

Campaign

dvanced Fuels

Fuel Cycle Research and Development

Advanced Fuels Campaign In-reactor Instrumentation Overview

Kristine Barrett Irradiation Testing Experiment Manager Advanced Fuels Campaign

12 October 2016

Advanced Sensors and Instrumentation 2016 NE I&C Review Webinar

INL/MIS-15-37102

FCRD Advanced Fuels Campaign

Nuclear Energy

Advanced Fuels Campaign

- Develop near-term accident tolerant LWR fuel technology
- Perform research and development of long-term transmutation options

Advanced Fuels Campaign

NEAMS

Fuel Development Life Cycle

In-Reactor Test Goals

Nuclear Energy

Irradiation Experiment Goals:

- Demonstrate new fuel behavior
- Measure bulk fuel behavior, integral fuel performance: macroscopic scale
- Collect smaller length-scale data for modeling and simulation: microscopic scale
- Compare new fuels to historic fuels database
- Identify life-limiting phenomena

In-reactor Instrumentation Goals:

- Observe "real-time" fuel behavior
- Provide access to results before postirradiation examination (PIE)
- Inform decisions on continued irradiation or withdrawal based on performance data
- Generates intermediate fuel behavior data

Fuel Behavior is Complex

Key Fuel Performance Phenomena

Nuclear Energy

Dimensional changes

- axial growth
- radial swelling

Fission gas production and release

- In-pin pressure
- Fuel restructuring (zone formation)
- Constituent redistribution
- Fuel cladding chemical/mechanical interaction
- Performance phenomena depend on
 - composition
 - temperature
 - burnup

Transverse metallographic section from the high temperature region of a U-19Pu-10Zr element at 3 at.% burnup with superimposed microprobe scans, showing zone formation, cracking and Zr-U

redistribution.

Fission gas released to plenum above fuel for various metallic fuels as a function of burnup (EBR-II irradiation)

G.L Hofman and L. C. Walters, "Metallic Fast Reactor Fuels," <u>Materials Science and</u> <u>Technology Vol. 10A</u>, 1994.

In-Situ Instrumentation Considerations

Nuclear Energy

Experiment Types

Static Capsules

- simplest design
- most cost-effective
- accommodate wireless instruments

Instrumented Lead

- extensive design and handling
- accommodate wired instruments

Loop Experiments

- coolant environment controlled independent of ATR coolant
- accommodate wireless or wired instruments

Instrument Types

Wired

- only in instrumented leads and loops
- handling concerns

Wireless

applicable to any experiment type

Measurement Types

- State Point
 - end of irradiation
 - supplemental data, but limited

Real Time

- provides more data
- detailed history of long experiments

In-reactor Instrumentation Constraints

Nuclear Energy

Small diameter experiments

 Irradiation experiments are usually representative of prototypic reactor fuel pin dimensions ~5.8-9.5 mm (0.230-0.374 in.) OD

Small in-reactor experiment locations

- Typical ATR experiment positions 15-38 mm (0.62-1.5 in.) ID

Stability and Survivability

- Instruments must survive irradiation and fuel environment with no (or known) drift
- Instruments must survive reactor conditions:
 - high neutron flux
 - high temperature/high pressure
 - chemical environments
- Wired instruments must fit through reactor pressure vessel feedthroughs (leak tight)
- Limited space (feedthroughs) for wired instrumentation
 - ATR loops are limited to 24 leads (5-6 instrumented rods per test train)

Total cost (fixed program budgets)

Experiments with instrumented leads are more expensive to design, build, and operate

AFC Irradiation Experiments in ATR

06.6450191.03

Current Irradiation Test Instrumentation

Nuclear Energy

Melt Wires

- ATF-1
- inserted inside dU insulator pellets

Flux Monitors

- ATF-1 basket
- SiC Temperature Monitors
 - ATF-1 and ATF-2 experiments

In-basket Flux Wires

In-Pellet Melt Wires

ATF Loop Planned Instrumentation

Nuclear Energy

SQ Test Lead Arrangement					
Top Tier					
Lead Sheath Diameter (inches)	0.039	0.063	0.125		
Multiple LVDT Single Bellows	6 (2 Per LVDT)	1			
LVDT Single Bellows	2 (2 Per LVDT)	1			
LVDT Single Bellows	2 (2 Per LVDT)	1			
Optical Pressure		5			
HTIR TC		2			
Type N TC		1			
Type N TC with TAC		1			
Ultrasonic Multipoint					
Temp		1			
MPFD Neutron Detector			1		
Lead Size	0.039	0.063	0.125	Total	
Total Leads	10	13	1	24	

Fuel Test (Planned)

Parameter	Sensor	Source	
Fuel Temperature	HTIR-TC	INL	
Gas Pressure	LVDT/ Bellows	Halden	
Fuel Elongation	LVDT	Halden	
Cladding Elongation	LVDT	Halden	
Coolant Water Electro- chemical Potential	ECP	Halden	
Neutron Flux	Flux Wire	INL	
Coolant Water Temp – Core Region	тс	INL	

SQT Instrumentation (Top Tier)

Nuclear Energy

Sensors to be evaluated have potential advantages, but have not been demonstrated previously in-core

 Developmental sensors may be used in ATF-2 fueled experiment if performance is exceptional

Bottom Tier Loaded with "Dummy" Pins

Flowing Autoclave Test – Mock-up of SQT Prior to ATR Insertion

- Westinghouse Electric Research Laboratory – Churchill, PA
- Collaboration with IFE / Halden
- Assemble mock-up test train at INL and ship to Westinghouse
- ATR / PWR Prototypic Operating Conditions
- Evaluate durability of sensors under high flow/water Temp conditions
- Examine Chemical Interactions
 - Crud buildup
 - Clad corrosion
 - Formation of dissolved solids
 - Plating on clad surfaces

Halden LVDT Based Instruments

- Performance and robustness demonstrated over several years and irradiations
- Used in test reactors worldwide
- Not previously demonstrated in ATR minor modifications are being implemented for fuel and clad elongation measurements

Fuel Extensometer: Pellet Stack Growth Cladding Extensometer: Pin Growth

Nuclear Energy

Advanced Fuels Campaign

- Potential issues to be evaluated:
 - Irradiation/temperature response of LVDT
 - Water ingress and vibration damage in MIMS cables
 - Sensitivity of LVDT/Core combinations
- Changes from Halden design for ATR application:
 - Fuel Extensometer:
 - Type-10 LVDT fits around fuel rod
 - Core placed on end of fuel stack/no pushrod

High-Temperature Irradiation Resistant Thermocouple: Fuel Centerline

Nuclear Energy

Temperature

Initial evaluations suggested doped Mo/Nb-1%Zr thermoelements with HfO₂ insulation and Nb1%Zr sheaths most suitable combination for HTIR-TCs.

HTIR-TCs patented by BEA and deployed

HTIR-TCs performed well throughout AGR-1 irradiations (while commercial TCs failed)

- Near term development to address existing limitations:
 - Lack of Nb-1%Zr availability
 - Activation of hafnia and availability of newer insulation materials
 - Current effort to improve HTIR-TC with newer materials (Doped Nb, Yttria)

Ultrasonic Thermometer: Fuel Centerline Temperature

Micro Pocket Fission Detector (MPFD): Environmental Temperature and Neutron Flux

Nuclear Energy

- Three sensors in a single, compact package:
 - Thermal neutron detector
 - Fast neutron detector
 - Temperature detector
 - Modular design may allow more chambers

MPFDs use parallel plate fission chamber design

- Neutron signal not based on full energy deposited
- Small size
- Fast response
- Inherent background radiation discrimination
- Prototype evaluated in HTTL furnaces and KSU TRIGA reactor
 - Tested to 500°C for 1000 hours
 - Tested in a TRIGA at 10¹³ n/cm²-s
- Current effort to design for temperatures to 800°C

Thermoacoustic (TAC) Sensor: Fluid Temperature

Luna Innovations Fiber Optic Sensor: Pin Gas Pressure

Nuclear Energy

- Fiber optic pressure sensor significantly smaller than LVDT based system
- Fiber optics known to degrade outside core region for ATR application

Extrinsic Fabry-Perot

- 1/16 inch diameter
- 1.5 inch length
- Demonstrated to 16000
- Response time down to 13
- Other sensors possible based on method:
 - Dimensional changes

ATF-2 Test Train Conceptual Design

clad and fuel

elongation Tiers 1-4

ATR Loop Condition Sensors/Controls

Nuclear Energy

- Thermo-couples (TCs) to measure inlet and outlet temperatures
 - can adjust water temperature "on the fly" during irradiation testing as needed
- Flow meters to measure loop flow rates
 - can adjust water flow rate "on the fly" during irradiation testing as needed
- In-line Chemical sensors
 - H2, Conductivity, pH
- Water "grab sample" collected daily
 - Boron measurement daily; dissolved metal constituents measured weekly

Electro-chemical Potential (ECP)

- Measures concentrations of dissolved oxidants in loop coolant water
- Will be used to monitor formation/dissolution of clad corrosion
- Halden reactor has developed a reference electrode that is capable of withstanding in-core conditions – has been successfully used in Halden Reactor

Core region Thermo-Couple

- Measures coolant water temperature in the core region (included in the ATF-2 test train)
- ATR measures loop inlet and outlet water temperatures only

Test Train Flux wire

- Measure neutron flux in the test train region
- Used to refine neutronics calculations to support burnup predictions
 - center flux trap flux is not controlled directly (4 corner lobes) and fluctuates during the cycle duration

ATR In-Canal Measurements

Nuclear Energy

- Change Detection Software (CDS) has the potential to identify changes in fuel rod surface features "in-canal" between cycles
 - Couple CDS to camera output for intuitive real-time change information
 - Fracture formation / propagation
 - Clad corrosion / oxidation
 - IR images fuel changes (swelling, cracking, growth)
 - Uncertainty reduction in fuel performance models by providing multiple data points for a single fuel rod

In-Pin Ferritic Core / LVDT

- Fuel / clad elongation

Advanced Fuels Campaign

Ferritic Core for use with Large Type 10 LVDT

Before and After Fuel Plate Blister Images Using DCS

Fuel

Adaptable Caps

Ceramic Insulator

Summary

- Advanced Fuels Campaign is currently using flux wires and melt wires in ATF-1 experiments
- Wireless thermoacoustic (TAC) sensor demonstrated in Breazeale Reactor at Penn State September 2015
- Sensor qualification test will demonstrate existing and new instruments in ATR conditions
 - Out-of-pile SQT mock-up test in flowing autoclave prior to ATR insertion
- ATF-2 loop experiment will use demonstrated in-reactor instruments to measure:
 - fuel temperature
 - fuel pin internal gas pressure
 - fuel stack elongation
 - fuel pin elongation
- In-Canal measurement will provide fuel performance data between cycles
 - Fuel/clad elongation
 - Clad surface feature changes
 - Fuel growth, swelling, cracking

Acknowledgments

Nuclear Energy

ATF-1 Melt Wires

- Jason Harp
- Kurt Davis

SQT and ATF-2 Loop Experiment and Design

- Kristine Barrett
- Brian Durtschi

SQT, Autoclave, and ATF-2 Loop Instrumentation

- Troy Unruh
- Josh Daw
- Jim Smith
- Kurt Davis
- Steinar Solstad IFE/Halden

