Fuel Cycle Research and Development

Advanced Fuels Campaign
In-reactor Instrumentation Overview

Kristine Barrett
Irradiation Testing Experiment Manager
Advanced Fuels Campaign

12 October 2016

Advanced Sensors and Instrumentation
2016 NE I&C Review Webinar
FCRD Advanced Fuels Campaign

- Develop **near-term accident tolerant LWR fuel technology**
- Perform research and development of **long-term transmutation options**

ATF
- Advanced LWR Fuels with enhanced performance, safety, and reduced waste generation

AFC
- Advanced reactor fuels with enhanced proliferation resistance and resource utilization

Capability Development for Science-based Approach to Fuel Development
- Advanced characterization and PIE techniques
- Advanced in-pile instrumentation
- Separate effects testing
- Transient testing infrastructure

Multi-scale, multi-physics fuel performance modeling and simulation

Advanced Fuels Campaign

NEAMS
Fuel Development Life Cycle

1. Advanced Fuel Design
2. Feedstock Preparation & Characterization
3. Ceramic & Metallic Fuel and Material Fabrication
4. Performance Assessment
5. Postirradiation Examination
6. Fresh Fuel Characterization
7. Irradiation Testing
8. Out-of-Pile Testing
9. Transient Testing Potential
10. In-reactor Instrumentation

Typically 3-5 years

Access to results sooner
Real-time data output
Intermediate data available
Longer for higher burnup experiments
Single data point at end of irradiation
In-Reactor Test Goals

Irradiation Experiment Goals:
- Demonstrate new fuel behavior
- Measure bulk fuel behavior, integral fuel performance: macroscopic scale
- Collect smaller length-scale data for modeling and simulation: microscopic scale
- Compare new fuels to historic fuels database
- Identify life-limiting phenomena

In-reactor Instrumentation Goals:
- Observe “real-time” fuel behavior
- Provide access to results before postirradiation examination (PIE)
- Inform decisions on continued irradiation or withdrawal based on performance data
- Generates intermediate fuel behavior data
Fuel Behavior is Complex

- **Cladding:** stainless steel or Zircaloy
- **Fission gas bubbles (Xe, Kr):** cause fuel swelling
- **Gas pressurization of cladding tube**
- **Steep temperature gradient:** can lead to large difference in chemical potential and drive constituent migration
- **Heavy fission fragments (~100 MeV):** lead to very high defect densities, very fast diffusion
- **Neutrons:** cause cladding damage
- **Fuel-cladding mechanical interaction:** results from fuel swelling
- **Fuel-cladding chemical interaction:** results from reaction between fuel and fission products
- **Solid fission products:** cause fuel swelling, change in composition (oxygen potential in TRUO_x)
Key Fuel Performance Phenomena

- **Dimensional changes**
 - axial growth
 - radial swelling

- **Fission gas production and release**
 - In-pin pressure

- **Fuel restructuring (zone formation)**

- **Constituent redistribution**

- **Fuel cladding chemical/mechanical interaction**

- **Performance phenomena depend on**
 - composition
 - temperature
 - burnup

Transverse metallographic section from the high temperature region of a U-19Pu-10Zr element at 3 at.% burnup with superimposed microprobe scans, showing zone formation, cracking and Zr-U redistribution.

Fission gas released to plenum above fuel for various metallic fuels as a function of burnup (EBR-II irradiation)

In-Situ Instrumentation Considerations

Experiment Types

- **Static Capsules**
 - simplest design
 - most cost-effective
 - accommodate wireless instruments

- **Instrumented Lead**
 - extensive design and handling
 - accommodate wired instruments

- **Loop Experiments**
 - coolant environment controlled independent of ATR coolant
 - accommodate wireless or wired instruments

Instrument Types

- **Wired**
 - only in instrumented leads and loops
 - handling concerns

- **Wireless**
 - applicable to any experiment type

Measurement Types

- **State Point**
 - end of irradiation
 - supplemental data, but limited

- **Real Time**
 - provides more data
 - detailed history of long experiments
In-reactor Instrumentation Constraints

- **Small diameter experiments**
 - Irradiation experiments are usually representative of prototypic reactor fuel pin dimensions ~5.8-9.5 mm (0.230-0.374 in.) OD

- **Small in-reactor experiment locations**
 - Typical ATR experiment positions 15-38 mm (0.62-1.5 in.) ID

- **Stability and Survivability**
 - Instruments must survive irradiation and fuel environment with no (or known) drift
 - Instruments must survive reactor conditions:
 - high neutron flux
 - high temperature/high pressure
 - chemical environments
 - Wired instruments must fit through reactor pressure vessel feedthroughs (leak tight)

- **Limited space (feedthroughs) for wired instrumentation**
 - ATR loops are limited to 24 leads (5-6 instrumented rods per test train)

- **Total cost (fixed program budgets)**
 - Experiments with instrumented leads are more expensive to design, build, and operate
AFC Irradiation Experiments in ATR

- **Drop-In Capsule**
 - *Outboard A Positions*
 - Metallic transmutation fuel experiments
 - Cd-shrouded baskets filter thermal flux
 - Rodlet inside SS capsule (safety barrier)
 - Gas gap provides prototypic cladding temperature
 - **Small I positions**
 - ATF-1 feasibility test
 - Rodlets in individual capsules (axial stack of 5)

- **Instrumented Lead**
 - *CFT Water Loop 2A*
 - ATF-2 demonstration test
 - Prototypic PWR conditions
 - Test Train w/Instrumented leads
 - A-priori Sensor Qualification Test (SQT)
Current Irradiation Test Instrumentation

- **Melt Wires**
 - ATF-1
 - inserted inside dU insulator pellets

- **Flux Monitors**
 - ATF-1 basket

- **SiC Temperature Monitors**
 - ATF-1 and ATF-2 experiments

In-basket Flux Wires

In-Pellet Melt Wires

SiC Thermometry
ATF Loop Planned Instrumentation

Fuel Test (Planned)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sensor</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Temperature</td>
<td>HTIR-TC</td>
<td>INL</td>
</tr>
<tr>
<td>Gas Pressure</td>
<td>LVDT/Bellows</td>
<td>Halden</td>
</tr>
<tr>
<td>Fuel Elongation</td>
<td>LVDT</td>
<td>Halden</td>
</tr>
<tr>
<td>Cladding Elongation</td>
<td>LVDT</td>
<td>Halden</td>
</tr>
<tr>
<td>Coolant Water Electro-chemical Potential</td>
<td>ECP</td>
<td>Halden</td>
</tr>
<tr>
<td>Neutron Flux</td>
<td>Flux Wire</td>
<td>INL</td>
</tr>
<tr>
<td>Coolant Water Temp – Core Region</td>
<td>TC</td>
<td>INL</td>
</tr>
</tbody>
</table>

SQ Test Lead Arrangement

<table>
<thead>
<tr>
<th>Lead Sheath Diameter (inches)</th>
<th>0.039</th>
<th>0.063</th>
<th>0.125</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple LVDT Single Bellows</td>
<td>6 (2 Per LVDT)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDT Single Bellows</td>
<td>2 (2 Per LVDT)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDT Single Bellows</td>
<td>2 (2 Per LVDT)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Pressure</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTIR TC</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type N TC</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type N TC with TAC</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultrasonic Multipoint Temp</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPFD Neutron Detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Size</td>
<td>0.039</td>
<td>0.063</td>
<td>0.125</td>
<td>Total</td>
</tr>
<tr>
<td>Total Leads</td>
<td>10</td>
<td>13</td>
<td>1</td>
<td>24</td>
</tr>
</tbody>
</table>
Sensors to be evaluated have potential advantages, but have not been demonstrated previously in-core

- Developmental sensors may be used in ATF-2 fueled experiment if performance is exceptional
Flowing Autoclave Test – Mock-up of SQT Prior to ATR Insertion

- Westinghouse Electric Research Laboratory – Churchill, PA
- Collaboration with IFE / Halden
- Assemble mock-up test train at INL and ship to Westinghouse
- ATR / PWR Prototypic Operating Conditions
- Evaluate durability of sensors under high flow/water Temp conditions
- Examine Chemical Interactions
 - Crud buildup
 - Clad corrosion
 - Formation of dissolved solids
 - Plating on clad surfaces
Halden LVDT Based Instruments

- Performance and robustness demonstrated over several years and irradiations
- Used in test reactors worldwide
- Not previously demonstrated in ATR – minor modifications are being implemented for fuel and clad elongation measurements
Potential issues to be evaluated:

- Irradiation/temperature response of LVDT
- Water ingress and vibration damage in MIMS cables
- Sensitivity of LVDT/Core combinations

Changes from Halden design for ATR application:

- Fuel Extensometer:
 - Type-10 LVDT fits around fuel rod
 - Core placed on end of fuel stack/no pushrod
High-Temperature Irradiation Resistant Thermocouple: Fuel Centerline Temperature

Initial evaluations suggested doped Mo/Nb-1%Zr thermoelements with HfO$_2$ insulation and Nb1%Zr sheaths most suitable combination for HTIR-TCs.

- Lack of Nb-1%Zr availability
- Activation of hafnia and availability of newer insulation materials
- Current effort to improve HTIR-TC with newer materials (Doped Nb, Yttria)

HTIR-TCs performed well throughout AGR-1 irradiations (while commercial TCs failed)

HTIR-TCs patented by BEA and deployed
Potential improvements over thermocouple:

- Very high temperature capability
- Multi-point measurement
- Sensor material selectable for environment and temperature range
- SQT UT may have single segment

150 mm sensor with 15 segments
Micro Pocket Fission Detector (MPFD): Environmental Temperature and Neutron Flux

- **Three sensors in a single, compact package:**
 - Thermal neutron detector
 - Fast neutron detector
 - Temperature detector
 - Modular design may allow more chambers

- **MPFDs use parallel plate fission chamber design**
 - Neutron signal not based on full energy deposited
 - Small size
 - Fast response
 - Inherent background radiation discrimination

- **Prototype evaluated in HTTL furnaces and KSU TRIGA reactor**
 - Tested to 500°C for 1000 hours
 - Tested in a TRIGA at 10^{13} n/cm2-s

- **Current effort to design for temperatures to 800°C**
Thermoacoustic (TAC) Sensor: Fluid Temperature

- Self-powered via temperature differential
- Wireless: information carried by pure tone acoustic signal
- Frequency of signal function of gas characteristics (composition and temperature) and geometry of resonator

Potential uses:
- Fluid temperature measurement
 - TC included for temperature verification
- Dimensional changes
- Porosity
- Flux measurement
- Reactor condition monitoring
- Power harvesting
- Gas composition

Successfully demonstrated at Penn State Breazeale Reactor Sept. 2015
Luna Innovations Fiber Optic Sensor: Pin Gas Pressure

- Fiber optic pressure sensor significantly smaller than LVDT based system
- Fiber optics known to degrade – outside core region for ATR application

Extrinsic Fabry-Perot Interferometry
- 1/16 inch diameter
- 1.5 inch length
- Demonstrated to 16000 psi
- Response time down to 13 µs

Other sensors possible based on method:
- Temperature
- Dimensional changes
In-pin ferritic cores can be used for periodic in-canal measurements of clad and fuel elongation Tiers 1-4.
ATR Loop Condition Sensors/Controls

- Thermo-couples (TCs) to measure inlet and outlet temperatures
 - can adjust water temperature “on the fly” during irradiation testing as needed
- Flow meters to measure loop flow rates
 - can adjust water flow rate “on the fly” during irradiation testing as needed
- In-line Chemical sensors
 - H2, Conductivity, pH
- Water “grab sample” collected daily
 - Boron measurement daily; dissolved metal constituents measured weekly
- Electro-chemical Potential (ECP)
 - Measures concentrations of dissolved oxidants in loop coolant water
 - Will be used to monitor formation/dissolution of clad corrosion
 - Halden reactor has developed a reference electrode that is capable of withstanding in-core conditions – has been successfully used in Halden Reactor
- Core region Thermo-Couple
 - Measures coolant water temperature in the core region (included in the ATF-2 test train)
 - ATR measures loop inlet and outlet water temperatures only
- Test Train Flux wire
 - Measure neutron flux in the test train region
 - Used to refine neutronics calculations to support burnup predictions
 - center flux trap flux is not controlled directly (4 corner lobes) and fluctuates during the cycle duration
Change Detection Software (CDS) has the potential to identify changes in fuel rod surface features “in-canal” between cycles

- Couple CDS to camera output for intuitive real-time change information
 - Fracture formation / propagation
 - Clad corrosion / oxidation
 - IR images - fuel changes (swelling, cracking, growth)
- Uncertainty reduction in fuel performance models by providing multiple data points for a single fuel rod

In-Pin Ferritic Core / LVDT

- Fuel / clad elongation

Before and After Fuel Plate Blister Images Using DCS
Advanced Fuels Campaign is currently using flux wires and melt wires in ATF-1 experiments

Wireless thermoacoustic (TAC) sensor demonstrated in Breazeale Reactor at Penn State September 2015

Sensor qualification test will demonstrate existing and new instruments in ATR conditions
 – Out-of-pile SQT mock-up test in flowing autoclave prior to ATR insertion

ATF-2 loop experiment will use demonstrated in-reactor instruments to measure:
 – fuel temperature
 – fuel pin internal gas pressure
 – fuel stack elongation
 – fuel pin elongation

In-Canal measurement will provide fuel performance data between cycles
 – Fuel/clad elongation
 – Clad surface feature changes
 – Fuel growth, swelling, cracking
Acknowledgments

- ATF-1 Melt Wires
 - Jason Harp
 - Kurt Davis

- SQT and ATF-2 Loop Experiment and Design
 - Kristine Barrett
 - Brian Durtschi

- SQT, Autoclave, and ATF-2 Loop Instrumentation
 - Troy Unruh
 - Josh Daw
 - Jim Smith
 - Kurt Davis
 - Steinar Solstad – IFE/Halden