## Advanced Surface Nitriding

#### **Robert Balerio**

October 18, 2016

Texas A&M Nuclear Engineering

## Why Nitride

- Low-temperature process
- No quench requirement
- Minimal distortion
- Resistance to oxidation
- High hardness values
- Same core properties

## **Basic Theory**

- Large voltage frees bound electrons
- Particle acceleration
- Vacuum increase mfp => greater energy
- Ions collide to give off visible light



## Initial Design



Initial nitriding chamber design [1].

## Problems with Initial Design

- Severe arcing when igniting plasma
- Metallic sputter deposition on all ceramic insulators resulting in electrical shorting
- Sample insolation disc shorting due to sputter deposition
  - Inconsistent nitriding results
- High maintenance due to cleaning ceramic every experiment

#### Solutions

- Adjustable anode (electrical ground)
- Replaced isolation disc with multiple shielded sample holders
- Added shields to thermocouple feedthrough and stage ceramic stands

## Current Experiment Matrix

- Metals Nitrided
  - 316L
  - HT9
  - T91
  - Zircaloy 4
  - Pure Iron
- Gas: N<sub>2</sub>/H<sub>2</sub> (90%/10%)
- Cage: SS316

| Pressure<br>(mTorr) | Temperature (°C) |        |        |
|---------------------|------------------|--------|--------|
|                     | 400              | 450    | 525    |
| 750                 | 1 Hr             | 30 min | 30 min |
|                     | 2 Hr             | 1 Hr   | 1 Hr   |
|                     | 4 Hr             | 2 Hr   | 2 Hr   |
| 1000                | 1 Hr             | 30 min | 30 min |
|                     | 2 Hr             | 1 Hr   | 1 Hr   |
|                     | 4 Hr             | 2 Hr   | 2 Hr   |
| 1500                | 1 Hr             | 30 min | 30 min |
|                     | 2 Hr             | 1 Hr   | 1 Hr   |
|                     | 4 Hr             | 2 Hr   | 2 Hr   |

#### 316L Nitride Layer at 375C for 2 Hours



Initial formation of nitride layer [2].

## 316L:525C, 1Torr Cross Section Polishing Before Etching



30 mins 1 Hour 2 Hours

#### 316L: 525C, 1Torr, 1Hr



Before and after etching with Marble's reagent.

### 316L: 400C, 2 Hours



1 Torr

1.5 Torr

316L: 450C



#### 1 Hour 750 mTorr

2 Hours 1 Torr

#### 316L: 525C, 1.5 Torr



#### 1 Hour

#### 2 Hour

## Diffusion Kinetics: 316L 1.0 Torr



1000/K

## Diffusion Kinetics: 316L 1.5 Torr



1000/K

#### 316L: 450C, 1.5Torr, 2Hr



#### 316L: 450C, 1.5Torr, 2Hr



#### 316L: 525C, 1Torr, 2Hr Atomic Percentage Vs. Depth



#### 316L: 525C, 1Torr, 2Hr Hardness Vs. Depth



#### 316L: 525C, 1Torr, 2Hr Reduced Modulus Vs. Depth



#### T91: 450C, 1.5Torr, 2Hr



#### Nitride Layer

#### T91: 450C, 1.5Torr, 2Hr Atom Percent Vs. Depth



#### Cathodic Cage Nitriding





#### Future Work

- Analyze nitrided HT9, Zircaloy4, T91, Pure Iron, Pure Zirconium
- Measure how cage thickness changes Hollow Cathode Effect

#### Questions?

1) R.R.M. de Sousa, et al., *Cathodic cage plasma nitriding of austenitic stainless steel (AISI 316): influence of the working pressure on the nitrided layers properties,* Mater. Res., 17 (2014), pp. 427–433

2) Pye, D., *Practical Nitriding and Ferritic Nitrocarburizing*. 2003, Materials Park, OH: ASM International. 256.

# Glow discharge ion nitriding mechanisms



#### Hollow Cathode Effect

