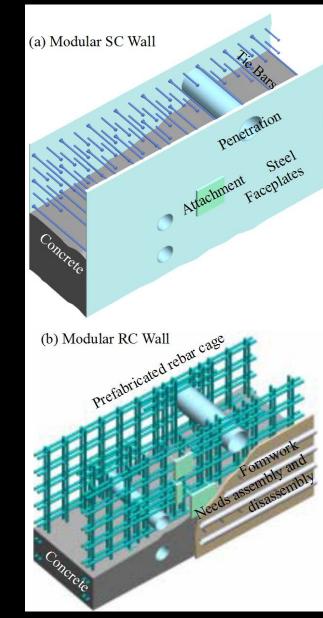
IMPROVEMENT OF DESIGN CODES TO ACCOUNT FOR ACCIDENT THERMAL EFFECTS ON SEISMIC PERFORMANCE

Amit H. Varma, Kadir Sener, Saahas Bhardwaj Purdue University Andrew Whittaker: Univ. of Buffalo



INTRODUCTION

- Project focuses on the effects of accident thermal conditions on the seismic performance of:
 - a) Innovative steel-plate composite SC walls, and
 - b) Conventional reinforced concrete RC walls.

MOTIVATION

- Steel faceplates are directly exposed to elevated temperatures resulting from accident thermal conditions. The resulting differential temperatures and nonlinear thermal gradients lead to concrete cracking
- Potential overstressing of the steel faceplates (primary reinforcement) during seismic events. Need to address the effects of accident thermal loading on seismic performance.
- ACI 349 for safety-related RC structures also does not address the effects of accident thermal loading on seismic performance of RC walls.
- Guidance is needed for regulators, designers, utilities and NSSS vendors.

PROJECT OBJECTIVES

 Evaluate the seismic performance of structural walls subjected to accident thermal loading. Parameters:

- (i) Wall type: SC and RC,
- (ii) Maximum accident temperature,
- (iii) Duration of the accident thermal loading before seismic

(iv) Details like reinforcement ratio, clear cover, etc.

- Develop and benchmark numerical models for predicting the seismic performance of structural walls subjected to accident thermal loading
- Conduct analytical parametric studies to evaluate effects of wide range of material, geometric, structural detailing, thermal loading, and seismic loading parameters including those identified in 1.

PROJECT OBJECTIVES (CONT'D)

 Develop design guidelines and recommendations for accident thermal + seismic loading

 (i) Recommendations for calculating design demands, and
 (ii) Calculating the strength and post-peak response

- To disseminate this knowledge and information, and update upcoming design and analysis codes particularly
 - ♦ ACI 349 App. E
 - ◆ ACI 349.1R
 - ♦ AISC N690

 ASCE 4 and ASCE 43 to include research findings and guidelines.

PROJECT TASKS

Task 1 – Review and Finalization of Parameters
 Industry Partners: Westinghouse Electric, AECOM, Bechtel
 Status – Complete

Task 2 – Accident Thermal Loading and History
 Industry Partners, and Review of DCDs, Public NRC documents for AP1000, US-APWR, SMRs etc.
 Status – Complete

Task 3 – Experimental Investigations of SC and RC Walls
 Bowen Laboratory using Specialized Heating and Hydraulic Equipment

Status – Ongoing

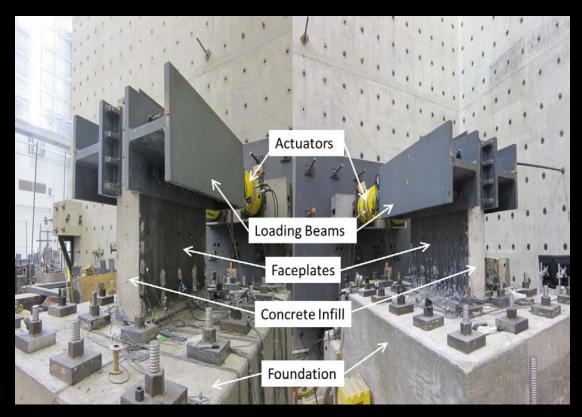
PROJECT TASKS

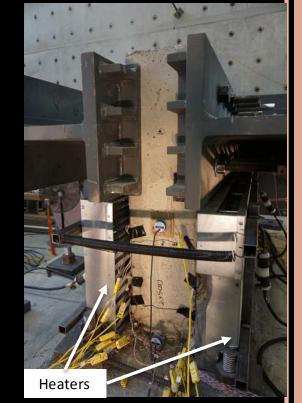
Task 4: Development & Benchmarking of Models
 Using LS-DYNA, ABAQUS, and other software
 Status – Ongoing rigorously

Task 5 – Analytical Parametric Studies
 Using Parameters from Task 1, and Models from Task 4
 Status – Ongoing

Task 6 – Dissemination to Codes / Standards
 ACI 349.1R, AISC N690, ASCE 4/43, etc.
 Status - Ongoing

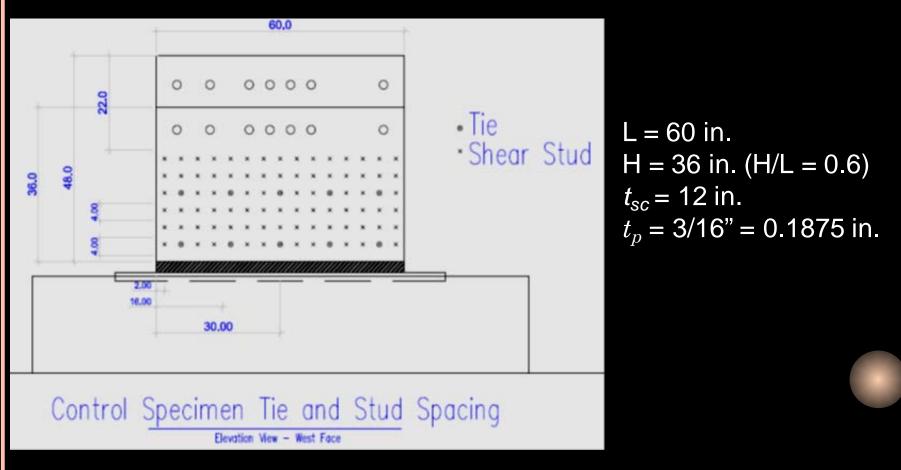
PROJECT SCHEDULE


Project progressing as planned


No significant deviations or issues so far

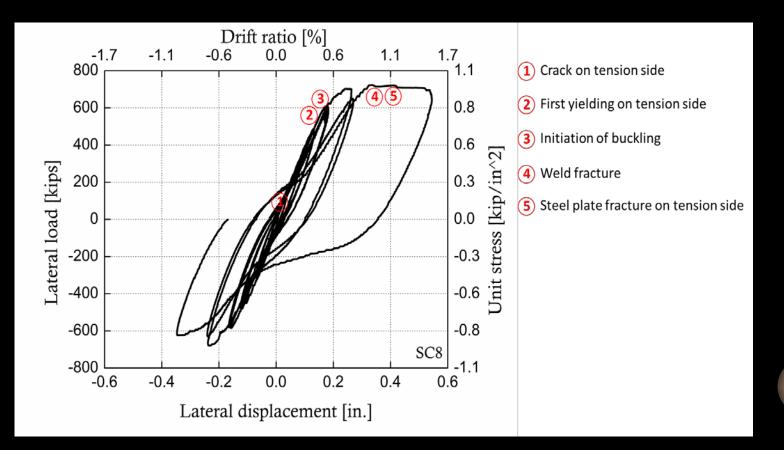
	Year 1				Year 2				Year 3				
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q	8	Q 9	Q10	Q11	Q12
Task 1: Finalize parameters													
Task 2: Finalize Accident T-t													
Task 3: Experimental Inv.													
Task 4: Numerical Models													
Task 5: Parametric Studies													
Task 6: Design Guidelines													

SC-Wall Pier Specimens: Cyclic In-plane Shear
Tested at Ambient and Elevated Temperatures



Elevated Temp.

Ambient Test



 SC-Wall Pier Specimens: Cyclic In-plane Shear at Ambient Condition – Specimen Geometry

 SC-Wall Pier Specimens: Cyclic In-plane Shear at Ambient Condition – Cyclic Hysteresis

 SC-Wall Pier Specimens: Cyclic In-plane Shear at Ambient Condition – Experimental Observations

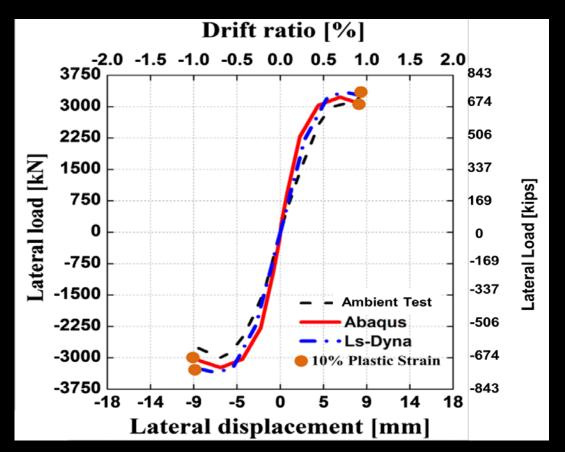
Crack on tension side

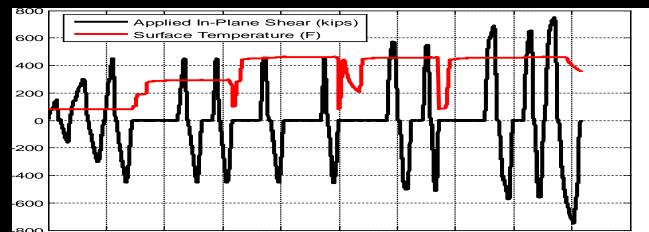
First yielding on tension side

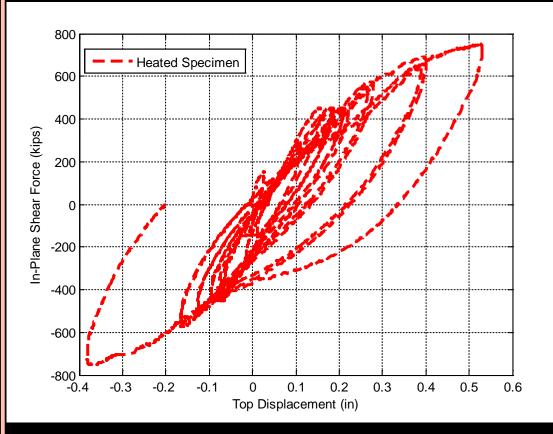
PURDUE

Initiation of buckling

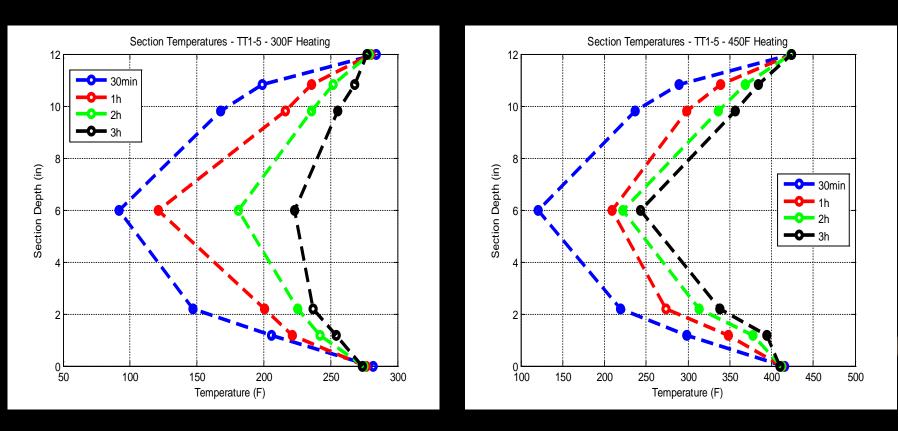
Weld fracture


5 Steel plate fracture on tension side

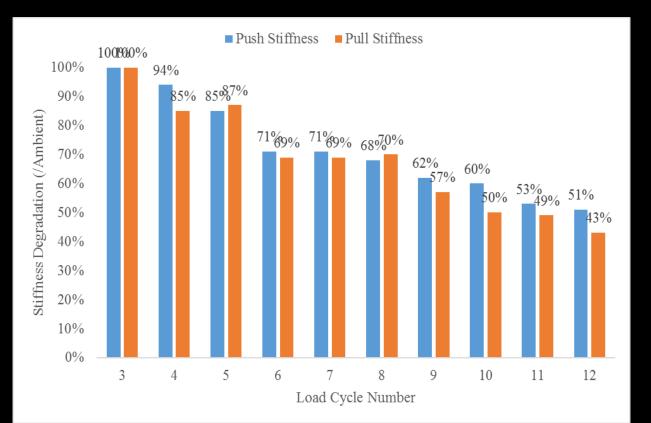

 SC-Wall Pier Specimens: Cyclic In-plane Shear at Ambient Condition – Experiment vs. FE Analysis


SC-Wall Pier Specimens: Cyclic In-plane Shear at Elevated Temperature – Loading Protocol

Force Cycle No.	Surface Temperature	Heating Duration	Target Force Level	Target Displacement Level	Corresponding Max. Load – Push (Pull)
1	Ambient	-	150 kips	-	
2	Ambient	-	300 kips	-	
3	Ambient	-	450 kips	-	
4	300°F	1 hr	450 kips	-	
5	300°F	3 hr	450 kips		
6	450°F	1 hr	450 kips	0.75 Δ _v	
7	450°F	3 hr	450 kips	0.75 Δ _v	
8	450°F	1 hr		1.0 Δ _v	572 kips (503 kips)
9	450°F	3 hr		1.0 Δ _v	548 kips (508 kips)
10	450°F	1 hr	-	1.5 Δ _v	689 kips (575 kips)
11	450°F	3 hr	-	1.5 Δ _v	653 kips (557 kips)
12	450°F	4 hr	-	2.0 Δ _v	749 kips (750 kips)

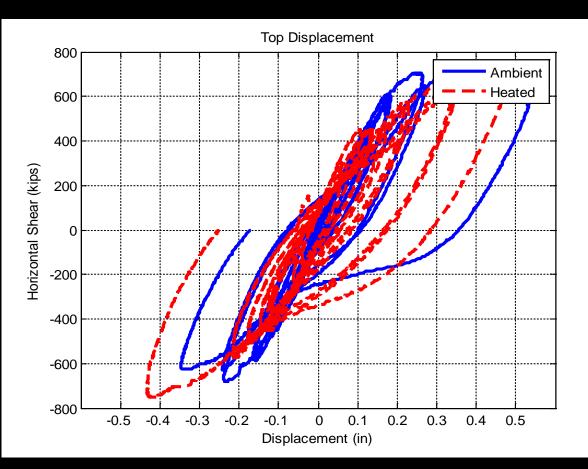

SC-Wall Pier Specimens: Cyclic In-plane Shear at Elevated Condition – Cyclic Hysteresis

 SC-Wall Pier Specimens: Cyclic In-plane Shear at Elevated Condition – Temperature Profiles Through Cross Section for 300°F and 450°F

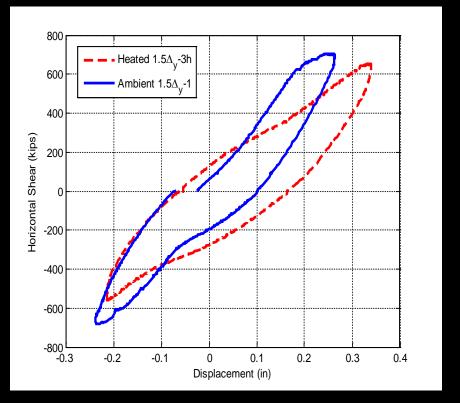


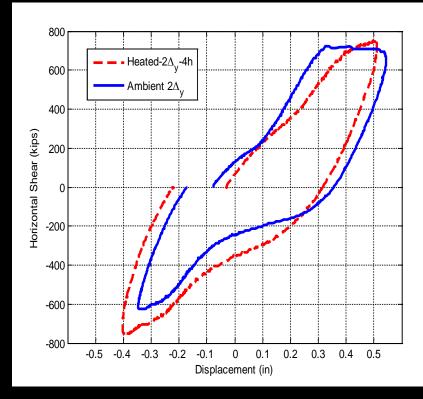
 SC-Wall Pier Specimens: Cyclic In-plane Shear at Elevated Condition – Stiffness Degradation

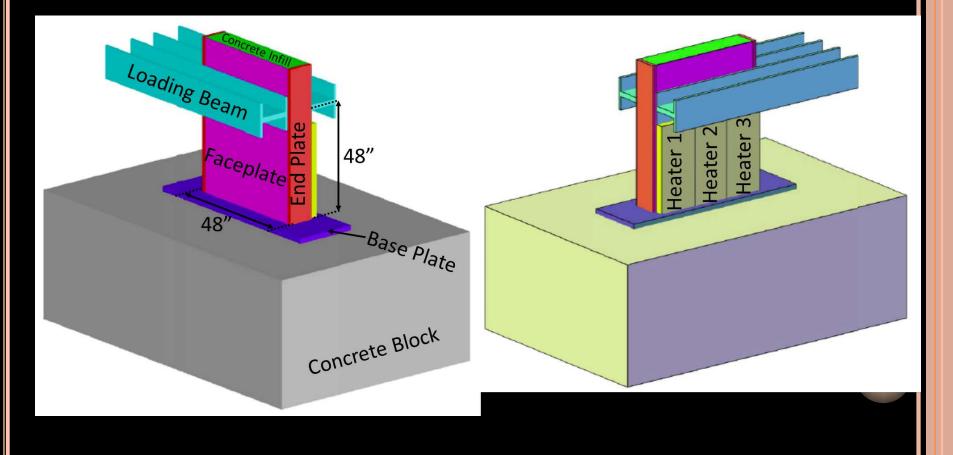
Force Cycle No.	Secant Stiffness – Push (kip/in)	Secant Stiffness – Pull (kip/in)	Change (/Ambient) - Push	Change (/Ambient) - Pull
3	3435	3435	100%	100%
4	3214	2903	94%	85%
5	2903	3000	85%	87%
6	2432	2368	71%	69%
7	2432	2419	71%	69%
8	2334	1960	68%	70%
9	2115	2040	62%	57%
10	2059	1714	60%	50%
11	1818	1689	53%	49%
12	1750	1480	51%	43%



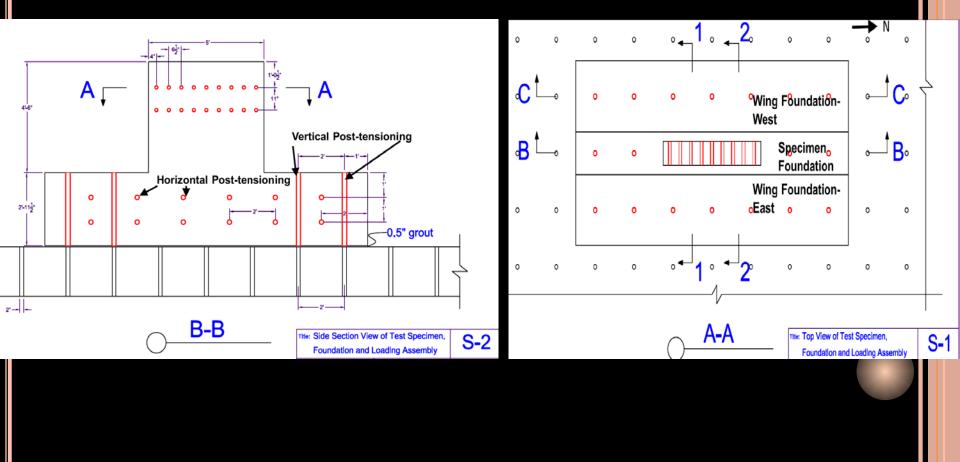
SC-Wall Pier Specimens: Cyclic In-plane Shear at Elevated Condition – Stiffness Degradation




 SC-Wall Pier Specimens: Cyclic In-plane Shear at Elevated Condition – Cyclic Hysteresis Comparison


 SC-Wall Pier Specimens: Cyclic In-plane Shear at Elevated Condition – Cyclic Hysteresis Comparison

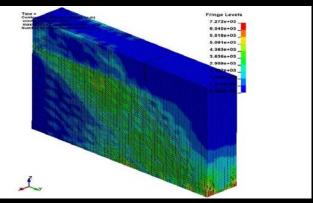
 SC-Flanged Wall Specimens: Cyclic In-plane Shear at Ambient and Elevated Condition – Specimen Design

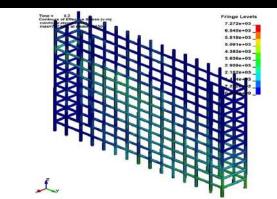


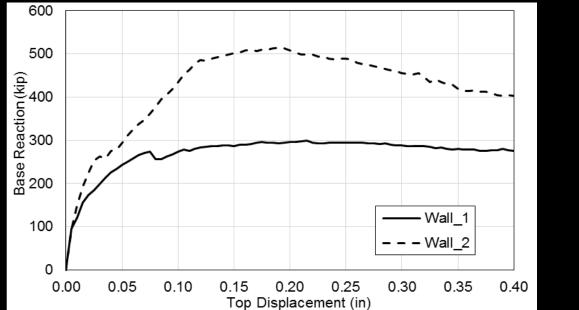
 SC-Flanged Wall Specimens: Cyclic In-plane Shear at Ambient and Elevated Condition – Loading Protocol

Specimen ID	Heating Cycles	Wall thick. T (in.)	Plate Thick. (in.)	Reinf. ratio %	End plate thick. (in.)	Tie Spacing (S), in.	Shear stud s/t _p ratio	Max. temp. (°F)	Heating Duration (hour)	Comment
	300-1			2.1	0.75	5	24	300	1	Effect of heating
SW-H	300-3		0.1046					300	3	Duration of heating
	450-1	10						450	1	Max. temperature
	450-3		(12ga)					450	3	Max. temperature- duration of heating
	300-24							300	24	Long term heating
SW-A	N.A	10	0.1046 (12ga)	2.1	0.75	5	24	Amb.	-NA-	Control Specimen

 RC Wall Specimens: Cyclic In-plane Shear at Ambient and Elevated Condition – Specimen Design




 RC Wall Specimens: Cyclic In-plane Shear at Ambient and Elevated Condition – Loading Protocol


Specimen ID	Heating Cycles	Wall thick. (T)	Rebar size & spacing	Reinf. ratio %	Max. temp.	Heating duration	Comment
	300-1				300°F	1 hour	Effect of heating
	300-3		#6@4in.	2%	300°F	3 hour	Duration of heating
R-1-H	450-1	10 in.			450°F	1 hour	Max. temperature
	450-3				450°F	3 hour	Max. temperature- duration of heating
	300-24				300°F	24 hour	Long term heating
	300-1			300°F	1 hour	Effect of heating	
	300-3	10 in.	#4@4in.	1%	300°F	3 hour	Duration of heating
R-2-H	450-1				450°F	1 hour	Max. temperature
	450-3				450°F	3 hour	Max. temperature- duration of heating
	300-24				300°F	24 hour	Long term heating
R-1-A	N.A	10 in.	#6@4in.	2%	Amb.	-NA-	Control Specimen
R-2-A	N.A	10 in.	#4@4in.	1%	Amb.	-NA-	Control Specimen

RC Wall Specimens: Cyclic In-plane Shear at Ambient and Elevated Condition – Preliminary FE Analysis

SUMMARY & CONCLUSIONS

SC Wall Pier Tests are Completed

- Stiffness degradations were more severe for the heated specimer
- Strength remained unchanged from the ambient specimen
- SC Flanged-Wall Specimen design is completed. Testing is expected to be completed in the next quarter.
- RC Wall Specimen design is completed. Testing is expected to be completed in the next quarter.