Seismic Research and Development

Justin Coleman, P.E.
Nuclear Science and Technology
Idaho National Laboratory

October 18th, 2016
Purpose of Presentation

- Provide an overview of collaborative INL seismic research and development activities

VISION
Verified and Validated advanced external hazard analysis tools and methods implemented in a comprehensive, risk-informed framework that provides best estimate nuclear facility and NPP response and economically ensures plant safety during and after beyond design basis events.
Research and Development Process for Delivering External Hazard Analysis Methods and Tools

<table>
<thead>
<tr>
<th>METHODS</th>
<th>TOOLS (Numerical Software)</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development of code based criteria and approaches for using advanced tools.</td>
<td>Software development to support code based criteria. Numerical approaches for analyzing design and beyond design basis events.</td>
<td>Perform experimental tests (gather data) to validate the methods and tools. Gather data from actual earthquakes to validate site response analysis and infer dynamic soil properties.</td>
</tr>
</tbody>
</table>
External Hazard Methods and Tool Development

- Tools developed on a common framework, MOOSE
- Couple together multiple capabilities
- Quantify external hazard risk
- Provide the basis for making economically safe decisions
<table>
<thead>
<tr>
<th>Advisory Committee</th>
<th>Team Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob Kennedy</td>
<td>Chandu Bolisetti (INL)</td>
</tr>
<tr>
<td>Farhang Ostadan</td>
<td>Swetha Veeraraghavan (INL, post doc)</td>
</tr>
<tr>
<td>Greg Mertz</td>
<td>Bob Spears (INL)</td>
</tr>
<tr>
<td>Mike Salmon</td>
<td>Will Hoffman</td>
</tr>
<tr>
<td>Andrew Whittaker</td>
<td>Efe Kurt (INL, post doc June 2016)</td>
</tr>
<tr>
<td>Bob Budnitz</td>
<td>Justin Coleman (INL)</td>
</tr>
</tbody>
</table>
Tools Applied to Nuclear Facilities

- Tool kit used to design nuclear facilities for design and beyond design earthquakes
- Used for:
 - Existing nuclear facilities and nuclear power plants
 - Deeply embedded advanced reactors
- For existing nuclear facilities need to quantify material aging
- Need economics tool to assess potential benefit of seismic isolation
Need for Advanced Seismic Methods and Tools

- Quantify response of NPPs and Nuclear Facilities for:
 - Effect of embedment (deeply embedded structures)
 - Non-vertically propagating waves
 - Gapping, sliding, and uplift and large soil strains during medium to large earthquakes
 - Seismic isolation
- Methods need to be implemented in codes and standards
 - Appendix B of ASCE 4

From: Darendeli (2001)
• Running nuclear structure models at various sites at various embedment depths and comparing with SASSI to determine:
 – What process should be followed when using NonLinear Soil-Structure Interaction (NLSSI)
 – What nonlinearities change ISRS
 – Assessing usability of current gapping, sliding, uplift models
 – Assessing usability of current nonlinear soil models
 – How large does the NLSSI soil box need to be

East-West – x-direction
North-South – y-direction
Vertical – z-direction
Tool Development, Mastodon

- Mastodon is a nonlinear soil-structure interaction finite element analysis tool
- Mastodon code development includes
 - Newmark Time Integration
 - Point source energy release calculations
 - Domain Reduction Method (DRM)
 - Dynamic Porous Media Flow (u-P-U)
 - Multi-Yield Hysteretic Soil Model (Soil-HYS)
 - Lysmer Boundaries
 - Rayleigh Damping
 - Ability to coupling with other physics
- **Current development work**
 - Gapping, sliding, and uplift element for cyclic shaking
 - Stochastic finite elements
 - Web-based verification and user Manuals
 - Low strain frequency independent damping viscous damping
 - **Verification** of new capabilities
 - Beta version of Mastodon
 - Automating capability to minimize user error
Validation of Mastodon

- Data gathered will be made publically available
- Two specific activities ongoing:
 1. Validation of 1D site response using geotechnical laminar box (GLB)
 2. Development of small scale laboratory for gapping, sliding, and uplift studies
 - Used to inform numerical constitutive models
 - Data used to develop larger system scale tests
Validation of Mastodon

GLB

• “Simple” 1D input
• Simple sine waves in undrained sand
• Five series of tests from low (linear soil response) to higher amplitude
• Data from test used to benchmark and validate linear and nonlinear site response numerical codes
• Provides data that will be used to characterize shear wave passage in a controlled environment

Gapping Sliding Uplift

• Small-Scale Structural Dynamics Laboratory
 • Allows numerical code developers to define and run experiments
• Physical testing of new ideas
• Collecting independent data
• Integrating the observations and measured data into numerical analysis
• Producing reliable and useful information for the science community and public
• Investigation of the Soil-Structure Interface Behavior:
 • Different soil types and conditions
 • Different material, geometry, and surface roughness for the structural model
 • Different loading conditions; monotonic, cyclic, and shake table
 • Comparison with the available constitutive relations for the best estimate
• State-of-the-art instrumentation
Questions

• Seismic research team at INL developing verified and validated multi-hazard methods and tools for quantifying risk at nuclear facilities and NPPs.
• Methods and Tools used to economically ensure nuclear facility safety
• Used for:
 – Existing nuclear facilities and nuclear power plants
 – Deeply embedded advanced reactors
INL Seismic R&D Mission and Vision

VISION

Verified and Validated advanced external hazard analysis tools and methods implemented in a comprehensive, risk-informed framework that provides best estimate nuclear facility and NPP response and economically ensures plant safety during and after beyond design basis events.

- Manage seismic risk at nuclear facilities and nuclear power plants (NPPs) through cost effective analytical approaches and technologies
- Reduce uncertainty and quantify the safety margins at existing and new nuclear facilities and NPPs.

Short Term Goal

- Integrate R&D efforts and expertise to create a useable seismic soil-structure interaction (SSI) methodology deployable in codes and standards
- Manage seismic risk at nuclear facilities through cost-effective, verified and validated analytical methods and tools
- Develop and deploy technologies and approaches for seismic risk management technologies, such as seismic isolation (SI)

Medium - Long Term Goal

- Evaluate the performance of virtual nuclear power plants and nuclear facilities to a wide range of external hazards including multiple event scenarios.
- Allows nuclear facility owners to virtually test nuclear facilities with external hazards before the actual facilities are tested with actual hazards.
- Owners can then anticipate potential issues and effectively invest their money
Action Justin and Anthony, explore the possibility of placing a stiff soil column in the box

- Bob and Greg had a concern that with a stiff soil column a full wavelength would not be formed. For instance if a 1000 ft/s soil column was placed in the box and we wanted to pass a frequency of 25 Hz then one wavelength is about 40 ft (longer than the box). (Action Justin, Anthony, and Greg work on defining a reasonable test)

- More discussion at 2:00 pm