

Energy Efficiency & Renewable Energy

OLEDs – How Far Have They Come in Viability : A Summary of Recent SSL Reports and Findings

2016 DOE Solid-State Lighting Technology Workshop

November 17, 2016

Felipe Leon Electrical Engineer

Pacific Northwest National Laboratory

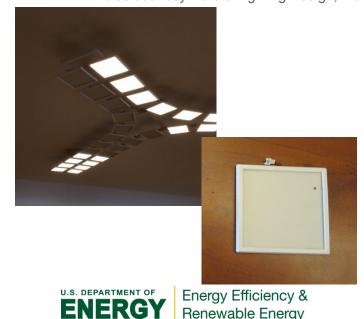
DOE Solid State Lighting Program – OLED Focus

- <u>GATEWAY¹</u> (March 2016)
 - Case study of OLED lighting installed at Aurora Lighting Design offices
- <u>OLED Lighting Products²</u> (May 2016)
 - Overview report on technology and application
- <u>CALiPER report³</u> (Sept 2016)
 - Independent testing of off-the-shelf OLED architectural lighting products
 - RTI Int'l accelerated testing
 - PNNL laboratory tear-downs
- Expected additional GATEWAY studies to track future performance
 - ¹ http://energy.gov/sites/prod/files/2016/04/f30/2016_gateway_aurora-oled.pdf
 ² http://energy.gov/sites/prod/files/2016/06/f33/ssl_oled-products_2016.pdf
 ³ http://energy.gov/sites/prod/files/2016/10/f33/caliper-24_oled-luminaires.pdf

2

GATEWAY – OLED Lighting at Aurora Lighting Design, Inc.

- First office test site for OLEDs used in general lighting
- Before
 - 8 recessed LED PAR30 lamps
 - 27 foot-candle average (range 2 to 194 fc)
 - Funky shadows on faces, very uneven work plane illumination
- After
 - 120 OLED 4" x 4" panels
 - Designed range: around 4 to 39 fc
 - Occupants comment on almost shadow-free lighting
 - Supplementing with task and/or accent lighting improves the room appearance with visual highlights



GATEWAY – OLED Lighting at Aurora Lighting Design, Inc.

- A creative and exciting light medium for architectural lighting designers
- Installation notes
 - Ceiling access constraints precluded overhead placement of drivers
 - Required 41 wires to various feed points for 7 separate assemblies
- Field findings
 - Incorrect drivers leading to overdriving some segments
 - Driver failure and OLED panel shorting defect
 - Some noticed flicker in dimmed mode
- Some growing pains, but nothing out of the ordinary

Photos courtesy Aurora Lighting Design, Inc.

OLED Lighting Products – Capabilities

- Panels are available in various sizes
 - Typical: 100 mm x 100 mm
- Luminous flux per panel can vary
 - About 60 to 115 lm at ~3000 cd/m²
 - Up to 300 lm at 8300 cd/m²
- Light distribution and quality
 - "Cosine" can make spaces appear brighter, with softer shadows
 - CRI (R_a) can range from 78 to 89

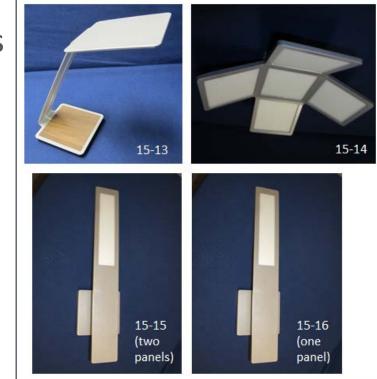
3000K, 3000 cd/m ²	"Typical" OLED Panel					
Panel size	100 mm square, matte appearance					
Color (CCT, CRI)	3000 K, 80+ CRI					
L ₇₀ panel life	40,000+ hrs					
Panel efficacy	~50 lm/W, 3000 K					
Appearance	Matte (uses light extraction layer)					

	Luminaire Test Data							
			Input	Initial				
DOE CALIPER	ССТ	Efficac	y Power	Output				
Test ID	(К)	(lm/W	') (W)	(lm)				
15-13	2952	28	9.6	270				
15-14 Ceiling	2946	45	7.4	332				
15-14 Wall	2940	45	7.4	329				
15-15 (2 panel)	2912	30	4.3	130				
15-16 (1 panel)	2855	23	2.8	65				
ENERGY Energy Efficiency & Renewable Energy								

OLED Lighting Products – Challenges and Potential

- Challenges
 - Drivers
 - Cost
 - Panel replacement
- Potential
 - Interact with lighting
 - Flexible

- Transparent (window/light source)
- Improved options (larger sizes, options in CCT, color bins, etc.)



Energy Efficiency & **Renewable Energy**

CALiPER – Overview

- CALiPER intended to assist:
 - manufacturers seeking to improve their products
 - buyers in making informed decisions
- OLED product testing
 - Luminaire performance (LM-79)
 - Teardown
 - Accelerated testing

• Photometric results

CALiPER 15-13 (task light)

ceiling-mount orientation)

CALIPER 15-14 (in

CALIPER 15-15 (two panels)

CALIPER 15-16 (one panel)

DOE CALiPER Test ID	Initial Output (Im)	Total Input Power (W)	Efficacy (lm/W)	Power Factor	CRI (R _a)	R ₉	R _f	R _g	R _f Hue bin 1	ССТ (К)	D _{uv}	THD-I (%)
15-13	270	9.6	28	0.45	78	-6	78	95	74	2952	0.0010	188.1
15-14 Ceiling	332	7.4	45	0.99	88	21	86	97	83	2946	0.0030	8.6
15-14 Wall	329	7.4	45	0.99	88	20	86	97	83	2940	0.0030	8.6
15-15	130	4.3	30	0.42	88	21	87	97	83	2912	0.0020	189.1
15-16	65	2.8	23	0.40	88	21	87	97	83	2855 DEPARTMENT OF	0.0030	192.2

Renewable Energy

Teardown findings

- Dark spot
 - Break in edge seal
 - Possible reason
- Driver selection and performance
 - Efficiency ranges from 47% to 85%
- Luminaire design
 - Thinness
 - Soldering to panels

- Multiple drivers
 - $-~V_{AC}$ to $V_{DC} \rightarrow V_{DC}$ to I_{DC}
- OLED drivers
- Voltage overhead for V_{OLED} rise
- Dimming method options
 - Constant current reduction (CCR)
 - Pulse width modulation (PWM) may work check
 OLED panel manufacturer specs

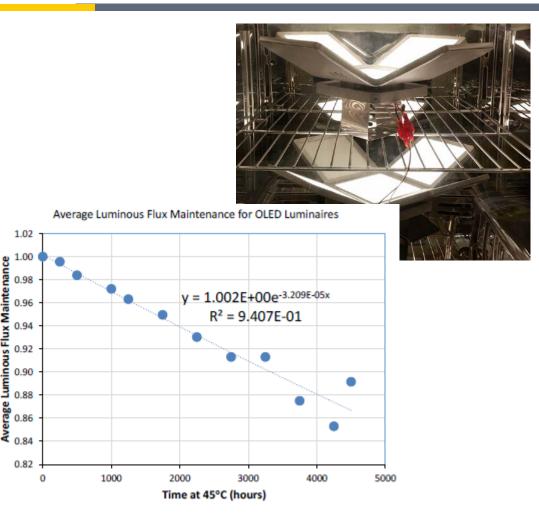


Photo: Osram

- Accelerated testing
 - 45°C at 150 mA (luminaire)
 - 75°C at 150 mA (panels)
 - 75°C and 75% relative humidity at 150 mA (luminaire)
 - 45°C at 200 mA (panel)
- Findings
 - Nearly linear luminous flux decay observed
 - Chromaticity shift in blue direction

OLED's Future

- Will OLED continue to improve (performance/pricing)?
- Will OLED be a light source of choice?
 - What will be the main non-monetary driver?
- Will hybrid (LED+OLED) luminaires provide the best of both worlds?
- Other? (i.e. audience participation)

Contributors

- Naomi Miller
 - Lead OLED Principal Investigator, Pacific Northwest National Laboratory
- Lynn Davis
 - Accelerated Testing, RTI International
- Felipe Leon
 - Teardown and Drivers, Pacific Northwest National Laboratory

