PANTEX PROBABILISTIC SEISMIC HAZARD ANALYSIS CONCEPTUAL PLAN

J. K. Kimball¹, K. M. Cline¹, R. C. Quittmeyer¹, J. Nunley²
¹ RIZZO Associates, Pittsburgh, Pennsylvania
² Consolidated Nuclear Security LLC, Amarillo, Texas

Presentation at DOE Technical NPH Meeting
October 18, 2016
Presentation Outline

- Project background and objective
- Field and laboratory program to support site response analysis
- Conceptual Plan for updated Pantex PSHA
- Summary and conclusions
Project Background and Objective

- Develop a conceptual plan to update design basis earthquake (DBE) ground motions following a SSHAC Level 3 process.

- Describe tasks, schedule, and costs needed to update the PSHA, site response analysis (SRA), and DBE ground motions.

- Ensure that DOE Order 420.1, DOE Standard 1020, and ANSI/ANS Standards 2.27 and 2.29 are addressed.

- Address seismic source characterization (SSC), ground motion characterization (GMC) and SRA inputs to an updated PSHA.
Field and Laboratory Program to Support Site Response Analysis

- Assess adequacy of available data at the Pantex Site and within the Site near region and identify data gaps.
- Address logistical issues for accessing a secure site and working around security requirements.
- Recommend investigations for acquiring necessary data to reduce epistemic uncertainty for developing a technically robust PSHA and SRA. Recommended investigation should consider the following:
 - DOE, ANSI/ANS, and EPRI Guidance.
 - Input from SRA sensitivity study and peer review.
 - Site access limitations.
 - Programmatic constraints.
Field and Laboratory Program to Support Site Response Analysis

• Available Data and Information

➤ Relevant technical reports provided by NNSA and site contractor.

➤ Hundreds of well logs from the Pantex Site.

➤ Information on over 750 wells for Pantex and Texas Tech.

➤ Oil and Gas Logs (30) – Texas Bur. of Econ. Geology.

➤ Publications on the geology of the Texas Panhandle.
Field and Laboratory Program to Support Site Response Analysis

Existing Wells

Figure 2 - 3
Existing Wells of Interest at Pantex Site
Prepared For
Consolidated Nuclear Security LLC
Pantex Plant, Texas

Legend:
Investigative Wells
- PVC Casing (depth: ≥ 295 ft and < 500 ft)
- SS or Other Steel (depth: 0 - 500 ft)
- SS or Other Steel (depth: 500 - 700 ft)
- SS or Other Steel (depth: 700 - 900 ft)
- Contaminated Areas
- Perched Aquifer
- Limited and Protected Access Areas

Pantex Property Boundary
Field and Laboratory Program to Support Site Response Analysis

Regional Oil and Gas Wells

Legend:
- Panex
- Rex White
- 4206531353
- 4235930160
- Other Wells

Figure 2 - 5
Oil and Gas Well Logs Reviewed with Three Selected Wells for Estimating Vs

Prepared For
Consolidated Nuclear Security LLC
Pantex Plant, Texas
Field and Laboratory Program to Support Site Response Analysis

- Extensive geologic information is available for the Mesozoic and younger stratigraphy at the Site.

- However, no reliable information exists on the Vs or dynamic properties of the stratigraphic units at the Site.

- Based on the limited review of oil and gas well data, Vs approaching hard-rock (9,200 ft/sec) is expected to be very deep (several 1,000’s ft).

- There are many investigation wells that may be usable for additional data collection.

- Regional oil and gas well data are available for estimating Vs for Paleozoic stratigraphy; an expanded evaluation of these wells should provide a defensible basis for Paleozoic Vs profile at Pantex.
Field and Laboratory Program to Support Site Response Analysis

- Select the most cost effective field and laboratory methods that provide reliable data for calculating shear wave velocity (Vs) and other dynamic properties.

 ➢ Includes re-entering selected existing wells assuming access is feasible.

- Utilize regional data in developing Vs profile for the Paleozoic stratigraphic sequence at the Site.

- Consider new boreholes for acquiring site specific material properties and Vs recognizing that drilling to hard rock is not feasible.
Recommended Field and Laboratory Program to Support Site Response Analysis

- Compile regional sonic data from oil and gas wells to develop Vs profile of the Paleozoic sequence.

- Down-hole geophysical surveys in 8 existing stainless steel-cased boreholes that reach depths to ~900 ft bgs.

- Conduct 7 SASW survey lines across the Site that are augmented with 2 MAM surveys to collect data to 1,500 ft depth.
Recommended Field and Laboratory Program to Support Site Response Analysis

- Drill and selectively core 2 boreholes to 1,200 ft.

- Conduct P-S suspension logging in 2 new boreholes and 5 existing PVC-cased wells.

- Obtain 10 to 12 samples and conduct laboratory testing to determine stiffness, damping, and nonlinear properties: 6 for RC/TS and 5 for cyclic triaxial testing from Blackwater draw and Ogallala Formations.
Recommended Field and Laboratory Program to Support Site Response Analysis

Location of Recommended Field Investigations

Selected Wells for Geophysical Testing

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Well Depth [ft]</th>
<th>Casing Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTX6-1142</td>
<td>791</td>
<td>SS</td>
</tr>
<tr>
<td>PTX6-1141</td>
<td>676</td>
<td>SS</td>
</tr>
<tr>
<td>PTX6-1139</td>
<td>551</td>
<td>SS</td>
</tr>
<tr>
<td>PTX6-1086</td>
<td>299</td>
<td>PVC</td>
</tr>
<tr>
<td>PTX6-1072</td>
<td>548</td>
<td>SS</td>
</tr>
<tr>
<td>PTX6-1062A</td>
<td>892</td>
<td>SS</td>
</tr>
<tr>
<td>PTX6-1044</td>
<td>614</td>
<td>SS</td>
</tr>
<tr>
<td>FP-06-1074</td>
<td>354.5</td>
<td>PVC</td>
</tr>
<tr>
<td>PTX6-1136</td>
<td>586</td>
<td>SS</td>
</tr>
<tr>
<td>FP-06-1087</td>
<td>343</td>
<td>PVC</td>
</tr>
<tr>
<td>PTX6-1089</td>
<td>417</td>
<td>PVC</td>
</tr>
<tr>
<td>PTX6-1095</td>
<td>256</td>
<td>PVC</td>
</tr>
</tbody>
</table>

Legend:
- Investigative Wells
 - PVC Casing (depth: 125 ft and < 500 ft)
 - SS or Other Steel (depth: 125 ft and < 500 ft)
 - SS or Other Steel (depth: 500 - 700 ft)
 - SS or Other Steel (depth: 700 - 900 ft)
 - Contaminated Areas
 - Perforated Aquifer
 - Limited and Protected Access Areas

Figure 2 - 15
Locations of Recommended Field Investigations
Prepared For
Consolidated Nuclear Security LLC
Pantex Plant, Texas
Elements of the Conceptual Plan for Updating the Pantex PSHA

- SSHAC Level 3 Tasks, Roles, Responsibilities, and Application.
- Seismic Source Characterization Model.
- Ground Motion Characterization Model.
- PSHA for Reference Rock Site Conditions.
- SSHAC Level 3 Site Response Analysis.
- PSHA at the Control Point and updated DBE Ground Motions.
- Documentation.
Conceptual Plan for Updated Pantex PSHA

PANTEX PSHA CONCEPTUAL PROJECT PLAN

- Existing Site and Site Vicinity Data
- New Field and Lab Investigations Data

SSC Model
- Existing SSHAC Level 3 CEUS-SSC Model
- Review of any relevant new data
- Report

GMC Model
- Existing SSHAC Level 3 NGA-East Model
- Review of any relevant new data
- Report

Hard-Rock PSHA

Surface PSHA and DBE Response Spectra

SRA Calculations

Pantex Seismic Hazard Report

SSHAC Level 3 Site Response Analysis

- Compile Database
- Workshop #1 – SRA Issues and Data Needs
- Evaluate Data, Methods, and Models
- Workshop #2 – Alternative Interpretations
- Develop Preliminary SRA Model
- Workshop #3 – Feedback
- Develop Final SRA Model and Report

SSHAC Level 3 Participatory Peer Review Panel

PSHA Peer Review Panel
For seismic source model the PSHA Team will:

- Use the CEUS SSC model; the accepted SSHAC Level 3 regional SSC model for assessing seismic hazard at nuclear facilities in the CEUS.

- As needed, define seismic sources to the west of the CEUS model and address human-induced seismicity.

- Review new information to determine impact on SSC model {including the impact of induced earthquakes to the east-northeast of the site}.

- Document the final SSC model in a Hazard Input Document (HID).

- Describe the SSC model in a chapter of the Pantex Seismic Hazards Report.
For hard-rock ground motion characterization model the PSHA Team will:

- Use the Next Generation Attenuation (NGA)-East GMC model; this SSHAC Level 3 model is still under development. The objective of the NGA-East project is to develop a new GMC model for all of Central and Eastern North America.

- Review new information relevant to predicting ground motion to determine impact on use of the NGA-East GMC model.

- Document the final GMC model in a HID.

- Describe the GMC model in a chapter of the Pantex Seismic Hazards Report.
Conceptual Plan for Updated Pantex PSHA

For site response analysis the PSHA Team will:

• Form a SRA TI Team who are responsible for convening three site response workshops consistent with the SSHAC Level 3 process.

 The three workshops ensure that the SRA TI Team sufficiently evaluates site response data, models, and methods, and integration of relevant information to complete the SRA. A key focus of this effort is characterization of epistemic uncertainties and aleatory variability of the various site response inputs.

• The objective of executing the SSHAC Level 3 process focuses on defining the complete set of site response inputs needed to quantify the spectral frequency-dependent amplification factors and their associated aleatory variability and epistemic uncertainty.
Conceptual Plan for Updated Pantex PSHA

Site response analysis SSHAC Workshops

- **Wksp 1 Significant Issues and Data**: Identify data for performing SRA and determine if data gaps exist, identify technical issues of greatest significance.

- **Wksp 2 SRA Modeling Approach**: Alternative interpretations related to SR modeling approach, inputs, uncertainties of site response data.

- **Wksp 3 Preliminary SRA Results and Feedback from the PPRP**: SRA TI Team presents SRA model, sensitivity analyses, and the technical bases for SRA.
Approach to Estimating Cost and Schedule for Executing the Conceptual Plan

Field and Laboratory Investigations

- Planned to run in parallel when schedule logic allows.
- Permitting requirements are a factor.
- Some tasks are dependent on completion of new drilling including sample selection for lab testing and P-S suspension logging.
- Overall duration of about 11 months.

SSHAC Level 3 PSHA and SRA

- SSC and GMC planned to run in parallel.
- SRA dependent on completion of field and laboratory program.
- SSHAC Level 3 process for SRA has a duration of about 12 months.

Report preparation and review completed about 4 months after SRA.
The Pantex PSHA Conceptual Plan describes the scope, costs, and schedule to update DBE response spectra and includes a field and laboratory investigations program to acquire the data needed to support an SRA.

Inputs to the PSHA are based on existing (SSC) and a soon-to-be completed NGA-East GMC model that were developed following the SSHAC Level 3 process.

New information will be reviewed and the models adjusted or supplemented, if needed.

The PSHA Conceptual Plan includes tasks to implement the SSHAC Level 3 process in carrying out the SRA.