household was able to see a $22.52 reduction for the month of July).  The reduction of the bill is 
consistent across household sizes in terms of percent reduction, with larger energy users seeing a larger 
decrease in proportion to their energy use. 



 

3.13 

 
Figure 3.11. Percentage Change in Monthly Household Bills When Switching from Standard Pricing to 

RTPda With Response  

 
Figure 3.12. Change in Monthly Household Bills ($) When Switching from Standard Pricing to RTPda 

With Response to Price Fluctuations 

 
Figure 3.13 shows the impacts on the household monthly bill when moving from RTPda with response 

to RTPda Without Response with the 66 congestion experiments during the June-to-September period (out 
of 96 total congestion experiments done in all of 2013).  The experiments caused prices to rise very high 
for a few hours and reduce demand, then “appear” very low for the following 24 hours as the average 
price was increased.  This caused a number of units to lower their thermostat cooling set points and 
increase energy consumption (by 0.27% on average over the four-month period).  For households that 
frequently responded to the congestion event by decreasing demand during the period, significant savings 
were seen (the maximum reduction was $31.16) driven by the incentive payment.  Households that were 
not overly responsive saw a slight increase in their bills (between $0 and $3), driven by the increased 
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demand caused by precooling.  Ideally, the system would not be operated that often, so it is assumed that 
the level of impact and savings would be decreased. 

 
Figure 3.13. Change in Monthly Household Bills When Switching from RTPda With Response to RTPda 

Without Response, Taking into Account the Congestion Experiments Used in the Actual 
System 

 
Table 3.5 through Table 3.8 show the average household bills by month for each of the cases 

discussed above.  RTPda cases include a breakdown into the base bill, rebate payments, and incentive 
payments.  Note that the rebate payments approximately nullify the effects of increased prices due to the 
congestion experiments, but not quite (as indicated by the slight rise in most household bills during the 
experiments). 

Table 3.5.  Average Monthly Bill with Standard Tariff 

 Average Household Bill Control Group (Standard Tariff) 
 June July August September Average 

Total $153.14 $164.96 $161.19 $139.92 $154.80 

Table 3.6.  Average Monthly Bill with RTPda Tariff and No Response 

 
Average Household Bill RTPda Without Response 

June July August September Average 
Base Bill $148.25 $178.30 $152.40 $132.42 $152.84 
Rebate $– $– $– $– $– 
Incentive $– $– $– $– $– 
Total $148.25 $178.30 $152.40 $132.42 $152.84 
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Table 3.7.  Average Monthly Bill with RTPda Tariff and Response 

 
Average Household Bill RTPda Wholesale Response 

June July August September Average 
Base Bill $145.53 $172.97 $149.55 $130.71 $149.69 
Rebate $– $– $– $– $– 
Incentive $– $– $– $– $– 
Total $145.53 $172.97 $149.55 $130.71 $149.69 

Table 3.8.  Average Monthly Bill with RTPda Tariff and 66 Congestion Experiments 

 
Average Household Bill RTPda with Congestion Experiments 

June July August September Average 
Base Bill $167.53 $232.78 $231.56 $199.80 $207.92 
Rebate $(21.38) $(57.75) $(80.80) $(68.46) $(57.09) 
Incentive $(1.08) $(3.05) $(3.35) $(2.63) $(2.53) 
Total $145.08 $171.97 $147.42 $128.72 $148.30 
      

Table 3.9 summarizes the changes in household bills by month from the standard tariff to each of the 
three RTPda experiments.  Negative values (in parentheses) indicate a reduction in the bill.  Notice the 
increase in July bills, even in the RTPda Without Response case, indicating that wholesale prices were 
higher than expected in July. 

Table 3.9.  Comparison of Bill Reductions from Standard to RTPda Tariff 

 
Delta Average Household Bill Control to RTPda 

June July August September Average 
RTPda Without Response $(4.89) $13.34 $(8.79) $(7.50) $(1.96) 
RTPda With Response $(7.61) $8.01 $(11.64) $(9.21) $(5.11) 
RTPda With Congestion $(8.06) $7.01 $(13.77) $(11.20) $(6.51) 
      

3.2 Thermostat Statistics 

This section explores the RTPda consumers’ interactions with their thermostat.  A statistical 
characterization of the population of thermostat settings is presented, followed by an investigation of the 
thermostat override changes that occurred during congestion event periods. 

3.2.1 Thermostat Settings 

In the course of the Project, the consumers exercised their choice of setting the cooling and heating 
set points, as well as the comfort slider settings.  In addition, they had the choice of overriding the system 
until the next scheduled period or indefinitely.  A number of aspects of these choices can be studied, but 
the overall features will be considered first. 
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The period of analysis was the four-month period June 1–September 30, 2013.  The occupancy status 
had four possibilities:  “Home,” “Night,” “Away,” and “Vacation.”  The day was divided into six parts of 
4 hours each.  Weekday and weekend differences are implicit in the occupancy status (that is, generally 
more hours of the day are in occupied status during the weekend), so no distinction was made for this 
study.  The comfort setting has six possibilities:  0, 20, 40, 60, 80, and 100, with 0 being most comfort 
oriented and 100 being most economically oriented.  The cooling set points covered a wide range:  55°F 
to 95°F.  So the total number of bins will be (4 occupancy statuses) × (6 day periods) × (6 slider settings) 
× (41 cooling set points in 1°F increments), or 5904 bins.  The amount of data available from a household 
was dependent on recruitment date, communication issues, and other matters.  To normalize for this 
variability, each household was given one vote that could be distributed among the 5904 bins.  Imagine 
each household receiving a sheet of paper of unit area.  It can be torn into a maximum of 5904 pieces 
(often far fewer) in proportion to the fraction of time the house was in the state represented by a bin and 
placed in that bin.  The areas of the pieces of paper in each bin were summed.  These sums are shown in 
the graphs below, where a separate graph is drawn for each of the four occupancy statuses and six day 
periods, resulting in a possible 24 graphs.  Each graph is further normalized so that the probabilities for 
each bin add up to 100%.  “Away” status in the period midnight to 4 a.m. did not occur, so no graph is 
shown for that combination.  The 23 graphs are shown in Figure 3.14, Figure 3.15, Figure 3.16, and 
Figure 3.17. 

The trends seen in these graphs are generally self-explanatory.  Additional studies exploring the 
changes during the course of the Project are possible but have not been performed.  For example, a study 
of the default and initial comfort settings selected as part of the ePCT installation and training process 
could shed light on how these statistics evolved over time.  As one demographic study, the impact of the 
size of the house on the settings was explored.  Figure 3.18 shows the distribution of aggregated (overall 
occupancy modes and hours of day) overall occupancy statuses and day periods for the smallest 25% and 
the largest 25% of the houses as well as for all the households. 
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Figure 3.14.  Cooling Set Point and Slider Distribution for Occupancy Status “Home” 
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Figure 3.15.  Cooling Set Point and Slider Distribution for Occupancy Status “Night” 
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Figure 3.16.  Cooling Set Point and Slider Distribution for Occupancy Status “Away” 
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Figure 3.17.  Cooling Set Point and Slider Distribution for Occupancy Status “Vacation” 
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Figure 3.18.  Effect of House Size on Cooling Set Points and Slider Settings Aggregated over All 

Occupancy Settings and Hours of Day 
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3.2.2 Thermostat Override Statistics 

Table 3.10 shows the percentage of households that overrode their programmed thermostat settings 
during 2-hour and 4-hour congestion experiments.  The override status was calculated as being positive 
for only those thermostats that were not in the override mode at the start of the experiment (that is, they 
were participating in the market), but at some point during the experiment were manually overridden.  In 
14 out of the total 69 2-hour experiments no thermostats were overridden, while only three 4-hour 
experiments recorded no overridden thermostats. 

Table 3.10.  Thermostat Override Statistics for 2-hour and 4-hour Congestion Experiments 

2-Hour Experiments 4-Hour Experiments 
% Households 
that Overrode Frequency Probability 

% Households 
that Overrode Frequency Probability 

0% 14 20.00% 0% 3 11.54% 
0–1% 13 18.57% 0–1% 3 11.54% 
1–2% 25 35.71% 1–2% 4 15.38% 
2–3% 10 14.29% 2–3% 3 11.54% 
3–4% 5 7.14% 3–4% 2 7.69% 
4–5% 3 4.29% 4–5% 3 11.54% 
5–6% 0 0.00% 5–6% 3 11.54% 
6–7% 0 0.00% 6–7% 3 11.54% 
7–8% 0 0.00% 7–8% 0 0.00% 
8–9% 0 0.00% 8–9% 1 3.85% 
9–10% 0 0.00% 9–10% 1 3.85% 
Total 70 100%  26 100% 

      

Figure 3.19 compares the numbers of households that overrode their programmed thermostat settings 
during on-peak and off-peak 2-hour congestion experiments.  It is evident that more households in 
override status were recorded during on-peak periods (14:00 – 22:00), as compared to off-peak period 
(22:00 – 14:00) experiments. 
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Figure 3.19.  Thermostat Override Statistics during 2-hour Congestion Experiments 

Figure 3.20 presents the override statistics recorded during 4-hour congestion experiments, which 
were conducted over the on-peak periods of the day.  The figure also presents a comparison of the 
override statistics when the experiment was called during a SMART Shift Plus (critical peak pricing) 
event versus, along with the other 4-hour experiments.  It is evident that a greater number of households 
overrode their programmed thermostat settings during SMART Shift Plus events. 

 
Figure 3.20.  Thermostat Override Statistics during 4-hour Congestion Experiments 
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Figure 3.21 and Figure 3.22 present comparisons of the total numbers and the percentages of 
households that overrode their programmed thermostat settings during 2-hour versus 4-hour congestion 
experiments.  The figures may be interpreted as override “duration” curves, presenting the numbers and 
percentages, respectively, of households in override status during 2-hour and 4-hour experiment periods.  
From both the figures, it is evident that a greater number of households overrode their programmed 
thermostat settings during 4-hour experiments than during 2-hour experiments.  This may be attributed to 
greater discomfort due to the rising house temperatures during 4-hour experiments when HVACs stayed 
off for a considerably longer duration. 

 
Figure 3.21.  Override Duration Curves for 2-Hour and 4-Hour Congestion Experiments  

 
Figure 3.22.  Override (% of total) Duration Curves for 2-Hour and 4-Hour Congestion Experiments 
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3.3 HVAC Bid Quantity versus Actual Load 

When ePCT equipment was installed in a home, it was configured to store the estimate for the amount 
of power that the HVAC unit would draw when operating.  The Project assumed that the compressors are 
fixed speed, which appears reasonable today, but will likely change in the future as HVAC units become 
more efficient.  The installer estimated the power draw based on the nameplate rating and/or size of the 
compressor.  A look-up table was provided to help convert HVAC heating/cooling size to the power 
draw.  The estimated power draw was stored in the HEM equipment for use as the HVAC bid quantity 
(𝑞𝑏𝑖𝑑).  The accuracy of this estimate when compared to the actual power draw could be important to the 
performance and stability of the RTPda system under wide-scale deployment. 

Analysis of the metered data for the RTPda households was undertaken to determine the actual power 
drawn for each unit.  The results of this analysis are presented below.  Details of the methodology are left 
for a future publication. 

3.3.1 Results of Analysis 

Figure 3.23 plots the meter analysis value for each household as compared with the nominal value 
(𝑞𝑏𝑖𝑑) used in the RTPda auction.  If the values corresponded well, then the points in the graph would be 
expected to cluster closely around the dotted diagonal.  Instead we see that, in general, the HVAC 
equipment is drawing more power than the household is bidding into the market.  The distributions for 
99 households of their bid power quantities and estimated power quantities are shown in Figure 3.24, 
indicating a significant deviation from the quantities bid. 

 
Figure 3.23. Estimated HVAC Power from Metered Data versus Bid Power for the Same Household 
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Figure 3.24.  Distributions of HVAC Bid Power and Estimated Power 

 
The linear vertical groupings of points in Figure 3.23 likely occurred because the look-up table listed 

a few key values:  1.2, 1.5, 1.8, 2.1, and 3.3.  These values are also clearly apparent in the red line in 
Figure 3.24. 

If the system becomes constrained either due to limited supply or due to congestion, the market 
cleared price is determined by price, energy bids. These bids should be accurate for proper operation.  
However, in this project, the responsive load was so small that the market either cleared at the feeder base 
price (non-congested situation) or at the feeder market cap (congested situation).  In either case, the 
inaccuracy of the bid quantities did not affect the market clearing.  As the energy-sensitive portion of the 
household bills were calculated from the metered quantity, this portion of the bill was not affected.  
However, the incentive saving calculation is dependent on the bid quantity, so inaccuracies can have an 
effect here. 

Bid power inaccuracy would also have an impact on the analysis of load sensitivity to price when 
there is a high penetration of RTPda resources on the feeder.  In this case, a congestion situation can occur 
where the market clears between Pbase and Pcap.  The bid power inaccuracy may cause the market to clear 
at different energy quantity and price points (see Figure 3.25). 

This situation is a topic for future analysis.  A simulation of the RTPda system could be set up to run 
two sets of scenarios using the PJM real-time market pricing information and the congestion event 
periods.  One set of scenarios would run the households that bid 𝑞𝑏𝑖𝑑, but size the HVAC models to 
match the distribution seen from the meter data analysis as in the demonstration.  The other set of 
scenarios would adjust 𝑞𝑏𝑖𝑑 to accurately reflect the meter data analysis values.  The scenarios would be 
scaled to show different penetrations of RTPda households on the feeders.  Comparisons of these runs 
would provide insight regarding the impact of bid power errors on the performance of the RTPda system. 



 

3.27 

 
Figure 3.25.  Conceptual Bid Curve Comparison of Bid versus Accurate HVAC Draw 
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4.0 RTPda Load Sensitivity to Price 

This chapter investigates the price-responsive nature of the RTPda resources over the course of the 
summer.  The first section analyzes data collected for each household to explore the population of RTPda 
resources’ sensitivity to the 5-minute, LMP-based market price fluctuations experienced during the 
experiment.  It is followed by a similar investigation done using the GridLAB-D simulator.  The final 
section investigates the response of the RTPda resources to the imposed congestion events, where the 
market cleared at the price cap for the duration of the event. 

4.1 Results from Measured Data 

The responses of the thermostat agents are not really to energy prices but to variations in the prices 
around the “expected” price, the expected price being the average price experienced during the previous 
24 hours.  Consider the relationship between response defined as (RTP13 − RTPnr13) and LMP.  The 
LMPs are used as proxies for the real-time prices that are used for the bids.  An LMP of, for example, 
$40/MWH may be perceived as high at some times and as low at other times.  If perceived as high, the 
result is a tendency for reduction of energy use compared to the control houses.  If it is perceived as a low 
price, the tendency is toward increased energy use.  Therefore for a given LMP, the response at different 
times can vary over a range of values.  This is seen in Figure 4.1.  In this figure, the 5-minute average 
change in energy between RTP13 and RTPnr13 households for non-congestion experiment days is plotted 
against the corresponding time period’s 5 minute LMP.  A heavily smoothed response is shown as the 
blue points.  Also shown is a histogram of the LMPs in the data points.  The series of vertical streaks 

 
Figure 4.1. Response versus LMP for About 12,000 5-Minute Data Points Covering the Period June–

September 2013 
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correspond to some default prices used when no LMP was transmitted.  The LMPs are truncated at 
100 $/MWH because points beyond that are sparse.  A histogram of the full range of LMPs from $−8.67 
to $659.09 is shown in Figure 4.2. 

 
Figure 4.2. A Histogram of the Full Range of LMPs (from −$8.67 to $659.09) Seen During the Analysis 

Period 

 
Even though the response is to variations in LMP and not to LMP itself, a heuristic expectation is that 

higher prices should generally result in a negative response.  It is therefore of interest to determine the 
correlation coefficient between the response and LMP.  This coefficient is −0.17, confirming heuristic 
expectations of the design of the RTPda system. 

4.2 Simulated Results 

Similar to previous sections, households were simulated within GridLAB-D to represent 25% 
penetration of RTPda households; 300 households were “experimental” while 900 were operated similarly 
in each simulation and did not respond to variations in price.  The experimental households were modeled 
using three different scenarios: 

1. Control – the households were simulated using the standard pricing tariff.  

2. RTPda – the households were simulated using the residential RTPda service tariff and responded to 
wholesale price fluctuations in a manner similar to those observed in the pricing experiments (for 
example, thermostat slider and temperature settings, internal air temperature decay rates, and such). 
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3. RTPda Congested – the households were simulated using the residential RTPda service tariff, 
responded to wholesale price fluctuations, and responded to capacity limits placed on the feeder 
aligned with the actual experiments (96 experiments in four months).  

The simulation results offer an additional comparison against the actual data, without the necessity of 
using filtering and regression techniques, as simulation provides a “perfect” control group.  The graph in 
Figure 4.3 is similar to Figure 4.1, but uses the simulated response data (RTPda minus Control) and 
includes every day within the four-month period (rather than a subset in the field data case where 
congestion days were removed).  The graph is truncated as before and does not show some periods of 
very high price and high load response.  The figure is presented to show the similarities between the 
simulated and actual responsive loads; particularly the area around LMPs of 30 to 60 $/MWh.  A negative 
value on the y-axis indicates a reduction in demand when moving to the RTPda group.  It can be seen that 
when the LMP is relatively low (less than $30/MWh), there is almost no change in demand when moving 
to the RTPda rate.  Further research is needed, though this may be indicative of having very little resource 
available for reduction during relatively low LMP periods (e.g., early morning periods).  However, as 
LMP becomes higher, there is a significant trend toward reduced demand.  It should be noted that data 
points higher than $60/MWh are of much lower density and the trend line is less certain. 

 
Figure 4.3. Change in Load versus LMP between the Control and RTPda Groups (positive value 

indicates increased load) 
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To replicate what was seen in the deployed system, the 96 congestion events were applied to the 
population of devices.  Figure 4.4 shows the relationship between LMP (that is, not the price directly seen 
by the consumer) and the change in load behavior.  The application of the congestion events tended to 
increase demand during periods of high prices and negate some of the decreases seen during low to 
medium price periods.  This is most likely driven by the congestion event raising the average price and 
making the LMP look like a better deal in the hours following the events.  This may have a significant 
impact immediately after a congestion event, when units are trying to recover, especially if high LMPs are 
coincident with the congestion event.  The absolute LMP is indifferent to whether the congestion event 
occurred; however, the thermostat agents will perceive this price as relatively lower following a 
congestion event, and will increase their consumption following the event.  While this is greatly 
exaggerated by using 96 congestion events, it does suggest that for 24 hours after a high-price or 
congestion event, households will tend to “over consume” relative to high LMP values, as this price will 
appear to be a relatively low price.  More investigation is warranted to better understand and quantify the 
simulation results and calibrate simulation models with further information that can be gleaned from the 
field data. 

 
Figure 4.4. Change in Load versus LMP between the Control and RTPda Groups Including Congestion 

Experiments 

 
To look at this effect, Figure 4.3 and Figure 4.4 were adapted to look at the response to the supply 

price in terms of standard deviations from the average price.  This effectively translates the price into how 
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the thermostat controller views it; the current price is always relative to the average price from the 
previous 24 hours.  So, the price is calculated and displayed as 

 𝑃𝜎 = 𝑃𝑠𝑢𝑝𝑝𝑙𝑦 𝑏𝑖𝑑−𝑃𝑎𝑣𝑔𝑒𝑟𝑎𝑔𝑒 24 ℎ𝑜𝑢𝑟𝑠

𝑃𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 24 ℎ𝑜𝑢𝑟𝑠
 (4.1) 

Figure 4.5 shows the same (non-congested) case as Figure 4.3, but with the price translated into 
relative prices.  The patterns can be difficult to discern.  In general, one would expect that as relative price 
increases, the amount of reduction in demand should increase.  However, during any given market period, 
the response to price is dependent on what happened in previous markets.  For example, after an extended 
period of +2.5 standard deviation prices, in which loads were continuously deferring, a price of 
+1.5 standard deviations might be a relatively attractive price due to the deferral of operation.  So, at any 
given 5-minute period, the RTPda load may increase with higher prices, but the overall trend should be 
strongly toward decreased demand during relatively high-price periods. 

 
Figure 4.5.  Change in Load versus Relative Price between Control and RTPda Groups 

 
Figure 4.6 breaks the same data into three temperature “bins,” where the temperature bin represents 

the current outdoor temperature during that 5-minute market interval.  Blue represents temperatures less 
than 70°F, green between 70 and 80°F, and red over 80°F.  The black lines are trend lines determined 
using the same technique as in Figure 4.1.  When presented this way, a number of trends are quickly 
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identifiable.  Again, the trends are important and not the individual points.  In any given individual market 
clearing, depending on what occurred in previous market clearings, the RTPda load may increase or 
decrease relative to the control group no matter the relative price.  For example, if the RTPda load has 
been deferred for 30 minutes, a relative price of +1 may appear quite reasonable (recovery from the 
deferral may cause an increase in load).  However, if the price has been relatively low for the past 
30 minutes, a price of +1 is too high for the current resource status (and decreases the load).  Looking at 
the trend lines reduces this noise and determines whether the system in aggregate is behaving as designed, 
or in other words, decreasing demand during relatively high-price periods. 

 
Figure 4.6. Change in Load versus Relative Price between Control and RTPda Groups Broken into 

Outdoor Air Temperature Bins 

 
In the “less than 70 degrees” bins (the simulations were for summer periods only), when there is 

minimal air conditioning, the trend is very flat with a very slight trend toward reducing demand as price 
increases.  This is expected, as there is minimal resource during these periods (albeit some resources still 
available).  Also, while there are some individual cases where demand increases or decreases, the overall 
trend is to minimally decrease load as a function of price.  When temperatures are greater than 80 degrees 
(red), it is clear that as relative price increases, load decreases to a plateau value of approximately 
0.5 kW/household.  This is as expected (and desired).  Of note, however, is that when price is between 
−0.5 and 0.5 standard deviations, the trend is actually to increase load.  Most likely, this is caused by the 
devices “recovering” during slightly higher prices after very high-price periods that tend to occur more 
often during hot periods of the day.  Data for the 70–80 degree time periods (green) are in between data 
for the other two graphs.  Additionally, as temperature climbs, the relative price also climbs, indicating 
that a higher temperature day after a cooler temperature day tends to experience higher LMPs.  In future 
applications, this observation could be used to better predict upcoming prices and better tune the 
controllers to respond to high and low price excursions, which would allow for a rough prediction of 
demand reduction available during any given market cycle as a function of outdoor air temperature. 
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In conclusion, this analysis of field and simulated data is but a start to understand and provide insight 
to the complex interactions at play in the RTPda system.  The basic trend observed of reducing load as 
LMPs rise is directional evidence of the desired behavior with the system; however, many more questions 
are raised about the strength of this correlation and its behavior under different market, weather, and 
temporal-related conditions.  Further investigation is needed to address these questions and gain greater 
insight. 

4.3 RTPda Load Event Response 

Due to the relatively low penetration of RTPda households on each feeder, the impact of each 
congestion experiment was to engage all of the resources and drive the cleared market price to the price 
cap.  A benefit of these experiments is that they demonstrated the maximum amount of response that 
could be obtained under various operating conditions.  This section investigates the magnitude of the 
responses from the resources to the congestion events and how well the resources responded over the 
duration of the event. 

4.3.1 Events Response Magnitude 

The magnitude of the response is estimated by evaluating the difference between the fractional 
change in the control group load and the RTPda group load relative to their averages for the 4 hours prior 
to the beginning of the event.  The 4 hour period is chosen as it strikes a balance between prior conditions 
sample size and variance.  The fractional response of response group 𝑥 relative to control group 𝑦 is 
defined as 

 𝑟𝑡(𝑥,𝑦) = ∑ 𝑥𝑛,𝑡
𝑁𝑥
𝑛=1

∑ 𝑦𝑛,𝑡
𝑁𝑦
𝑛=1

− 1 (4.2) 

The mean response for the 4 hours prior to the start of the event at 𝑡 = 0, where the time interval is 5 
minutes and t is in hours, is evaluated as 

 𝑟̅(𝑥,𝑦) = 1
16
∑ 𝑟𝑡(𝑥,𝑦)−4<𝑡≤0   (4.3) 

and is used to normalize all the responses thereafter.  The percent response is evaluated relative to this 
4-hour mean prior to the event. 

The magnitude of the response after the start of the event relative to the response prior to the event is 
thus 

 𝑅(𝑥,𝑦) = 𝑟𝑡(𝑥,𝑦) − 𝑟̅(𝑥,𝑦) (4.4) 

This result is shown for 2-hour and 4-hour duration events by the solid lines in Figure 4.7. 

4.3.2 Event Response Uncertainty 

The uncertainty of the response is estimated by first evaluating the variance of the control group and 
the RTPda response group for various response types (for example, 2-hour event, 4-hour event, mild day, 
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hot day, off-peak period, on-peak period).  All the responses for the selected response types were grouped 
after being normalized with respect to the conditions prior to the event.  The variance of a group load 𝑥𝑁 
(𝑁 is the number of active meters) at the time 𝑡 is given by 

 𝑣𝑡(𝑥) = 1
𝑁2 ∑ �𝑥𝑛,𝑡 − 𝑥̅𝑡�

2𝑁
𝑛=1   (4.5) 

To compute the uncertainty of the difference between response group 𝑥 and the control group 𝑦, we 
must compute the covariance 

 𝑐𝑡(𝑥, 𝑦) = 1
𝑁2 ∑ �𝑥𝑛,𝑡 − 𝑥̅𝑡��𝑦𝑛,𝑡 − 𝑦�𝑡�𝑁

𝑛=1  (4.6) 

The 63% confidence interval for the response of the response group 𝑥 relative to the control group 𝑦 
is 

 𝜎𝑡 = �𝑣𝑡(𝑥) + 𝑣𝑡(𝑦) − 2𝑐𝑡(𝑥,𝑦) (4.7) 

This result for 2- and 4-hour events is shown by the dotted lines in Figure 4.7. 

 
Figure 4.7.  Aggregate Response to 2- and 4-hour Congestion Events 
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The results for the various event and day types are summarized in Table 4.1.  The initial response is 
evaluated 15 minutes after the start the event.  The response trend refers to the general trajectory of the 
response after the initial response to the event.  It is evaluated for the duration of the event as a linear fit 
to the data in percent per hour with the same percent scale as initial response.  The initial uncertainty is 
given for the 63% confidence interval on the same scale as the initial response.  The uncertainty trend 
refers to the general trajectory of the uncertainty after the initial response to the event.  It is evaluated in 
%/h on the same scale as the initial response for the duration of the event. 

Table 4.1.  Summary of Group Responses by Event and Day Type 

Event Type 
Initial Response 

(%) 
Response Trend 

(%/h) 
Initial Uncertainty 

(%) 
Uncertainty Trend 

(%/h) 
All events −8.6 1.0 4.2 −0.2 
All 2 h −6.4 −0.3 5.9 −0.3 
Hot+peak 2 h −10.5 1.3 11.4 −0.6 
Mild+peak 2 h −1.4 −3.1 16.4 −0.8 
All 4 h −17.9 4.1 17.2 −0.6 
Hot+peak 4 h −22.5 4.7 23.1 −0.7 
Mild+peak 4 h −9.3 3.0 63.4 −2.0 

 

 The 2-hour events have a much shallower initial response than the 4-hour events (10.5% versus 
22.5%).  This is mostly driven by the timing of the events.  Many of the 4-hour events occurred during 
high peak periods in the late afternoon on successive hot days, while the 2-hour events occurred over a 
greater variety of situations in both time of day and daily temperatures.  Also, on mild days 4-hour events 
tended to start later in the day relative to 2-hour events.  Thus the 2-hour events tended to start with very 
few RTPda HVAC resources available and as more unconstrained HVAC resources began operating, the 
system became more responsive (hence the negative percent response trend).  In contrast, 4-hour events 
started with more RTPda resources already in operation and moved into times of the day where RTPda 
resources became more constrained in their ability to respond.  Therefore, the trend was for decreasing 
RTPda resource response (positive response percent trend).  On peak days, events usually began with more 
RTPda resources available and the trend was generally toward fewer RTPda resources as time passed.  As 
the resources were depleted, it became harder to distinguish the experiment response from the control 
group. 

Further analysis of the data, such as segmenting the graphs according to time of day, weekday versus 
weekend, and temperature can help in more fully characterizing the response of the RTPda resources to 
these events. 
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