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Project Overview 

n Goal, and Objectives 
•  Develop new optical fibers for nuclear industry 
•  Explore and demonstrate distributed multi-functional fiber optical sensors for nuclear industry 

–  µε, T, vibration, P, level, chemical, and radiation with high spatial resolutions 
•  Evaluate various distributed sensing schemes and demonstrate unique capability 
•  Develop manufacturing schemes for sensor-fused smart parts for nuclear industry. 
•  Evaluate fiber sensors for extreme harsh environments (neutron radiation).  

n Participants  
•  University of Pittsburgh: Dr. Kevin P. Chen (PI), Zsolt Poole, Aidong Yan, Rongzhang Chen, 

and Mohamed Zaghloul 
•  Westinghouse Electrical Company: Dr. Michael Heibel, Dr. Robert Flammang, and Melissa 

Walter 
•  Corning Inc.: Dr. Ming-Jun Li and Jeffrey Stone 

n Schedule:  
•  Year 1: active fiber sensing technique developments, multi-functional fiber fabrications 
•  Year 2: distributed pressure and temperature measurements in radiation environments 
•  Year 3: distributed hydrogen sensing in radiation environments  
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Project Overview 

n What is unique about fiber optical sensors? 
•  Resistant to harsh environments (but no all environments). 

–  High Temperature up to 800C, high pressure up to 2500 psi, gamma radiation (MGy). 
–  High neutron radiation (to be evaluated) 

•  Fully embeddable into concrete, metal, and existing infrastructures  
•  Unique capability to perform distributed measurements with high spatial resolution (1-10cm)  

n What is unique about nuclear applications?  
•  Radiation (but no all environments are extremely radioactive)   
•  Need perform a wide arrange of measurements beyond temperature and strains 
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Research Approach 

n Fibers 
•  Developing new optical fibers with built-in capability to perform distribution radiation 

measurements (for measurements and for calibration) 
•  Developing new multi-functional optical fibers for multiple parameter measurements   

n Sensing Technology  
•  Evaluate various distributed sensing schemes (Rayleigh, Brillouin, FBGs) under radiation for 

short and long terms measurements     
•  Develop new distributed sensing technology beyond T/strain measurements  

–  Liquid levels 
–  Pressure and T simultaneously + radiation 
–  Chemical (hydrogen) and spatially resolved chemical reaction 
–  Fiber optical vibration sensing for radiation environments   

n Implementations and Applications in Nuclear Engineering 
•  Smart parts manufacturing: Fiber embedding and testing  
•  New sensor platforms (smart cable, small concrete, and …?) 
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Experiment Setup 
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•  γ radiation: max. ~5000 Gy/hr on fibers  
•  Performed in Westinghouse Churchill facility  
•  Brillouin OTDR schemes and Rayleigh OFDR distributed sensing scheme 
•  Fiber Bragg gratings and fiber acoustic sensors 
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Experiment Setup 

n LUNA OBR 4600 
n Swept wavelength interferometry 
n Compares (with cross correlation) backscattering vs. reference to determine 

loss, temperature, and strain 
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Radiation Tests 

Radiation Tests  

Radiation Resistant Fiber Radiation Sensitive Fiber 

Fiber Types SMF28 Vascade High Ge- Alumina  Random 
air-hole 

RIA (dB/km) 96 61 115 35651 51 

•  1MGy γ dosage (Co-60 source) 
•  SMF-28 standard optical fiber 
•  Vascade: Corning ultra-low loss, pure silica core/F-doped cladding  
•  Random air-hole: new all silica fiber 

•  Random air-hole cladding (low cost) 
•  All silica structures (sustain >400C more than F-doped fibers) 

Data/Tests to be done  
•  Neutron radiation  
•  Increase dosage to 10 MGy 
•  Head-to-head comparison with Rayleigh/FBG 
•  Test strain/T coefficient vs. radiation  

Random Air Holes Fiber  
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Spatial Mapping of Radiation  
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Electrical Cable as Sensor Platform 

•  Using electric cables as ubiquitous 
sensor platforms.  

•  No need to re-design nuclear 
power systems for sensor 
integration.  

•  Direct monitoring of cable aging 
with high spatial resolution.  

•  Fiber inserted as distributed 
sensors or point sensors with 
interrogation length 0.1-10 km.  

•  Temperature 
•  Pressure 
•  Strain (cable degradation)  
•  Volatile chemical and hydrogen 
•  Leak and moisture  
•  Radiation  
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Distributed Pressure Measurements 

•  OFDR birefringence 
measurements 

•  Rayleigh scattering reference 
between 2 polarization states 

•  Demonstrate distributed sensing 
cross 10-meters 
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Distributed Pressure Measurements  
for Steam Pipes 

•  “Appropriate” harsh environments 
(modest/minimal neutron radiation) 
•  Radiation-harden microstructural 

fiber for simultaneous temperature 
and pressure measurements 

•  T ~ 650C, Pressure 200bars  
•  T resolution 1C 
•  P resolution 1% 

•  Distributed fiber solution 1-cm 
resolution  

•  One fiber cable, one fiber 
feedthrough.  
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•  Nano-Engineered metal oxide sensory film 
•  Porosity control for refractive index matching 
•  Rare-earth or noble metal dopants for specificity  
•  Pd-TiO2 

•  Sensor must operate  >600C 
•  No electrical components in target environment 

Nano-Structured Layer 

High-T Chemical Sensors 
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Exposed to various concentrations of hydrogen in nitrogen, recovered with nitrogen 
Ideal for hydrogen driven energy conversion systems 

Optical Transmission vs. Hydrogen Concentrations 

Fiber Optic Hydrogen Sensor at 700C 
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All-temperature Continuous Level Sensing using self-heated 
fiber and Rayleigh backscattering: 
 

Active Fiber Sensors:  
Level Measurements in Spent Fuel Rod Pool 
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Uniform Heating Cross 10-m Span 

•  Heating span 10-m. 
•  Temperature fluctuation might caused by air flow or coating 
•  1-10W electricity for heating 
•  Power off: temperature measurements 
•  Power on: water level measurement.  
•  High sensitivity to surrounding medium validated 

Brillouin Frequency vs. T 

Level Sensing in Waters 

Active Fiber Sensors:  
Level Measurements in Spent Fuel Rod Pool 
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Sensor-Fused Additive Manufacturing 

n  Establish a reliable way to implement fibers in harsh 
environments 

n  Standard optical fibers  
n  Electroless/sputtering coating of glue layers 
n  Electroplating of Ni/Fe protective layer   
n  Embedding process using a 3D printing scheme 

(LENS) into mixed alloy 
n  Repeated thermal cycling and annealing at 900C 

appears to yield consistent results 
n  3D printing provide GREAT protection to fiber sensors  

 

 



17 

Sensor Package via 3D Printing  

TEC of Fe-Ni Alloy   
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Fiber Optic Acoustics Sensor for Fast 
Sodium Reactor  

  

n  Thermal acoustic resonators for in-pile temperature 
sensing.  

n  Simulators have five acoustic resonators  
n  Distributed feedback fiber lasers as acoustic sensors 
n  3x3 interferometer for fast signal decoding 
n  Cut-off frequency of measurements 150 kHz  
n  Frequency measurement accuracy at 1 Hz 
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DFB fiber acoustic sensor measurements 



	  
In-‐Pile	  Neutron	  Tests:	  	  

FBG	  Point	  Sensors	  and	  Distributed	  Sensors	  
 Thermal Regeneration Process  

Seed FBG 

Regenerative  
FBG 

Enhanced Rayleigh Scattering  

Ultrafast laser irradiation  
•  Ti:Sapphire 250-kHz, 180-fs, 780-nm 
•  0.2-0.5 µJ, 0.5-10 mm/s 
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Highly Stable Rayleigh Fibers at High-T 

n Rayleigh enhanced fiber stable up to 800C in 10% hydrogen!  
n Temperature measurement 5-mm spatial resolution  
n Repeatability better than 4C at 800C in H2 environments  
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Technology Impacts and Conclusion 

n Advances the state of the art and support NE and nuclear industry 
•  Develop distributed fiber sensing solutions to perform robust and multi-

functional measurements beyond T and µε.  
•  Develop new optical fibers with an integrated function for distributed 

radiation measurements.  
•  Provide unique sensing capability unattainable by other measurement 

schemes 
n Explain how this technology impacts nuclear stakeholders 

•  Improve safety of nuclear power systems: distributed fiber chemical sensors 
for gas measurements (e.g. Hydrogen), distributed fiber sensors to monitor 
spent nuclear fuel pools, and etc.  

•  Provide new tools to monitor radiation effects to critical components, 
systems, and infrastructures.  

•  Mature TRL levels of fiber sensors by developing new sensor packaging 
scheme and sensor-fused smart components 
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Questions? 

Kevin P. Chen 
University of Pittsburgh 

Email: pec9@pitt.edu 
Tel. 412-624-9675 


