Seismic evaluation of existing DOE facilities: a case study at Los Alamos National Laboratory

Andrew Whittaker, Ph.D., S.E., University at Buffalo
Lawrence Goen, P.E., LANL
Robert Kennedy, Ph.D., P.E., NAE, RPK Structural Mechanics
Brian McDonald, Ph.D., S.E., Exponent
Troy Morgan, Ph.D., P.E., Exponent
Michael Salmon, P.E., LANL
Loring Wyllie, S.E., NAE, Degenkolb
Procedures for seismic evaluation

- FEMA 273/274
 - Early 1990s to 1997
 - Commercial buildings
 - 1945 to 1995
 - Provisions (273)
 - Commentary (274)
 - FEMA 356, ASCE 41-06, -13
 - Performance levels
 - CP, LS, IO, F
 - Basic performance objectives
 - Deterministic basis
Procedures for seismic evaluation

- FEMA 273/274
 - Analysis methods
 - Linear static
 - Nonlinear static
 - First mode horizontal
 - Modeling
 - Linear
 - Nonlinear
 - Acceptance criteria
 - Linear analysis
 - m, F_μ
 - Nonlinear analysis

FEMA, 1997
Procedures for seismic evaluation

- FEMA P-58
 - Late 2012
 - Roots
 - Commercial buildings
- Losses
- Probabilistic basis
 - Distributions of loss
 - Intensity
 - Scenario
 - Time-based
- Analysis methods
 - Simplified linear
 - Nonlinear dynamic
 - Ground motion selection and scaling
 - Soil-structure-interaction
- Modeling
 - Nonlinear components
 - Best estimates
- Fragility functions
 - Families of fragility functions
 - Damage states
- Consequence functions
LANL case study
LANL case study

Dimensions between A-H
Dimensions between O-H

Service Chase Floor
6" slab toc El 7312.71'

12" Service Chase wall beam

10" roof slab
roof beam
LANL case study

Fluor, 1973
Existing DOE buildings

• Nonlinear analysis of soil-structure systems
 – Distributions of demand at \(n \) intensities
 – Ground motion selection and scaling
 • NIST GCR 11-917-15
 – Soil-structure interaction analysis important
 • Validated nonlinear soil models
 • Treatment of gapping and sliding
 • Size of soil domain, layering
 • Seismic inputs, consistent with PSHA
 – Non-ductile reinforced concrete framing
 • Rules for component modeling
 – Cyclic backbone curves
 – Reliable hysteretic models
 – Treatment of uncertainty and variability
Existing DOE buildings

- Risk calculations
 - Risk targets or performance goals
 - Smaller than the design basis hazard MAFE
 - Shaking more intense than design basis, requiring nonlinear analysis
 - Risk accrues at what (improper) fractions of DBE shaking?
 - Known after the analysis is performed
 - Fragility functions for damageable components
 - Safety-critical MEP components, including HVAC
 - Safety-critical structural components
 - Perimeter and interior shear walls
 - Roof framing
 - Columns supporting roof and laboratory floor
 - Correlated fragilities and redundancy
 - Understanding what is correlated
 - Salmon et al., Mertz
 - Systems analysis
Component modeling: shear walls

• No consensus models of low aspect ratio walls
• Developing an understanding of behavior
 – ATC-114 project
 • Data collection for walls
 • Datasets of Gulec (to 2009) and Luna (2010-2015)
 • Cyclic tests of 240 low-aspect-ratio walls
 – No monotonic data
 • Digitized *reported* cyclic test results
 – Tabulated *reported* wall and material properties
• Design variables
 – Aspect ratio, concrete strength, web reinforcement ratio, boundary elements, axial load, OOP shear, OOP moment
Component modeling: shear walls

- Cyclic backbone
 - Points to define curve
 - Cracking (A), *yielding* (B, C), post-peak (D)
Component modeling: shear walls

- Planar walls
- Drift at cracking
 - Three variables
Component modeling: shear walls

- Planar walls
- Resistance at cracking
 - Three variables
Component modeling: shear walls

- Planar walls
- Resistance at cracking
 - Three variables
Component modeling: shear walls

- Planar walls
- Peak strength
 - Empirical equations
Component modeling: shear walls

• Cyclic (hysteretic) models
 – Based on Ibarra-Krawinkler Pinching (IKP) model
 • Trilinear pre-peak, bilinear unloading responses
 • Implemented in Matlab
 • Calibrated model
LANL case study

• Planar wall

Fluor, 1973
LANL case study

- Risk assessment of an mission-critical building
 - Mission-critical SSCs
- Integrated LANL-led process underway
 - Systems models and paths to failure
 - Seismic hazard calculations
 - Nonlinear analysis of soil-structure models
 - n intensities of ground motion
 - Nonlinear models for soil and components
 - Formal treatment of variability and uncertainty
 - Distributions of demand at each intensity
 - Fragility calculations for damageable components
 - Supported by new test data as needed
 - Conditional probabilities of failure at each intensity
 - Calculation of MAF of unacceptable performance
Acknowledgments

• Dr. Greg Mertz: CJC and Associates
• Dr. Said Bolourchi: Simpson, Gumpertz and Heger
• Department of Energy
• Eric MacFarlane: Los Alamos National Laboratory
• Justin Coleman: Idaho National Laboratory
• National Nuclear Security Administration
• Asa Hadjian: Defense Nuclear Facilities Safety Board
• National Institute of Standards and Technology
 – Applied Technology Council: ATC-114 project