Comparison of discomfort glare metrics for small, high-luminance light sources in outdoor nighttime environments Dr. Yulia Tyukhova, Acuity Brands

U.S. Department of Energy

2016 SSL Technology Development Workshop in Denver, CO

Glare

A condition of vision in which there is a feeling of discomfort and/or a reduction in visual performance. It occurs when the luminance or luminance ratios are too high.

Disability Glare

- Reduces visibility due to scattered light in the eye
- Depends on the quantity of light falling on the eye, and is largely independent of the source luminance
- Influences task performance
- Well understood

Discomfort glare (DG)

- Causes "a sensation of annoyance or pain caused by high luminances in the field of view" without necessarily impairing vision
- Determined mainly by the luminance of the source
- Influences people
- Much less is known

Outcome: Discomfort glare is the focus of this research Line of sight

Outdoor nighttime environments

- Low background luminances;
- High contrasts between lit and unlit surfaces;
- Small light sources in the field of view;
- High-luminance LEDs are becoming popular in outdoors;
- A single LED chip: 19*10⁶ cd/m² (Tyukhova and Waters 2014);
- The potential to cause more glare than conventional systems.

St. Petersburg, Russia

San Francisco, CA

Why do we care?

- We all have experienced discomfort glare before;
- It has been studied for decades;
- The cause is still not known;
- There's a high demand for predicting and eliminating glare;
- To quantify discomfort glare accurately for a given application;
- To facilitate the calculation of discomfort glare fill the existing research gaps.

Research gaps

- Multiple metrics are available;
- However, discomfort glare is rarely calculated;
- Metrics have limitations.

Outdoor sports and area lighting metric CIE 112-1994

Motor vehicle metric Schmidt-Clausen and Bindels 1974

Outdoor lighting installations Bullough et al. 2008, 2011

Unified Glare Rating small source extension CIE 146,147-2002

Discomfort glare in outdoor sports and area lighting (CIE-112 1994)

$$GR = 27 + 24 \log \left(\frac{L_{vl}}{L_{ve}^{0.9}} \right)$$
$$L_{vl} = 10 \sum_{i=1}^{n} \frac{E_{glare,i}}{\theta_i^2}$$
$$L_{ve} = 0.035 \times L_{f,av}$$
$$L_{f,av} = E_{hor,av} \times \frac{\rho}{\pi}$$

glare control mark GF		glare rating GR
1	unbearable	90
2		80
3	disturbing	70
4		60
5	just admissible	50
6		40
7	noticeable	30
8		20
9	unnoticeable	10

E _{glare,i}	θ		
		Line of sight	\longrightarrow
			$L_{f,av}$

Discomfort glare in motor vehicle lighting (Schmidt-Clausen et al. 1974)

$$W = 5 - 2\log \frac{E_{glare}}{0.003 \left[1 + \sqrt{\frac{L_{adap}}{0.04}}\right] \cdot \theta^{0.46}}$$

Assessment	Glare rating W
Unbearable	1 2
Disturbing	3 4
Just admissible	5 6
Acceptable	7 8
Noticeable	9

DOE 2016 Dr. Tyukhova

Outdoor discomfort glare models (Bullough et al. 2008 and 2011)

 $DB = 6.6 - 6.4 \log DG$ For a glare source of 0.3° or more in angular size: $DB=6.6 \log DG+1.4 \log (50,000/L)$

 $DG = \log(E_l + E_s) + 0.6 \log\left(\frac{E_l}{E_s}\right) - 0.5 \log(E_a)$

UGR extension for small glare sources (CIE-146,147 2002)

Intention of this research

Determine which existing metric predicts discomfort glare most accurately in this application.

Apparatus and procedure

Methodology. Variables and levels

Four variables (36 experimental conditions)

Glare source luminance (20,000; 205,000; 750,000 cd/m²) Position (0°and 10°) Solid angle (10⁻⁵ and 10⁻⁴ sr) Background luminance (0.03; 0.3; 1 cd/m²)

A subjective measure

Rating scale used in this study from Fischer's paper (1991)

- 0 No discomfort glare
- 1 Glare between non-existent and noticeable
- 2 Glare noticeable
- 3 Glare between noticeable and disagreeable
- 4 Glare disagreeable
- 5 Glare between disagreeable and intolerable
- 6 Glare intolerable

An objective measure

Pupil diameter

Simplified timeline of one experimental condition

Glare

Fifty-six participants

Female 16, male 31; Average age 39.3 years (from 20 to 76)

> Custom-designed apparatus Methodology

> > **Objective (physiological) measure** pupil diameter

Subjective responses on a seven-point rating scale

> Glare 0....6

Discomfort glare metrics

Which metric predicts DG most accurately compared to subjective responses in this study?

Discomfort glare metrics and subjective data for 36 conditions

#	Average subjective rating	Outdoor sports and area lighting metric 1994	Motor vehicle lighting metric 1974	Outdoor lighting installation metric 2008 & 2011	UGR small source extension 2002
	This research	$GR = 27 + 24\log{(\frac{L_{vl}}{L_{ve}^{0.9}})}$	$W = 5 - 2\log \frac{E_{glare}}{0.003 \left[1 + \sqrt{\frac{L_{adap}}{0.044}}\right] \cdot \theta^{0.46}}$	$DB = 6.6 - 6.4 \log DG$ $DB = 6.6 - 6.4 \log DG + 1.4 \log(50,000/L_L)$	$UGR = 8log \cdot \left[\frac{0.25}{L_b} \cdot \sum \frac{200 \cdot I^2}{R^2 p^2}\right]$
	0 – no DG 1 – between non- existent and noticeable 2 – noticeable 3 – between noticeable and disagreeable 4 – disagreeable 5 – between disagreeable and intolerable 6 – intolerable	10 – unnoticeable 20 30 –noticeable 40 50 – just admissible 60 70 - disturbing 80 90 - unbearable	INVERTED 1 – noticeable 2 3 – acceptable 4 5 – just admissible 6 7 – disturbing 8 9 – unbearable	INVERTED 1-just noticeable 2 3 - satisfactory 4 5 - just permissible 6 7 - disturbing 8 9 - unbearable	10 – imperceptible 16 – perceptible 19 – just acceptable 22 – unacceptable 25 – just uncomfortable 28 – uncomfortable 31 – just intolerable (1999 Mistrick)
1	1.3	179	7.9	4.1	14.0
2	0.9	158	7.3	2.7	6.3
36	4.8	78	9.7	9.3	40.6

20,000 cd/m²; 0^o; 0.3 cd/m²; 10⁻⁵ sr

Discomfort glare metrics calculations and subjective data

Correlation analysis

Outdoor sports and area lighting (1)	0.405
Motor vehicle lighting (2)	0.792
Bullough's et al. metrics (3)	0.860
UGR small source extension (4)	0.879

Outcome: The metric that most accurately predicts discomfort glare in the tested ranges is the UGR small source extension.

Conclusions of this study

UGR_{small} was developed for interior lighting, but predicted DG most accurately compared to the outdoor metrics tested.

UGR_{small} was significantly better than other three tested metrics.

It validates and extends UGR_{small} to outdoor nighttime environments in the ranges tested in this study.

Future research

- Improve the UGR small source extension metric to achieve higher predictability;
- Study multiple sources (e.g. banks of light sources on a pole, or a source with a grid of LEDs in one luminaire);
- We need to have a metric in place;
- We need to have a convenient method of assessing glare.

A possible method of glare analysis

A long-term vision

Most existing DG research is based on subjective measures; objective measure is highly desired.

Understand the underlying mechanisms and cause of discomfort glare

- Study various physiological measures simultaneously (e.g. pupil diameter, blinking rate, EMG of extraocular muscles);
- Use function magnetic resonance imaging to measure brain activity in humans in response to glare stimuli;
 - Gratings with different orientations (Kamitani and Tong 2005)
 - Pictures of faces and other objects (Kanwisher et al. 1997)
- Attention can influence physiological responding (Goldstein 2014);
 - Womelsdorf el al. (2006) showed that attention can cause a monkey's receptive field to shirt toward the place where attention is directed.

Yellow areas show increased activity Source: Wikipedia

Thank you

DOE 2016 Dr. Tyukhova

